
Functional analysis

Lecture 13: Fejér’s theorem on Cesàro summability of Fourier series;
Dirichlet’s and Fejér’s kernels; an application of the Banach–Steinhaus
theorem to the problem of pointwise convergence of Fourier series

Now, our goal is to show that the orthonormal trigonometric system (un)n∈Z is linearly
dense in the Hilbert space L2[0, 2π], i.e. it is an orthonormal basis. First, let us reduce
this problem to the problem of density of trigonometric polynomials with respect to the
supremum norm in C(T).

Remark 8.2. Recall that C(T) is dense in L2(T) (identified with L2[0, 2π]), which follows
easily from Lusin’s theorem (see the proof of Theorem 6.10). We claim that once we prove
that trigonometric polynomials form a dense subspace of C(T ) under the supremum norm,
it follows that they form a dense subspace of L2(T) under the L2-norm. Indeed, fix any
f ∈ L2(T) and ε > 0 and pick g ∈ C(T) such that ‖f − g‖2 < ε. Let also P be
a trigonometric polynomial satisfying ‖f − P‖∞ < ε (if it exists). Then

‖f − P‖2 ≤ ‖f − g‖2+‖P − g‖2 < ε+
{ 1

2π

∫ 2π

0

|P (t)− g(t)|2 dt
}1/2

≤ ε+‖P − g‖∞ < 2ε.

Therefore, we have reduced our problem to the question whether trigonometric poly-
nomials are dense in C(T) under the supremum norm, i.e. if every continuous function on
T can be uniformly approximated by trigonometric polynomials. This can be proved by
appealing to the abstract Stone–Weierstrass theorem. The required assumptions are sat-
isfied: T is compact and trigonometric polynomials form a self-adjoint (i.e. closed under
complex conjugation) subalgebra P of C(T) which separates points of T and contains all
constant functions. Hence, P is dense in C(T ) which is what we want to prove. However,
our intention is to give a direct proof, not appealing to the Stone–Weierstrass theorem
and, moreover, provide a concrete description of trigonometric polynomials approximating
any given function f ∈ C(T).

For any f ∈ L2(T) and N = 0, 1, 2, . . . we use the following notation:

• sN(f ;x) the N th symmetric partial sum of the Fourier series corresponding
to f at a point x ∈ R,

• σN(f ;x) the arithmetic mean of the first N + 1 partial sums sj(f ;x).

More precisely,

sN(f ;x) =
N∑

n=−N

f̂(n)einx =
1

2π

N∑
n=−N

∫ 2π

0

f(t)ein(x−t) dt

and

σN(f ;x) =
s0(f ;x) + s1(f ;x) + . . .+ sN(f ;x)

N + 1
.

Despite of the fact that the Fourier series of a continuous functions f ∈ C(T) does not
in general converge pointwise to f on T (as we will see later), it is Cesàro summable to
f , i.e. the sequence of arithmetic means of partial sums converge to f on T, and the
convergence is also uniform.
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Theorem 8.3 (Fejér’s theorem). For every f ∈ C(T) we have σN(f ;x) ⇒ f(x) on R.
In other words, ‖σN(f)− f‖∞ → 0 as N →∞.

Before proving Fejér theorem, we need some preparations. We introduce two impor-
tant kernels, that is sequences of continuous 2π-periodic functions on R. The first one
corresponds to the sequence (sn)∞n=0 of partial sums of a Fourier series, whereas the second
one corresponds to the sequence of arithmetic means (σn)∞n=0.

Definition 8.4. The sequence (DN)∞N=0 of trigonometric polynomials defined by the
formula

DN(x) =
N∑

n=−N

einx = 1 + 2
N∑
n=1

cosnx

is called the Dirichlet kernel.

Fig. 1. The graphs of DN (x) for N = 1, 4, 7 on the interval [−π, π]

Lemma 8.5. For every N = 0, 1, 2, . . . the Dirichlet function DN(x) has the following
properties:

(a) DN is even and 2π-periodic,

(b) DN(0) = 2N + 1,

(c) |DN(x)| ≤ 2N + 1 for every x ∈ R,

(d)
1

2π

∫ π

−π
DN(x) dx = 1,

(e) DN(x) =
sin
(
N + 1

2

)
x

sin x
2

for every x ∈ R, x 6= 2kπ (k ∈ Z).

Proof. Assertions (a)–(d) follow easily just from the definition. To derive the compact
formula (e) for DN(x) we use a simple telescoping sum trick:
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DN(x) = 1 + 2
N∑
n=1

cosnx =
N∑

n=−N

cosnx+
cos x

2

sin x
2

N∑
n=−N

sinnx

=
1

sin x
2

N∑
n=−N

(
sin

x

2
cosnx+ cos

x

2
sinnx

)
=

1

sin x
2

N∑
n=−N

sin
(
k +

1

2

)
x =

sin
(
N + 1

2

)
x

sin x
2

.

Definition 8.6. The sequence (KN)∞N=0 of trigonometric polynomials defined by the
formula

KN(x) =
1

N + 1

N∑
n=0

Dn(x)

is called the Fejér kernel.

Fig. 2. The graphs of KN (x) for N = 1, 4, 7 on the interval [−π, π]

The crucial property of the Fejér kernel is that it is always nonnegative, as it is suggested
by the above picture. This is by no means clear from the definition, as KN(x) is just
an average of some sign-changing functions.

Lemma 8.7. For every N = 0, 1, 2, . . . the Fejér function KN(x) has the following prop-
erties:

(a) KN is even and 2π-periodic,

(b) KN(0) = N + 1,

(c)
1

2π

∫ π

−π
KN(x) dx = 1,

(d) KN(x) ≥ 0 for every x ∈ R,

(e) KN(x) ≤ 1

N + 1
· 2

1− cos δ
for 0 < δ ≤ |x| ≤ π,
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(f) for every x ∈ R, x 6= 2kπ (k ∈ Z),

KN(x) =
1

N + 1

(
sin N+1

2
x

sin x
2

)2

=
1

N + 1
· 1− cos(N + 1)x

1− cosx
.

Proof. Assertions (a)–(c) are obvious, while (d) and (e) follow easily from formulas in
assertion (f). To prove them, we use the identity 2 sinα sin β = cos(α− β)− cos(α + β).
In view of Lemma 8.5(e) we obtain

KN(x) =
1

N + 1

N∑
n=0

sin
(
n+ 1

2

)
x

sin x
2

=
1

(N + 1) sin2 x
2

N∑
n=0

sin
x

2
sin
(
n+

1

2

)
x

=
1

2(N + 1) sin2 x
2

N∑
n=0

(
cosnx− cos(n+ 1)x

)
=

1− cos(N + 1)x

2(N + 1) sin2 x
2

=
1

N + 1

(
sin N+1

2
x

sin x
2

)2

.

Note that assertion (e) above implies that KN(x) ⇒ 0 on [−π,−δ]∪ [δ, π], for every δ > 0.

Proof of Theorem 8.3. Fix any f ∈ C(T). We start with an important observation that
the Fourier partial sums sN(f) are given by a convolution with the Dirichlet kernel.
Namely,

sN(f ;x) =
N∑

n=−N

f̂(n)einx =
1

2π

N∑
n=−N

∫ π

−π
f(t)ein(x−t) dt

=
1

2π

∫ π

−π
f(x− s)

N∑
n=−N

eins ds

=
1

2π

∫ π

−π
f(x− s)DN(s) ds

=
1

2π

∫ π

−π
f(t)DN(x− t) dt.

(8.1)

Similarly, for the artithmetic means σN(f) we have

σN(f ;x) =
1

N + 1

N∑
n=0

sn(f ;x)

=
1

2π

∫ π

−π
f(x− s)KN(s) ds

=
1

2π

∫ π

−π
f(t)KN(x− t) dt.

(8.2)

Let M = ‖f‖∞ <∞. Fix any ε > 0 and use the uniform continuity of f to pick δ > 0
so that |f(x− t)− f(x)| < ε/3 whenever |t| ≤ δ. In view of Lemma 8.7(e) there is N ∈ N
so large that for each n ≥ N we have∫ δ

−π
Kn(t) dt ,

∫ π

δ

Kn(t) dt <
πε

3M
.
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Then, for n ≥ N , using successively formula (8.2) and Lemma 8.7(c), (d), we obtain

|σn(f ;x)− f(x)| =
∣∣∣ 1

2π

∫ π

−π

(
f(x− t)− f(x)

)
Kn(t) dt

∣∣∣
≤ 1

2π

∫ π

−π
|f(x− t)− f(x)|Kn(t) dt

=
1

2π

(∫ −δ
−π

+

∫ δ

−δ
+

∫ π

δ

)
≤ M

π

∫ −δ
−π

Kn(t) dt+
1

2π
· ε

3

∫ δ

−δ
Kn(t) dt+

M

π

∫ π

δ

Kn(t) dt

<
ε

3
+
ε

3
+
ε

3
= ε,

which shows that σn(f ;x) ⇒ f(x).

Obviously, all averages σN(f) are trigonometric polynomials. Hence, according to
Remark 8.2 we can conclude from Fejér’s theorem that the trigonometric system (un)n∈Z
is an orthonormal basis of L2[−π, π] (or L2[0, 2π]). The general theory of Hilbert spaces
(see Proposition 5.11) thus says that every function f ∈ L2[−π, π] can be expressed as its
Fourier series, where convergence in understood in the L2-norm. The issue of pointwise
convergence is however a bit more subtle and without additional information on regularity
of f at a given point (see, for example, Problem 6.13) one cannot state that f(x) is
the limit of (sn(f ;x))∞n=1. As we shall see below, it is even not true that continuous
functions on T are pointwise limits of their Fourier series. The first counterexample was
given by P. du Bois-Reymond in 1873 who was able to construct, for any given point
x0 ∈ R, a concrete function f ∈ C(T) whose Fourier series diverges at x0. In fact,
a simple application of the Banach–Steinhaus theorem shows that pointwise convergence
of Fourier series of continuous functions fails quite drastically.

Theorem 8.8. For every x0 ∈ R there exists a dense Gδ subset Ex0 ⊂ C(T) such that
for every function f ∈ Ex0 the Fourier series (sn(f ;x0))

∞
n=1 is divergent.

Lemma 8.9. For every n ∈ N we have

‖Dn‖1 >
4

π2

n∑
k=1

1

k
−−−→
n→∞

∞,

where ‖ · ‖1 stands for the L1-norm on [−π, π] with respect to the normalized Lebesgue
measure (2π)−1 dx.

Proof. Using the inequality
∣∣sin x

2

∣∣ ≤ ∣∣x
2

∣∣ and Lemma 8.5(e), we obtain

‖Dn‖1 =
1

π

∫ π

0

∣∣∣sin (n+ 1
2

)
x

sin x
2

∣∣∣ dx ≥ 2

π

∫ π

0

∣∣ sin (n+
1

2

)
x
∣∣ dx

x

=
2

π

∫ (n+ 1
2
)π

0

|sin t| dt
t
>

2

π

n∑
k=1

1

kπ

∫ kπ

(k−1)π
|sin t| dt =

4

π2

n∑
k=1

1

k
.
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Proof of Theorem 8.8. Fix any x0 ∈ R and define

Λnf = sn(f ;x0) for f ∈ C(T) and n ∈ N.

In view of formula (8.1), we have Λn ∈ C(T)∗ and ‖Λn‖ ≤ ‖Dn‖1 for each n ∈ N.
In fact, we have ‖Λn‖ = ‖Dn‖1 which can be seen by considering the function g(t) =
sgn(Dn(x0 − t)) and picking a sequence (fj)

∞
j=1 ⊂ C(T) such that −1 ≤ fj ≤ 1 for j ∈ N

and fj → g pointwise. Then, by Lebesgue’s theorem,

lim
j→∞

Λn(fj) = lim
j→∞

1

2π

∫ π

−π
fj(t)Dn(x0 − t) dt =

1

2π

∫ π

−π
g(t)Dn(x0 − t) dt = ‖Dn‖1.

Hence, Lemma 8.9 shows that ‖Λn‖ → ∞ which means that the sequence (Λn)∞n=1 is
not uniformly bounded. By the Banach–Steinhaus theorem, there exists a dense Gδ set
Ex0 ⊂ C(T) such that

sup
n
|Λnf | = sup

n
|sn(f ;x0)| =∞ for every f ∈ Ex0 .

Now, we will see how the open mapping theorem can quickly answer another important
question in the theory of Fourier series. Notice that the formula for Fourier coefficients,
which for functions in L2(T) stems from the general theory of Hilbert spaces, makes
perfect sense also for all integrable functions. So, we define

f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt for f ∈ L1(T). (8.3)

(Note that since the measure of T is finite, we have L2(T) ⊂ L1(T).)
The aforementioned question is motivated by the following important result.

Lemma 8.10 (Riemann–Lebesgue lemma). For every f ∈ L1(T) we have

lim
|n|→∞

f̂(n) = 0. (8.4)

In other words,

lim
n→∞

∫ π

−π
f(t) cosnt dt = lim

n→∞

∫ π

−π
f(t) sinnt dt = 0.

Proof. As we have already noted, C(T) is dense in L1(T) and hence Fejér’s theorem
implies that trigonometric polynomials are dense in L1(T). Observe that formula (8.4)
holds true trivially for f being a trigonometric polynomial, as for |n| large enough we

simply have f̂(n) = 0.
So, let f ∈ C(T), ε > 0 and pick a trigonometric polynomial P such that ‖f − P‖1 < ε.

For n ∈ Z of sufficiently large modulus (larger than the degree of P ), we have

|f̂(n)| = 1

2π

∣∣∣ ∫ π

−π
(f(t)− P (t)) dt

∣∣∣ ≤ ‖f − P‖1 < ε.

Therefore, the Riemann–Lebesgue lemma says that the natural operator L1(T) 3 f 7→
(f̂(n))n∈Z takes values in the Banach space c0(Z). We can thus ask whether an effect
similar to the Riesz–Fischer theorem (Theorem 5.14) holds true, that is, whether for

every sequence (ξn)n∈Z ∈ c0(Z) one can find a function f ∈ L1(T) satisfying f̂(n) = ξn for
each n ∈ Z. The following result provides a negative answer.
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Theorem 8.11. The map L1(T) 3 f 7→ Λf := (f̂(n))n∈Z is an injective bounded linear
operator into c0(Z). However, Λ is not surjective.

Proof. Linearity of Λ is obvious. That Λ(L1(T)) ⊆ c0(Z) follows from Lemma 8.10.

Boundedness is also easy, as by formula (8.3) we have |f̂(n)| ≤ ‖f‖1 for each n ∈ Z, thus
‖Λ‖ ≤ 1 and in fact ‖Λ‖ = 1 (consider e.g. the constant 1 function).

For injectivity of Λ, suppose f ∈ L1(T) and Λf = 0. Then,
∫ π
−π f(t)P (t) dt = 0 for ev-

ery trigonometric polynomial P . Hence, Lebesgue’s theorem and Theorem 8.3 imply that∫ π
−π f(t)g(t) dt = 0 for every g ∈ C(T). Using Lusin’s theorem, we infer that

∫
A
f(t) dt = 0

for every measurable set A ⊆ [−π, π] which implies that f = 0 a.e.
Finally, notice that Λ is not surjective. If it was, then by the open mapping theorem,

there would exist δ > 0 such that ‖Λf‖∞ ≥ δ‖f‖1 for every f ∈ L1(T). This is, however,
not the case because for f = Dn (n ∈ N) we have ΛDn = 1{0,±1,...,±n}, hence ‖ΛDn‖∞ = 1,
but ‖Dn‖1 →∞ by Lemma 8.9.
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