
Functional analysis

Lecture 11: Complex version of the Riesz–Markov–Kakutani theorem;
The Baire category theorem; the uniform boundedness principle

Proof of Theorem 6.6 (cont.) Now, we assume that µ(X) = ∞ and µ is σ-finite. Let
(Xn)∞n=1 be a sequence of pairwise disjoint measurable sets such that X =

⋃∞
n=1Xn and

0 < µ(Xn) <∞ for n ∈ N. Define a measurable map h : X → (0,∞) by

h(x) =
1

n2µ(Xn)
if x ∈ Xn (n ∈ N).

Then h ∈ L1(µ) and the formula µ̃(E) =
∫
E
h dµ defines a finite measure on M. Moreover,

the map f 7→ h1/pf is a linear isometry from Lp(µ̃) onto Lp(µ).
Thus, given any Λ ∈ Lp(µ)∗, we can define Ψ ∈ Lp(µ̃)∗ by Ψ(f) = Λ(h1/pf). From the

first part of the proof we infer that there exists G ∈ Lq(µ̃) such that

Ψ(f) =

∫
X

fG dµ̃ for every f ∈ Lp(µ̃).

Define g = h1/qG (for p = 1 we take g = G) and observe that∫
X

|g|q dµ =

∫
X

|G|q dµ̃ = ‖Ψ‖q = ‖Λ‖q

if p > 1, whereas for p = 1 we have ‖g‖∞ = ‖G‖∞ = ‖Ψ‖ = ‖Λ‖. Hence, we have proved
that ‖Λ‖ = ‖g‖q and, finally, for every f ∈ Lp(µ) we have

Λf = Ψ(h−1/pf) =

∫
X

h−1/pfG dµ̃

=

∫
X

h−1/p−1/qfh1/qG dµ̃ =

∫
X

h−1fg dµ̃ =

∫
X

fg dµ.

Remark. For p = 2, the space Lp(µ) is a Hilbert space, so the above duality result, for
an arbitrary positive measure µ, we already knew from the Riesz representation theorem
(Theorem 5.7). In fact, we used this particular case L2(µ)∗ ∼= L2(µ) in the above proof,
because it was an essential part of the Radon–Nikodym theorem.

Remark 6.7. If 1 < p <∞ and 1
p

+ 1
q

= 1, then the duality Lp(µ)∗ ∼= Lq(µ) described in

Theorem 6.6 holds true for an arbitrary positive measure µ, not necessarily σ-finite (see
Problem 5.23). However, for p = 1 we have the following example.

Example 6.8. Define X = {a, b} and a measure µ on X by µ{a} = 1 and µ{b} =
µ(X) =∞. Then, obviously, L1(µ)∗ 6∼= L∞(µ) as the first space is one-dimensional, while
the second one is two-dimensional.

Now, our goal is to complete the proof of the Riesz–Markov–Kakutani theorem (The-
orem 3.23) in the complex case. It will be another application of the Radon–Nikodym
theorem. First, we need the following simple lemma.

Lemma 6.9. Let (X,M, µ) be a measure space with a positive measure µ. Suppose that
g ∈ L1(µ) and define a complex measure λ on M by the formula λ(E) =

∫
E
g dµ. Then

|λ|(E) =
∫
E
|g| dµ for every E ∈M.
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Proof. By Corollary 6.5 (the polar decomposition of measures), there exists a function
h ∈ L1(µ) such that |h(x)| = 1 for every x ∈ X and dλ = h d|λ|. Hence, h d|λ| = g dµ
and, by an easy verification, we have d|λ| = hg dµ. Since |λ| and µ are positive measures,
we have hg ≥ 0 a.e. which means that hg = |g| a.e. Thus, d|λ| = |g| dµ as desired.

Theorem 6.10 (Riesz–Markov–Kakutani for C0(X)∗ over complex numbers).
Let X be a locally compact Hausdorff space and Λ ∈ C0(X)∗ be a continuous linear
functional on the complex Banach space of complex continuous functions on X vanishing
at infinity. Then, there exists a unique regular Borel complex measure µ on X such that

Λf =

∫
X

f dµ for every f ∈ C0(X). (6.1)

Moreover, we have ‖Λ‖ = |µ|(X). On the other hand, every µ ∈ M(X) gives rise to
an element Λ of C0(X)∗ via formula (6.1). Consequently, the map Λ 7→ µ is an isometric
isomorphism

C0(X)∗ ∼=M(X).

(The symbolM(X) stands here for the space of all regular Borel complex measures on X,
equipped with the total variation norm.)

Proof. To prove the uniqueness, assume that µ ∈ M(X) satisfies
∫
X
f dµ = 0 for every

f ∈ C0(X). In view of Corollary 6.5, there is h ∈ L1(µ) such that |h| = 1 and dµ =
h d|mu|. For any sequence (fn)∞n=1 ⊂ C0(X) we thus have

|µ|(X) =

∫
X

(h− fn)h d|µ| ≤
∫
X

|h− fn| d|µ|. (6.2)

Now, observe that Cc(X) is dense in L1(|µ|). Indeed, by Lusin’s theorem for any mea-
surable complex function s on X and any ε > 0 there exists a function g ∈ Cc(X) such
that

|µ|
(
{x ∈ X : g(x) 6= s(x)

)
< ε and ‖g‖∞ ≤ ‖s‖∞.

Hence, ‖g − s‖1 ≤ 2ε‖s‖∞ and since every function from L1(µ) can be approximated
by a sequence of simple functions, we obtain the announced claim. Therefore, we can
arrange the sequence (fn)∞n=1 so that the right-hand side in (6.2) converges to zero. Thus,
|µ|(X) = 0 which shows the uniqueness part. (Notice that we have silently used the
fact that M(X) is a linear space, in particular, that the difference of two regular Borel
complex measures is also regular.)

Fix any Λ ∈ C0(X)∗ with ‖Λ‖ = 1.

Claim. There exists a positive linear functional Ψ on C0(X) such that

|Λf | ≤ Ψ(|f |) ≤ ‖f‖∞ for every f ∈ C0(X). (6.3)

Indeed, consider Λ restricted to the real part of C0(X), that is, real-valued continuous
functions vanishing at infinity. By Lemma 3.18, C0(X)∗ is a Banach lattice, hence it
makes sense to consider the modulus of Λ, |Λ| = Λ ∨ (−Λ) which is defined according to
the lattice operations on C0(X)∗ (see the proof of Lemma 3.18 and the remark following
it). Hence, on the real part of C0(X) we define

Ψ = |Λ|, that is, Ψf = sup
{
|Λg| : g ∈ C0(X), g(X) ⊆ R, |g| ≤ f

}
.
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By basic properties of Banach lattices, the norm of Ψ is the same as that of Λ, which means
that inequality (6.3) holds true for each real function f ∈ C0(X). Now, if f ∈ C0(X)
is complex-valued, we define Ψf = Ψ(Re f) + iΨ(Im f). Linearity and positivity of Ψ
is obvious, as well as the fact that inequality (6.3) holds true for every complex-valued
function f ∈ C0(X).

Having established the Claim, we apply the ‘positive version’ of the Riesz–Markov–
Kakutani theorem (Theorem 3.16). There exists a positive Borel measure λ on X such
that Ψf =

∫
X
f dλ. Moreover, since |Ψf | ≤ 1 for ‖f‖∞ ≤ 1, we have

λ(X) = sup{Ψf : f ∈ Cc(X), 0 ≤ f ≤ 1} ≤ 1.

Therefore, λ being a finite measure, is regular (see assertions (b)–(d) of Theorem 3.16).
Regarding any f ∈ Cc(X) as an element of L1(λ), we have

|Λf | ≤ Ψ(|f |) =

∫
X

|f | dλ = ‖f‖1.

This means that Λ is of norm at most 1 on the dense linear subspace L1(λ) ∩ Cc(X) of
L1(λ). Hence, we can extend it to a linear functional of norm at most 1 on the whole of
L1(λ). By virtue of Theorem 6.6, there exists a Borel function g : X → C with essential
supremum at most 1 (thus we can assume that |g| ≤ 1 on X) and such that

Λf =

∫
X

fg dλ for every f ∈ Cc(X). (6.4)

Note that both sides of this equation express a continuous linear functional on C0(X).
Since Cc(X) is dense C0(X), we obtain the desired representation with

dµ = g dλ.

Notice that since ‖Λ‖ = 1, equation (6.4) yields∫
X

|g| dλ ≥ sup
{
|Λf | : f ∈ C0(X), ‖f‖∞ ≤ 1

}
= 1.

But since also λ(X) ≤ 1 and |g| ≤ 1, the preceding inequality is only possible when
λ(X) = 1 and |g| = 1 a.e. In view of Lemma 6.9, we have d|λ| = |g| dλ = dλ and hence

|µ|(X) = λ(X) = 1 = ‖Λ‖.

7 Three fundamental results based on a category argument

In this section, we present the ‘big three’—three classical Banach space theoretic results,
inherently connected with completeness. These are: the uniform boundedness principle,
the open mapping theorem and the closed graph theorem. The first one was published
by S. Banach and H. Steinhaus in Fundamenta Mathematicae (1927) and, together with
the remaining two results, appeared in Banach’s fundamental monograph “Théorie des
opérations linéaires” published in Warsaw, 1932.

At the core of all these three results is applying a category argument based on the
fact that every complete metric space X is of second category in itself. In other words,
a countable union of nowhere dense set cannot exhaust the whole of X. This is the content
of the following fundamental theorem.
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Theorem 7.1 (Baire category theorem). Let (X, ρ) be a complete metric space. If
(Vn)∞n=1 is a sequence of open dense subsets of X, then the intersection

⋂∞
n=1 Vn is dense

in X.

Proof. Fix any nonempty open set U ⊆ X. We shall show that
⋂∞
n=1 Vn contains at least

one point from U . We denote by D(x, r) the open ball centered at x and with radius r,
i.e. the set of those points z ∈ X for which ρ(x, z) < r. By D(x, r) we denote the closure
of D(x, r). (Nota that it can happen that D(x, r) 6= {x ∈ X : ρ(x, z) ≤ r}.)

By induction, we construct a sequence of points (xn)∞n=1 ⊂ X and positive numbers
(rn)∞n=1 such that:

(i) D(x1, r1) ⊆ U ∩ V1,
(ii) D(xn, rn) ⊆ Vn ∩D(xn−1, rn−1) for each n ∈ N, n ≥ 2,

(iii) rn <
1
n

for each n ∈ N.

First, since V1 is dense and open, we find x1 ∈ X1 and r1 ∈ (0, 1) so that condition (i) is
satisfied. If n ≥ 2 and x1, . . . , xn−1 were already chosen, we note that Vn∩D(xn−1, rn−1) 6=
∅ is open, hence there exist xn ∈ X and rn ∈ (0, 1

n
) such that condition (ii) is valid.

Observe that (xn)∞n=1 is a Cauchy sequence. Indeed, for any m,n,N ∈ N with m,n >
N we have xm, nn ∈ D(xN , rN), thus ρ(xm, xn) < 2rN < 2/N . Let x = limn→infty xn.
Then x ∈

⋂∞
n=1D(xn, rn) because for each n ∈ N we have xj ∈ D(xn, rn) whenever

j > n and all these sets are closed. Hence x ∈
⋂∞
n=1 Vn and also x ∈ U which follows,

respectively, from (ii) and (i).

Remark. Another way of stating Baire’s theorem is that a countable union of nowhere
dense sets in a complete metric space X must have nonempty complement. For, let
An ⊂ X be nowhere dense (n ∈ N). Then intAn = ∅ which means that the complement
X \ An is an open dense subset of X. By Theorem 7.1, we have

⋂∞
n=1(X \ An) 6= ∅ (it

is even dense, but quite typically we use Baire’s theorem just to derive nonemptiness).
Hence,

⋃∞
n=1An ( X.

A subset of X which is a countable union of nowhere dense sets is called a set of first
category (in X). All other sets are called of second category (in X). Therefore, Baire’s
category theorem says that every complete metric space if of second category in itself.

The next result is usually called the uniform boundedness principle, for an obvious
reason: it implies that every collection of bounded linear operators on a Banach space
which is pointwise bounded must be actually uniformly bounded, that is, bounded in
norm.

Theorem 7.2 (Banach–Steinhaus theorem). Let X be a Banach space and Y be
a normed space. Let also {Tα : α ∈ A} ⊂ L (X, Y ) be a collection of operators which is
not uniformly bounded, that is,

sup
α∈A
‖Tα‖ =∞.

Then, there exists a dense Gδ-subset B of X such that

sup
α∈A
‖Tαx‖ =∞ for every x ∈ B.
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Proof. Define a function ϕ : X → [0,∞] by ϕ(x) = supα∈A ‖Tαx‖ and sets

Vn = {x ∈ X : ϕ(x) > n} (n ∈ N).

Since all the functions X 3 x 7→ ‖Tαx‖ are continuous, it is easily seen that each Vn
is open (in fact, ϕ is lower semicontinuous as the supremum of continuous functions).
Consider two cases.

Case 1. VN is not dense in X, for some N ∈ N.

Then, the complement of VN contains an open ball, so there exist x0 ∈ X and r > 0
such that x0 + x 6∈ VN whenever ‖x‖ ≤ r. For such x’s we have ϕ(x0 + x) ≤ N , hence

‖Tαx‖ ≤ ‖Tαx0‖+ ‖Tα(x0 + x)‖ ≤ 2N for each α ∈ A.

It follows that for ‖x‖ ≤ 1 we have ‖Tαx‖ ≤ 2N/r, i.e. ‖Tα‖ ≤ 2N/r which contradicts
the assumption that {Tα : α ∈ A} is not uniformly bounded.

Case 2. Vn is dense in X, for every n ∈ N.

Then, by the Baire category theorem, B :=
⋂∞
n=1 Vn is a dense Gδ-subset of X. Plainly,

supα∈A ‖Tαx‖ =∞ for every x ∈ B.
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