
Functional analysis

Lecture 2: Banach space; completeness of Cb(X) and Lp(µ);
bounded linear functionals and operators; the Hahn–Banach theorem

Definition 1.9. A sequence (xn)∞n=1 in a normed space X is called a Cauchy sequence
provided it satisfies the Cauchy condition:

∀ε>0 ∃Nε∈N ∀m,n≥Nε ‖xm − xn‖ < ε.

Plainly, this notion coincides with the usual notion of Cauchy sequence in a metric space,
where the metric considered is given by the norm: ρ(x, y) = ‖x− y‖. As for metric spaces,
we call a normed space (X, ‖·‖) complete if every Cauchy sequence in X is convergent in
X (with respect to norm), which means that (X, ρ) is complete as a metric space.

Definition 1.10. A complete normed space is called a Banach space.

Now, we are going to show that the two important classes of normed spaces: the
Cb(X)-spaces and the Lp(µ)-spaces (see Example 1.2, (3) and (4)) are complete.

Proposition 1.11. Let X be any Hausdorff topological space. Then, the space Cb(X) of
continuous bounded scalar-valued functions on X is complete.

Proof. Fix any Cauchy sequence (fn)∞n=1 ⊂ Cb(X), that is, for each ε > 0 there is Nε ∈ N
such that ‖fm − fn‖∞ < ε for all m,n ≥ Nε. Obviously, for every fixed x ∈ X the
sequence (fn(x))∞n=1 is Cauchy and since the scalar field (R or C) is complete, there exists
the limit f(x) := limn fn(x). Now, observe that for m,n as above, we have

|f(x)− fn(x)| ≤ |f(x)− fm(x)|+ ‖fm − fn‖∞ < |f(x)− fm(x)|+ ε −−−→
m→∞

ε.

Hence |f(x)− fn(x)| ≤ ε provided n ≥ Nε. Recall that the choice of Nε ∈ N was
independent of x, thus (fn)∞n=1 converges uniformly to f , i.e. limn ‖fn − f‖∞ = 0. As
a uniform limit of continuous functions, f must be also continuous. Since, for n large
enough we have ‖f‖∞ ≤ ‖fn‖∞ + 1, it is also a bounded function. Therefore, f ∈ Cb(X)
is the limit of our Cauchy sequence.

Theorem 1.12. Let (X,M, µ) be a measure space with a positive measure µ, and let
1 ≤ p ≤ ∞. Then, the normed space Lp(µ) is complete.

Proof. First, we deal with the easier case p = ∞. Let (fn)∞n=1 be a Cauchy sequence in
L∞(µ). Recalling that the norm in L∞(µ) is given by the essential supremum, we infer
that the sets An := {x ∈ X : |fn(x)| > ‖fn‖∞} and Bm,n := {x ∈ X : |fm(x)− fn(x)| >
‖fm − fn‖∞} (for m,n ∈ N) are of measure zero. Hence, C :=

⋃
nAn ∪

⋃
m,nBm,n is of

measure zero and on the setX\C, the sequence (fn)∞n=1 is Cauchy with respect to the usual
supremum norm and thus uniformly convergent to a measurable function f : X \C → K.
Extending f to X arbitrarily, we get that f ∈ L∞(µ) (it is essentially bounded because
all fn’s were bounded outside C) and limn ‖fn − f‖∞ = 0.

Now, we assume 1 ≤ p < ∞. The first part of the proof consists of showing quite
an important assertion:

1



Claim. Any Cauchy sequence (fn)∞n=1 in Lp(µ) contains an almost everywhere conver-
gent subsequence. That is, there is a subsequence (fnk

)∞k=1 such that the limit f(x) =
limk→∞ fnk

(x) exists a.e. and it defines a function f ∈ Lp(µ).

Proof of the claim. By a simple induction we construct a subsequence (fni
)∞i=1 such that∥∥fni+1

− fni

∥∥
p
< 2−i for each i ∈ N. (1.1)

Of course, (fni
)∞i=1 is a.e. convergent if and only the series

fn1(x) +
∞∑
i=1

(fni+1
(x)− fni

(x)) (1.2)

is a.e. convergent (note that its kth partial sum is exactly fnk
(x)). To show that it is, in

fact, absolutely convergent a.e., consider

sk =
k∑
i=1

∣∣fni+1
− fni

∣∣ and s =
∞∑
i=1

∣∣fni+1
− fni

∣∣.
In view of (1.1) and the triangle (Minkowski) inequality in Lp(µ), we have ‖sk‖p ≤
2−1 + . . . + 2−k < 1 for each k ∈ N. Therefore, by the Fatou lemma applied to the
sequence (spk)

∞
k=1, we get

‖s‖pp =

∫
X

sp dµ =

∫
X

lim
k→∞

spk dµ ≤ lim inf
k→∞

∫
X

spk dµ = lim inf
k→∞

‖sk‖pp ≤ 1.

So, ‖s‖p ≤ 1 which implies that s(x) < ∞ a.e. and hence the series (1.2) is absolutely
convergent a.e. It also implies that its a.e. defined sum f(x) = limk fnk

(x) belongs to
Lp(µ) (note that ‖f‖p ≤ ‖fn1‖p + ‖s‖p <∞).

Having established the claim, we need to show that f is the Lp-limit of (fn)∞n=1, i.e.

lim
n→∞

‖f − fn‖p = 0. (1.3)

For any ε > 0 pick Nε ∈ N so that ‖fm − fn‖p < ε for all m,n ≥ Nε. By the Fatou
lemma, for each m ≥ Nε, we have

‖f − fm‖pp =

∫
X

|f − fm|p dµ ≤ lim inf
i→∞

∫
X

|fni
− fm|p dµ ≤ εp,

which shows that (1.3) holds true and completes the proof.

Lemma 1.13. Let X be a Banach space and Y ⊆ X be its linear subspace. Then, Y is
a Banach space (with the norm inherited from X) if and only if Y is closed in X.

Proof. (classes)

Now, we extend our list of normed spaces presented in Example 1.2 to show that
Banach spaces appear naturally in various branches of mathematics.

Example 1.14. Let, as usual, K ∈ {R,C}. The following are examples of normed spaces
and, in fact (as we will see below), Banach spaces:
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(1) C(k)([a, b]), the space of k-times continuously differentiable functions f : [a, b] → K,
supplied with e.g. one of the norms:

‖f‖(k) =
k∑
i=0

∥∥f (i)
∥∥
∞, ‖f‖′(k) = |f(a)|+ max1≤i≤k

∥∥f (i)
∥∥
∞.

(2) Lip0(M), the space of Lipschitz functions f : M → K vanishing at a distinguished
point 0 ∈M , where (M,ρ) is a metric space. We equip it with the optimal Lipschitz
constant norm L(·), i.e.

L(f) = sup

{
|f(x)− f(y)|

ρ(x, y)
: x, y ∈M, x 6= y

}
.

(3) Lip(M), the space of bounded K-valued Lipschitz functions on a metric space M ,
supplied with the norm

‖f‖L = max{‖f‖∞, L(f)}.

(4) H∞(D), the Hardy space of bounded holomorphic (analytic) functions f : D → C on
the unit disc D = {z ∈ C : |z| < 1}, equipped with the supremum norm ‖f‖∞ =
supz∈D |f(z)|.

(5) A(D), the disc algebra1, that is, the space of all holomorphic functions f : D → C
which admit a continuous extension to the closed disc D. In other words, A(D) =
H∞(D) ∩ C(D) and the space is equipped again with the supremum norm which,
according to the maximum principle, is the maximum over the unit circle:

‖f‖∞ = sup
z∈D
|f(z)| = max|z|=1|f(z)|.

(In the previous two examples we set K = C.)

(6) M(X), the space of regular Borel measures on a locally compact Hausdorff space X,
supplied with the total variation norm ‖µ‖ = |µ|(X) which can be defined with the
aid of Hahn’s decomposition theorem for signed measures.2

In the next proposition, we use the notation introduced in Examples 1.2 and 1.14, and
every space considered is equipped with one of the norms defined above.

Proposition 1.15. All the following spaces (with any 1 ≤ p ≤ ∞):

`np , c0, c, `p, Lp(µ), C(K), C0(L), Cb(X), C(k)([a, b]),

Lip0(M), Lip(M), H∞(D), A(D), M(X)

are Banach spaces.

1The term algebra comes from the fact that A(D), with the natural operations, becomes a Banach
algebra. From this point of view, the conclusion of the maximum principle can be formulated by saying
that the unit circle is the Shilov boundary of A(D); we shall not go further into this topic.

2This is an extremely important example which we will elaborate on in Section 3, where we explain
all the required terminology (regularity, variation etc.) in details, and prove the Riesz representation
theorem for positive/continuous linear functionals on C0(X).
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Proof. For every 1 ≤ p ≤ ∞, Lp(µ) is a Banach space according to Theorem 1.12, and so
are the spaces `np (n ∈ N) and `p as particular cases.

Since c0 and c are closed subspaces of `∞ (classes), they are Banach spaces in view
of Lemma 1.13.

By Proposition 1.11, Cb(X) is complete for every Hausdorff space. If X is also locally
compact, then C0(X) as a closed subspace of Cb(X) (classes) is Banach as well. Of
course, for K compact Hausdorff, we have C(K) = C0(K), so C(K) is also a Banach
space.

The proof that C(k)([a, b]), Lip0(M) and Lip(M) are Banach spaces is left as an exercise
(Problems 1.16 and 1.18).

Every sequence in (fn)∞n=1 ⊂ H∞(D) which satisfies the Cauchy condition with respect
to the supremum norm is uniformly convergent on D. By the Weierstrass theorem, the
limit function os holomorphic on D and, of course bounded as each fn is bounded. Hence,
every Cauchy sequence in H∞(D) has a limit in H∞(D).

The space A(D) can be treated as a subspace of C(D), the Banach space of continuous
functions on the closed unit disc (formally we identify each member of A(D) with its
unique continuous extension to D). Again, by the Weierstrass theorem, it is a closed
subspace, thus complete in view of Lemma 1.13.

The proof that M(X) is a Banach space (together with a detailed analysis of this
space) is postponed to Section 3.

2 Bounded linear operators

Definition 2.1. Let X and Y be normed spaces over the same field K ∈ {R,C} and let
T : X → Y be a linear operator. We define the norm of T by the formula

‖T‖ = sup
{
‖Tx‖ : x ∈ BX

}
= sup

{
‖Tx‖
‖x‖

: x ∈ X, x 6= 0

}
.

We say that T is bounded provided that ‖T‖ <∞.

Proposition 2.2. For any linear operator T acting between normed spaces X and Y , the
following assertions are equivalent:

(i) T is bounded;

(ii) T is continuous;

(iii) T is continuous at a single point.

Proof. (classes)

Remark. It is quite common to omit the brackets and write Tx instead of T (x) when
dealing with a linear operator T . From now on, considering any linear operator between
linear (normed) space we assume without mentioning that they are over the same scalar
field K ∈ {R,C}. In particular, if the codomain is just the scalar field, i.e. T : X → K,
then we call such an operator T a functional. Usually, we will be denoting operators by
S, T , Λ, Φ etc. and functionals by f , ϕ, x∗, y∗ etc. Another common notation, used when
evaluating a functional on a vector, is

• 〈x, x∗〉, or 〈x∗, x〉 instead of x∗(x).
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Note that the term bounded in reference to operators means literally bounded on the
unit ball (and hence, on any ball). In view of Proposition 2.2, we can use the terms
bounded and continuous interchangeably, although we prefer using bounded in reference to
operators, and continuous to functionals. For any normed spaces X and Y , we introduce
the following important notation:

• L (X, Y ) = {T : X → Y | T is a bounded linear operator},

• X∗ = {x∗ : X → K | x∗ is a continuous linear functional}.

Proposition 2.3. If X and Y are normed spaces and dimX < ∞, then every linear
operator T : X → Y is bounded.

Proof. It is easily seen that T is bounded with respect to one norm on X if and only if
it is bounded with respect to any other equivalent norm. By Theorem 1.6, we may thus
assume that the norm on X is given by ‖

∑n
j=1 αjej‖ = max1≤j≤n|αj|, where n = dimX

and (e1, . . . , en) is any Hamel basis of X. Then, for any x =
∑n

j=1 αjej ∈ X, we have

‖Tx‖ =
∥∥∥ n∑
j=1

αjT ej

∥∥∥ ≤ n∑
j=1

|αj|‖T ej‖ ≤ C‖x‖,

where C :=
∑n

j=1 ‖T ej‖. Hence, T is bounded and ‖T‖ ≤ C.

Lemma 2.4. Let X be a vector space over C. Then:

(a) if ϕ : X → C is a C-linear functional and u = Re f , then

ϕ(x) = u(x)− iu(ix) for every x ∈ X; (2.1)

(b) if u : X → R is any R-linear functional, then formula (2.1) defines a C-linear func-
tional ϕ on X;

(c) if X is also a normed space and linear functionals ϕ : X → C and u : X → R satisfy
equation (2.1), then ‖ϕ‖ = ‖u‖.

Proof. Clauses (a) and (b) are left as an exercise (Problem 1.9). For proving (c), observe
that obviously ‖ϕ‖ ≥ ‖u‖. For the converse inequality, fix any x ∈ X and pick α ∈ C
with |α| = 1 and such that |ϕ(x)| = αϕ(x). Then,

|ϕ(x)| = αϕ(x) = ϕ(αx) = Reϕ(αx) = u(αx) ≤ ‖u‖‖αx‖ = ‖u‖‖x‖,

whence ‖ϕ‖ ≤ ‖u‖.

Theorem 2.5 (Hahn–Banach theorem). Let X be a normed space over K ∈ {R,C}
and let M ⊂ X be a subspace of X. Every continuous linear functional f : M → K
admits a norm preserving extension, that is, there exists a continuous linear functional
F : X → K such that F |M = f and ‖f‖ = ‖F‖.
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Proof. In the first part of the proof we assume that K = R. First, we show how to extend
any functional to a subspace larger by one dimension while preserving its norm.

Suppose M ′ ( X is a proper linear subspace of X and f ′ : M ′ → R is a continuous
linear functional. Let also x0 ∈ X \ M ′. We seek for a continuous linear functional

f̃ : lin(M ′ ∪ {x0})→ R such that

f̃ |M ′ = f ′ and ‖f̃‖ = ‖f ′‖. (2.2)

Noticing that every vector from lin(M ′ ∪ {x0}) is of the form x + λx0 for some x ∈ M ′

and λ ∈ R, we set

f̃(x+ λx0) = f ′(x) + λξ (x ∈M ′, λ ∈ R),

where ξ needs to be picked in such a way that the second condition in (2.2) holds true

(the first one is already satisfied by the definition). Obviously, ‖f̃‖ ≥ ‖f ′‖ as f̃ extends
f ′; we have to guarantee that the reversed inequality holds true.

By homogeneity, we can assume that ‖f ′‖ = 1. Note that

‖f̃‖ ≤ 1 ⇐⇒ ∀x∈M ′, λ∈R |f̃(x+ λx0)| ≤ ‖x+ λx0‖

⇐⇒ ∀x∈M ′, λ∈R |f ′(x) + λξ| ≤ ‖x+ λx0‖

⇐⇒ ∀x∈M ′ |f ′(x)− ξ| ≤ ‖x− x0‖,

where in the last step we divided the formula by −λ (for λ = 0 it is trivially satisfied) and
used the fact that −λ−1f ′(x) = f ′(−λ−1x) and that −λ−1x ∈ M ′ if and only if x ∈ M ′.

Therefore, in order to have ‖f̃‖ ≤ 1 we must guarantee that the number ξ satisfies

f ′(x)− ‖x− x0‖ ≤ ξ ≤ f ′(y) + ‖y − x0‖ for all x, y ∈M ′.

Such a number exists if and only if

sup
{
f ′(x)− ‖x− x0‖ : x ∈M ′} ≤ inf

{
f ′(y) + ‖y − x0‖ : y ∈M ′}. (2.3)

Observe that for any x, y ∈M ′ we have

f ′(x)− f ′(y) = f ′(x− y) ≤ ‖x− y‖ ≤ ‖x− x0‖+ ‖y − x0‖

which shows that (2.3) is indeed true. We have thus shown that it is possible to extend
f ′ to the larger subspace lin(M ′ ∪ {x0}) without increasing its norm.

Let P be the family of all pairs (M ′, f ′), where M ′ ⊆ X is a linear subspace of X with
M ⊆ M ′ and f ′ : M ′ → R is a continuous linear functional extending f (i.e. f ′|M = f)
and such that ‖f ′‖ = ‖f‖. Then P is partially ordered by the relation

(M ′, f ′) � (M ′′, f ′′) ⇐⇒ M ′ ⊆M ′′ and f ′′|M ′ = f ′.

It is easy to see that every chain C in P has an upper bound. Indeed, the upper bound is
(M, F ), where

M =
⋃

(M ′,f ′)∈C

M ′ and F =
⋃

(M ′,f ′)∈C

f ′.
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(Notice that defining F as the union of functions from C makes sense, because all the
functions in C are each other’s extensions/restrictions, so that for x ∈M we have F (x) =
f ′(x) for any f ′ whose domain contains x.) By virtue of the Kuratowski–Zorn lemma,
there exists a maximal element (Mmax, fmax) in P . But in view of the first part of the
proof, Mmax must be the whole of X because otherwise we could extend fmax further to
obtain a new pair from P which is �-larger than (Mmax, fmax). Thus, fmax is the desired
extension of f .

Now, we proceed to the complex case, K = C. If f is a C-linear continuous functional
on M , let u = Re f and apply the just-proved real version of the theorem to u. We
obtain an R-linear functional U : X → R such that U |M = u and ‖U‖ = ‖u‖. Define
F (x) = U(x) − iU(ix) (x ∈ X) and note that, in view of Lemma 2.4(a) and (b), F is
a C-linear functional which extends f . Moreover, by assertion (c) of that lemma, we also
have ‖F‖ = ‖U‖ = ‖u‖ = ‖f‖.

The following corollary may be very useful in situations when we want to show that
a certain element lies in the closure of a given subspace, and we know the general form
of continuous linear functionals.

Corollary 2.6. Let X be a normed space, M ⊆ X a linear subspace of X and x0 ∈ X.
Then, x0 ∈ M if and only if there does not exist x∗ ∈ X∗ such that x∗|M = 0 and
〈x0, x∗〉 = 1.

Proof. (classes)

Corollary 2.7. Let X be a normed space. For every x ∈ X there exists x∗ ∈ X∗ with
‖x∗‖ = 1 and such that 〈x, x∗〉 = ‖x‖.

Proof. (classes)

Notice that Corollary 2.7 gives us the following useful formula:

‖x‖ = sup{〈x, x∗〉 : x∗ ∈ SX∗},

which may be regarded as a dual version of ‖x∗‖ = sup{〈x, x∗〉 : x ∈ SX}, the latter being
just the definiton of the norm of a functional.
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