Functional analysis

Lecture 14: CONVOLUTION AND FOURIER TRANSFORM; FOURIER INVERSION
FORMULA AND THE UNIQUENESS THEOREM FOR FOURIER TRANSFORM

9 An application: Fourier transform

The Fourier transform is one of the most important notions in mathematics. It has nu-
merous applications in wave analysis, electrical engineering, image processing etc. and
also provides an extremely useful tool in many mathematical problems coming from dif-
ferential equations and probability theory (where it appears as the characteristic function
of a random variable). In order to provide a motivation for the definition of the Fourier
transform, we need to understand that it is a continuous version of the Fourier series or,
in other words, it extends periodic phenomenons to a non-periodic setting when we let
the period tend to infinity.

To be more precise, suppose we are given a function f € L;(R), not necessarily
periodic. In order to apply the theory of Fourier series, pick any large number 7" > 0,
consider the restriction of f to the interval [—%, %] and extend it periodically to the
whole of R. In this way we obtain a T-periodic function fr such that fr(z) = f(x)
for x € [-Z,Z]. Instead of the ordinary trigonometric system (u,)nez we now consider
exponents of the form

Un(z) = 2T (n € 7).

It is easy to verify that (u, 1)nez forms an orthonormal set in the space Lo [—%, %] equipped

with the normalized Lebesgue measure %dx. This set is also complete which follows by

repeating the proof of Fejér’s theorem with obvious modifications, or by deriving it directly
T T

from the 27-periodic case after rescaling the domain [—, 7| to [~3, 5]. Hence, the Fourier

coefficients of the T-periodic function fr are given by the formula
1 T/2

Frw = (rone) =7 [ s ne), (9.1)

and the corresponding Fourier series is

fr(@) ~ 3 fr(n)e*mie.

n=—oo

Observe that fr in his expansion has exponents €% associated with every number of the
form £ = 2mn/T (n € Z), whereas in the classical 27-periodic case we had only exponents
associated with integers. In other words, the larger the period 7' is, the more narrowly
distributed are the arguments of the exponential functions involved in the Fourier series.
So, if we want to draw a graph of fr in the frequency scale, we should plot the values of
fr(n) (or their magnitudes) at each argument of the form 2n/T (n € Z), which are
apart, whereas in the case of 2w-periodic functions we plot the values of Fourier coefficients
at integers which are just 1 apart. We thus suspect that in the limiting case, when T" — oo,
we arrive at a continuous spectrum, that is, a certain function of a continuous real variable
which describes the asymptotic behavior of Fourier coefficients of f7’s.

However, in order to define an appropriate limit version of Fourier coefficients, it would

not make much sense just to pass to the limit in formula (9.1) as 7" — oo, because we



simply have ?;(n) — 0 for every n € Z. This is because the integrals in (9.1) are bounded

as T" — oo and hence, the coefficients ?;(n) converge to zero like % Therefore, we scale
up by 7" and consider new coefficients
T/2 .
Crm = f®)e?Mrtdt (n € Z)
-T/2
which on the frequence scale should be plotted at the points 27n/T (n € Z).

As an example, consider the function f = 1j_;;). Take any 7' > 1 and consider the
periodized function fr,i.e. fr(z) =1ifz € [nT —1,nT + 1] for some n € Z and f(z) =0
otherwise. Calculate

T/ ! i7 N  2mn

CTn = f(t)emrtdt = / e T At = —e Pt Al = —sin —-.
~T/2 1 2mn -1 1™ T

After plotting these values we obtain a discrete graph of the function 251%, for the argu-
ments © = 27n/T (n € Z). For T' = 4 we get the following picture.

?,.—‘$lll‘, ‘lll‘._o??

r=0,4+1 +1,+3, ...
Fig. 1. The plot of the Fourier coefficients of 1;_; y; periodized over [—27,27], i.e. T = 47

Definition 9.1. Let f,g € Li1(R). We define the convolution f * g by the formula
1
xg(r) = — xr— dy, 9.2
fxg() \/%/Rf( y)g(y) dy (9.2)

and the Fourier transform onf f by

o) = \/%7 /]R F(t)eit= dt. (9.3)

The map L;(R) > f — fis called the Fourier transform.

The choice of the factor (27r)~*/2 is common and makes many formulas more elegant, as
well as the symmetry between f and f in the Ls-case, which we observe in the Plancherel
theorem. So, under this definition we can easily calculate e.g. the Fourier transform of

the function f = 1j_y
1 1 B \/Esinx
a0 Vrox
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Notice that formula (9.2) makes sense, i.e. the map y — f(z — y)g(y) is measurable
and integrable on R for a.e. x € R. Hence, f x g is defined by (9.2) a.e., moreover,
f*g € Li(R). This follows by a simple application of Fubini’s theorem. Namely, replacing
(if necessary) f and g by Borel functions coinciding with them a.e. on R, we verify that
F(x,y) = f(z —y)g(y) is also Borel on R?. By Fubini’s theorem, we have

sy = [ ay [ 1P = [loiay [ 15 - pldr =10l

Therefore, ' € L;(R?) which implies that the integral defining f * g(x) exists for a.e.
r € Rand f g€ Li(R). Appealing once again to Fubini’s theorem, we obtain

£ < [ dy [ 1P wlde =171l
R R
Lemma 9.2. Let f € L1(R) and a, A € R. Then:

() for g(t) = € f(t) we have §(x) = f(z - a);
(b) for g(t) = f(t — @) we have G(z) = f(x)e~";

(¢) if g € Ly(R), then F+g=F-;

(d) for g(t) = (=) we have §(x) = f(x);

(e) for g(t) = f(£) (X #0) we have G(z) = [N f(\z);

(f) for g(t) = —itf(t), if g € L1(R), then f is differentiable and (f) = g;

(g) if f € CY(R) and f' € Li(R), then (f)(z) = iz f(z).

Proof. Assertions (a), (b), (d) and (e) follow automatically from formula (9.3). For prov-
ing (c¢) we use the Fubini theorem:

Frat) =5 [ ar [ 0= 9(s)as

- % s)e 5T ds/ ft—s)e =) qt
1 715:1: 71‘"L‘t
- s [ fne at = o)

Assertion (f) is left as an exercise (see Problem 6.17). For (g), integration by parts gives

1 / —itx
P === [ 1 E

= ft)e™| te At = iz f(z). O

Now, our goal is to find a way to ‘invert’ a Fourier transform, that is, to reconstruct the
original function f from its transform f. Since f, as we explained before, is a continuous
analogue of the sequence (f(n)),ez of Fourier coefficients, let us first see how to reconstruct
an integrable, 2m-periodic function from its Fourier series. So, let f € L;(T) and consider
the corresponding Fourier series

x) ~ i f(n)eim, where f / f(t)e ™ dt.

n=—oo



We know that in general it is not possible to represent f(z) as the value of the Fourier
series at x, and this series can be divergent even for continuous functions. However,
assume additionally that

> 1f(n)] < oo (9.4)

n=—oo

Then the formula

gl@)= Y fln)e™ (9.5)
defines a continuous function g, because (9.4) assures that the series is uniformly conver-
gent by the Weierstrass M-test. Moreover, for each n € Z we have

g(n) = % /7r g(x)e ™ dz = L { i J?(k)eikm}e_m dr
k=—o0

—T 27T —T

(9.6)

oo

=Y A(/g)% / " il gy — f(n).

k=—oc0

-~

Hence, f(x) = g(x) a.e. because the operator Ly(T) > f — (f(n))nez is injective (recall
Theorem 8.11). In other words, under condition (9.4) the Fourier series of f converges to
f(z) a.e. on R.

The natural conjecture is thus that if both f and f belong to Ly(R) (the latter being
an analogue to assumption (9.4)), we have the formula

f(t) = \/%_W /Rf(x)eim dz, (9.7)

which corresponds to (9.5). In fact, we shall prove it is true, but it is much more delicate
matter than in the case of Fourier series. Observe that we cannot simply repeat the
same argument as above, replacing everywhere the formula for Fourier coefficients by the
formula for Fourier transform. By doing so, in computation (9.6) we would arrive at
an integral [°°_€!®=¥)*d¢ which does not make sense.

From now on, we consider the L, spaces (basically for p = 1,2) on R equipped with
the measure du = (27)~%/2dx, so that

11, = {5 [r@rac}™ for e 1,

Proposition 9.3. For every f € Li(R), e Co(R) and HJ?HOO < flly-

Proof. The above inequality is obvious from formula (9.3). To see that f is continuous,
fix any sequence (z,)>, in R converging to some = € R. Then

T Y 1 —izpt _ —ixt
Fla) = Flo)l < <= [ 1rollers= = ==

~ ~

and since the function under the integral is majorized by 2|f(t)|, we obtain f(z,) — f(x)
by Lebesgue’s theorem.



Now, we prove that fvanishes at infinity. For every x € R we have

1 T .
. 711‘(t+ —ixs
x = dt = s — —)e "ds,
\/ 21 / f 27T /R f( SU)

hence
A T .
2f(x) t— — >e_‘xt dt.
A \/ 2m / JU)
Therefore, 2|f(x)| < || f = fx/ell1, where f, denotes the shifted function, f,(z) = f(z —y).
It is easy to show that the map R 3 y — f, € Li(R) is uniformly continuous (classes),

hence we obtain \f(x)| — 0 as |z| — oo. O

As we explained before, trying to prove the announced assertion (9.7) by simply plug-
ging into it the formula (9.3) leads to a divergent integral. However, if instead of F we had
fmultiplied by some integrable function of variable ¢, then using the Fubini theorem and
changing the order of integration would lead to a convergent integral. So, our strategy
is to convolve f with some nicely integrable functions in such a way that in the limit
(in some sense) we obtain f itself. An appropriate sequence of such functions is called
an approximate identity of L;(R) under the convolution operation, and there are many
possible choices of them. We choose the following: define

H(t)=e¢"  (teR)
and

I () = \/LQ_W /R HOWedt (A > 0). (9.8)

We can observe that hy is the Fourier transform of the function H(—t), but the point is
that all hy’s are positive and their integrals are easy to calculate. Indeed, we have

ha(z) = \/g ﬁ (2> 0), (9.9)

\/%/Rh)\(:c) dr=1 (A>0). (9.10)

whence
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129374

Fig. 2. The graphs of hy for A =1,
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The following result collects the most important features of the functions H and h.

Proposition 9.4. Let f € L1(R), g € Lo(R) and assume that g is continuous at some
point x € R. Then:

(a) (f xhy)(x \/ﬂ H)\t t)e™t dt;

(b) limyo4 (g * k) (z) = g(x);

(¢) Timasop [If 5 hx — fll; = 0

(d) lmysoq [|f xha = fll, =04 1 <p < oo and f € Ly(R);

Proof. Assertion (a) follows immediately from (9.8) by applying Fubini’s theorem.
For (b), observe that using (9.10) we obtain

(g% ha)(x) — g( — g(z))ha(y) dy

— (@) A" (A y) dy

m/ S

77/ oo
— = [ (ot = 20) = o)t

Since the integrated function is bounded by 2||g|| h1(y), we get that (g * hy)(z) — g(x)
as A — 01 by Lebesgue’s dominated convergence theorem.

For assertion (c), observe first that f * h) is well-defined and continuous. In general,
using Holder’s inequality and the fact that the map R 5 z — G, € L,(R) is uniformly
continuous for any G € L,(R), we may infer that for all f € L,(R) and G € L,(R) with
% + % = 1 the convolution F' * G is uniformly continuous.

Using (9.10) we may write

(f * ha) () — f(2) —y) = f(2))ha(y) dy.

-—= [ e

Integrating over x € R and using Fubini’s theorem we obtain

£ 0= 1l < == [ 1= Pl ma(w)dy

Hence, applying assertion (b) to the continuous function g(y) = || f, — f||, with g(0) =0,
we infer that the right-hand side tends to 0 as A — 0*.

Assertion (d) is proved in the same way as above with one difference that in order to
estimate || f * hy — f||,, one should use the Jensen inequality for integrals, applied to the
convex function t +— t¥. O

Theorem 9.5 (Fourier inversion formula). If f, fe L1(R), then the function g defined

by
1 iy itx
olt) = o= [ Fla)e ar
belongs to Co(R) and f(t) = g(t) a.e. on R.



Proof. Since we assume that f € Li(R), the above integral makes sense and it defines
g € Cy(R) according to Proposition 9.3. Note that

|[H\) f(t)e™| < |f(t)| for every t € R

and H(At) — 1 as A — 07. Hence, by Proposition 9.4(a) and Lebesgue’s theorem, we
obtain

lim (f % hy)(z) = g(x) for every x € R.
A—0+

On theother hand, Proposition 9.4(c) says that
li hy — = 0.
Jm [ f o hy = fll, =0
Hence, there exists a sequence (\,)%; of positive numbers converging to zero such that

lim (f = hy,)(f) = f(z) a.e. onR.

n—0o0

(see the proof of Theorem 1.12). Consequently, f(z) = g(x) a.e. O

~

Corollary 9.6. If f € Li(R) and f(x) =0, then f =0 a.e.



