
Functional analysis

Lecture 12: The open mapping and inverse mapping theorems; the closed
graph theorem; corollaries, e.g. the Hellinger–Toeplitz theorem;
trigonometric polynomials

Our first corollary from the Banach–Steinhaus theorem should be compared with Prob-
lem 3.20, where we showed that every weakly convergent sequence in C(K) is bounded
in the supremum norm (and it was the only difficult thing about that problem). We used
there a ‘sliding hump’ argument and, in fact, in this way H. Hahn proved a special form
of the uniform boundedness principle a few years before it appeared in its full form in the
paper by Banach and Steinhaus.

Corollary 7.3. A subset A ⊆ X of a normed space is weakly bounded (which means that
{〈x, x∗〉 : x ∈ A} is bounded for each x∗ ∈ X∗) if and only if it is bounded in norm.

Proof. We regard A as a subset of the bidual X∗∗ by the canonical embedding κ : X → X∗∗

given by 〈x∗, κ(x)〉 = 〈x, x∗〉. If A is weakly bounded, it is pointwise bounded as a set
of functionals on the Banach space X∗. By Theorem 7.2, sup{‖κ(x)‖X∗∗ : x ∈ A} < ∞
which is the same as sup{‖x‖ : x ∈ A} <∞, as κ is an isometry.

Corollary 7.4. Let X be a Banach space and Y a normed space. Assume that a sequence
(Tn)∞n=1 ⊂ L (X, Y ) is pointwise convergent on X. Then the formula Tx = limn→∞ Tnx
defines an operator T ∈ L (X, Y ) satisfying ‖T‖ ≤ lim infn→∞ ‖Tn‖.

Proof. Linearity of T is obvious. Note that (Tn)∞n=1 is pointwise bounded and hence
uniformly bounded by the Banach–Steinhaus theorem. Let M = lim infn→∞ ‖Tn‖ < ∞
and observe that

‖Tx‖ = lim
n→∞

‖Tnx‖ = lim inf
n→∞

‖Tnx‖ ≤M‖x‖ for every x ∈ X.

Now, we proceed to the second fundamental result based on a category argument,
namely, the open mapping theorem. We will formulate it in a bit more general form than
usually stated just assuming that the range of a given operator T is of second category.
In this situation we do not need to appeal to the Baire category theorem. However, when
applying this result in the case where the codomain is a Banach space and T is surjective,
we use Baire’s theorem to conlude that the range is of second category and hence the
open mapping theorem below implies that T is open.

Recall that a mapping f : X → Y between topological spaces X and Y is open at
a point p ∈ X if for every open neighborhood U of p, f(U) contains an open neighborhood
of f(p). We say f is an open map provided it is open at every point of X, equivalently:
the range of every open set is open.

Theorem 7.5 (Open mapping theorem). Let X be a Banach space, Y a normed space
and let Λ ∈ L (X, Y ) be an operator with a range Λ(X) being of second category in Y .
Then:

(a) Λ(X) = Y ;

(b) Λ is an open mapping;

(c) Y is a Banach space.

1



Proof. Notice that (a) follows easily from (b), since Λ(X) is a linear subspace of Y and if
it contains any ball of positive radius, it must cover the whole of Y .

Fix any zero neighborhood V ⊂ X. We will show that Λ(V ) contains a zero neigh-
borhood in Y . It will then follow that Λ is open, because Λ is linear and any open set in
X is a translation of a zero neighborhood. Take r > 0 so small that rBX ⊂ V . Define

Vn = {x ∈ X : ‖x‖ < 2−nr} (n ∈ N)

and note that
Λ(V2)− Λ(V2) ⊆ Λ(V2)− Λ(V2) ⊆ Λ(V1). (7.1)

Claim. There exists a zero neighborhood W ⊂ Y such that

W ⊂ Λ(V1) ⊂ Λ(V ).

In view of (7.1), for proving the first inclusion it is enough to show that int Λ(V2) 6= ∅,
i.e. that Λ(V2) is not nowhere dense. Since

Λ(X) =
∞⋃
k=1

kΛ(V2)

and Λ(X) is of second category, there exists k ∈ N for which kΛ(V2) is not nowhere dense.
Of course, the map y 7→ ky is a homeomorphism, thus simply Λ(V2) is not nowhere dense,
as desired.

For the second inclusion of our Claim, fix any y1 ∈ Λ(V1). We are going to define
recursively a sequence (yn)∞n=1 ⊂ Y as follows. Assume n ∈ N and we have already
defined yn ∈ Λ(Vn). By the above argument, Λ(Vn+1) contains a zero neighborhood,
hence (

yn − Λ(Vn+1)
)
∩ Λ(Vn) 6= ∅.

Therefore, there exists xn ∈ Vn such that Λ(xn) ∈ yn − Λ(Vn+1). We then define

yn+1 = yn − Λ(xn) ∈ Λ(Vn+1).

The idea of this induction is that after the nth step we arrived at a similar problem as the
initial one, that is, to represent y1 ∈ Λ(V1) in the form y1 = Λ(x) with some x ∈ V . But
now we have a point yn+1 which lies in a much smaller set Λ(Vn+1) and each difference
yj−yj+1 (1 ≤ j ≤ n) is of the form Λ(xj) which allows us to represent y1−yn+1 as a value
of Λ by using a telescoping sum argument. What remains to do is to extend the induction
to infinity and use the completeness of X.

Since ‖xn‖ ≤ 2−nr for n ∈ N, the partial sums (x1 + . . . + xn)∞n=1 form a Cauchy
sequence in X. Hence, we can define x =

∑∞
n=1 xn ∈ X. Plainly, ‖x‖ < r which means

that x ∈ V . Also, notice that for each N ∈ N we have

N∑
n=1

Λ(xn) =
N∑
n=1

(yn − yn+1) = y1 − yN+1.

Obviously, ‖yN‖ → 0 as N → ∞ and since Λ is continuous, we get y1 = Λ(x) ∈ Λ(V )
which completes the proof of the Claim.

It remains to show assertion (c). To this end, we consider the quotient space X/ ker Λ
of all cosets x+ ker Λ equipped with the distance norm

‖x+ ker Λ‖ = inf{‖x+ y‖ : y ∈ ker Λ}.
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This is indeed a norm on X/ ker Λ as ker Λ is closed. It is also easy to show that X/ ker Λ
is a Banach space (recall that X is complete). Thus, it is enough to exhibit a linear
isomorphism of X/ ker Λ onto Y .

Define Φ: X/ ker Λ → Y by Φ(x + ker Λ) = Λ(x). Then, Φ is well-defined, linear
and surjective. Moreover, Λ = Φ ◦ π, where π : X → X/ ker Λ is the canonical quotient
map which is open. Indeed, the topology in X/ ker Λ consists of all sets E ⊆ X/ ker Λ for
which π−1(E) is open in X. Since for any open set U ⊆ X we have π−1(π(U)) = U+ker Λ,
we infer that π(U) is open. To see that Φ is an isomorphism, let V ⊆ Y by any open
set. Then Φ−1(V ) = π(Λ−1(V )) is open as Λ is continuous and π is open. Similarly, if
U ⊆ X/ ker Λ is open, then Φ(U) = Λ(π−1(U)) is open as Λ is open (which has been
already proved) and π is continuous. Consequently, Φ is a linear homeomorphism, that
is, an isomorphism.

The following result is by far the most important corollary from the open mapping
theorem and it is known as Banach’s inverse mapping theorem.

Corollary 7.6. Let X and Y be Banach spaces. Then, every one-to-one surjective oper-
ator T ∈ L (X, Y ) is invertible, i.e. it is bounded below and hence T−1 ∈ L (Y,X).

Proof. Since T (X) = Y is of second category due to Baire’s category theorem, Theo-
rem 7.5 says that T is open. Hence, there is δ > 0 such that T (BX) ⊇ δBY . This means
that ‖Tx‖ ≥ δ for ‖x‖ ≥ 1, that is, ‖T−1‖ ≤ δ−1.

The next corollary is a bit striking. It turns out that nonequivalent norms on a Banach
space cannot be comparable.

Corollary 7.7. Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space X for which both
(X, ‖ · ‖1) and (X, ‖ · ‖2) are Banach spaces. If there exists a constant c > 0 such that
‖ · ‖1 ≤ c‖ · ‖2, then the norms ‖ · ‖1 and ‖ · ‖2 are equivalent.

Proof. Consider the identity mapping ι : (X, ‖ · ‖2)→ (X, ‖ · ‖1). By the assumption, it is
a bounded linear operator. Since it is plainly bijective, Corollary 7.6 implies that ι−1 is
bounded which means that ‖ · ‖1 and ‖ · ‖2 are equivalent.

Now, we proceed to the closed graph theorem. It is in fact another quite simple
corollary from the open mapping theorem, but it is so important that deserves a special
name. In many occasions it provides a very convenient way of verifying whether a given
linear operator is bounded. Recall that for any map f : X → Y between topological
spaces X and Y we define its graph by

Gr(f) = {(x, f(x)) : x ∈ X}.

It is easily seen that if f is continuous, then Gr(f) is continuous as a subset of X × Y
with the product topology. The converse implication in general fails but, as we will see
below, not for linear operators between Banach spaces.

Theorem 7.8 (Closed graph theorem). Let X and Y be Banach spaces and T : X → Y
be a linear operator. If the graph Gr(T ) is closed in X × Y , then T is continuous, i.e.
T ∈ L (X, Y ).
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Proof. Consider the direct sum X⊕Y equipped with the norm ‖(x, y)‖ = ‖x‖X+‖y‖Y . Of
course, such a norm generates the product topology on X × Y as ‖(xn, yn)− (x, y)‖ → 0
if and only if ‖xn − x‖X → 0 and ‖yn − y‖Y → 0.

Observe that Gr(T ) forms a linear subspace of X ⊕ Y and the latter is a Banach
space, because so are X and Y . Define projections p : Gr(T )→ X and q : Gr(T )→ Y by
p(x, Tx) = x and q(x, Tx) = Tx, respectively. Obviously, p and q are bounded operators
and p is moreover bijective. By Corollary 7.6, p−1 ∈ L (X,Gr(T )) which implies that
T = q ◦ p−1 is bounded, as desired.

To understand what is the real profit from the closed graph theorem, suppose we are
to prove that a given linear operator T : X → Y is bounded. Theorem 7.8 reduces this
problem to the following situation: Assume we have a convergent sequence (xn)∞n=1 ⊂ X,
say xn → x0, such that the sequence of values (Txn)∞n=1 is also convergent in Y , say
Txn → y0 (i.e. the elements (xn, Txn) of Gr(T ) converge in X ⊕ Y ). We just need to
show that y0 = Tx0. In many cases it makes the problem of continuity of T almost trivial,
as we can assume that (Txn)∞n=1 is convergent. Note, however, that it is important that
both X and Y are complete (see Problem 2.6).

Let us present one important consequence of the closed graph theorem which has some
meaning in the mathematical formulation of quantum mechanics. In that theory, observ-
ables, such as velocity or energy, are identified with symmetric operators on a Hilbert
space. Since some of them are unbounded, the result below implies that they cannot
be defined on the whole Hilbert space. Therefore, one need to consider densely defined
unbounded operators.

Corollary 7.9 (Hellinger–Toeplitz theorem). Let T : H → H be a linear symmetric
operator on a Hilbert space H, that is,

(Tx, y) = (x, Ty) for all x, y ∈ H.

Then T is bounded.

Proof. In view of Theorem 7.8, we need to show that Gr(T ) is closed in H⊕H, where on
the direct sum we consider e.g. the Hilbertian norm ‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2 (or any
other equivalent norm). Suppose a sequence of elements (xn, Txn) of Gr(T ) converges in
H⊕H. By a suitable translation, we can assume that xn → 0 and let y = limn→∞ Txn.
By the assumption and the Cauchy–Schwarz inequality, we have

|(Txn, y)| = |(xn, T y)| ≤ ‖xn‖‖Ty‖ −−−→
n→∞

0 for every y ∈ H. (7.2)

By the Riesz representation theorem (Theorem 5.7), every functional from H∗ is of the
form (·, y) with some y ∈ H. Hence, (7.2) yields that Txn → 0 weakly. But since (Txn)∞n=1

is norm convergent to y, we must have y = 0. Therefore, (xn, Txn) → (0, 0) ∈ Gr(T )
which shows that the graph of T is closed and completes the proof.

8 An application: Convergence of Fourier series

Denote by T = {z ∈ C : |z| = 1} the unit circle. Naturally, every function F : T → C
can be identified with a 2π-periodic function on the real line f : R → C by the formula
f(t) = F (eit). In this section, we will consider the Banach spaces C(T) of complex-valued
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continuous functions on T and Lp(T) (basically for p ∈ {1, 2}), where T is equipped
with the normalized Lebesgue measure. The latter space can be thus identified with
Lp[−π, π] or Lp[0, 2π], where the measure considered is the normalized Lebesgue measure
on an interval of length 2π, i.e. these are Lp(µ)-spaces with the measure dµ = (2π)−1dx.
Hence, L2[0, 2π] is equipped with a norm and an inner product given by the formulas:

‖f‖2 =
{ 1

2π

∫ 2π

0

|f(t)|2 dt
}1/2

, (f, g) =
1

2π

∫ 2π

0

f(t)g(t) dt.

The identification between functions defined on T and 2π-periodic functions on R will be
used throughout without mentioning. Hence, an argument eiθ of a given function f on T
will be often identified with the angle θ, so there should be nothing misleading in using
symbols like f(θ).

The basic observation for this section is that the sequence of complex exponents
(eint)n∈Z forms an orthonormal system in the Hilbert space L2[0, 2π]. For proving this,
denote un(t) = eint and observe that for n 6= 0 the primitive function is (in)−1eint which
integrates to zero over the whole period [0, 2π]. Hence,

(um, un) =
1

2π

∫ 2π

0

ei(m−n)t dt =

{
1 if m = n
0 if m 6= n.

This is probably the most important orthonormal set in the whole mathematics. In
fact, it is complete (i.e. linearly dense) in L2[0, 2π], but it is by no means trivial and
we shall derive this fundamental fact from Fejér theorem. This is only one of several
possible methods of proving the completeness of (un)n∈Z, but it gives a nice quantitative
information about approximating continuous 2π-periodic functions by linear combinations
of the exponents un.

Definition 8.1. Any 2π-periodic function on R of the form

f(t) = a0 +
N∑
n=1

(an cosnt+ bn sinnt), (8.1)

where N ∈ N, a0, a1, . . . , aN , b1, . . . , bN ∈ C, is called a trigonometric polynomial.

Remark. By Euler’s formulas, any trigonometric polynomial (8.1) can be written in a com-
plex form

f(t) =
N∑

n=−N

cne
int (8.2)

with some c0, c±1, . . . , c±N ∈ C. In fact, we have

cosnt =
1

2
(eint + e−int), sinnt =

1

2i
(eint − e−int),

whence

an cosnt+ bn sinnt =
(1

2
an +

1

2i
bn

)
eint +

(1

2
an −

1

2i
bn

)
e−int

=
1

2
(an − ibn)eint +

1

2
(an + ibn)e−int.
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Therefore, the connection between (8.1) and (8.2) is given by the formulas

cn =


a0 if n = 0

an − ibn if n > 0
an + ibn if n < 0.

From this, one can readily derive the following conditions for some natural properties of
the trigonometric polynomial f given by (8.2):

• f is real-valued if and only if c−n = cn (0 ≤ n ≤ N);

• f is even (i.e. all bn’s are zero) if and only if c−n = cn (0 ≤ n ≤ N);

• f is odd (i.e. all an’s are zero) if and only if c−n = −cn (0 ≤ n ≤ N).

There is another way of calculating the coefficients cn (−N ≤ n ≤ N) directly in
terms of f . Since (un)n∈Z is orthonormal, these coefficients must be equal to the Fourier
coefficients of f (see the Remark after Definition 5.8). Hence,

cn =
1

2π

∫ 2π

0

f(t)e−int dt for every −N ≤ n ≤ N.

Remark. Instead of the orthonormal system (un)n∈Z we could consider an equivalent
system of real-valued functions

1,
√

2 cosx,
√

2 sinx,
√

2 cos 2x,
√

2 sin 2x, . . . (8.3)

The factor
√

2 is there to guarantee that the sequence is normalized, i.e. the norm of
each of the functions above in L2[0, 2π] equals 1. Recall that we consider the normalized
Lebesgue measure dµ = (2π)−1 dx on [0, 2π]; for the usual Lebesgue measure every sine
and cosine should be divided by

√
π and the constant 1 function should be replaced by

(2π)−1/2. Of course, every function above can be uniquely expressed in terms of un’s and
vice versa. Therefore, the completeness of (8.3) will follow automatically when we prove
the completeness of (un)n∈Z which will be our next goal.
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