
Functional analysis

Lecture 3: L (X, Y ) and X∗ as normed/Banach spaces; the dual spaces
of c0, `p and Lp([0, 1]) (1 ≤ p <∞); the Riesz representation theorem
for (C[0, 1])∗

We finish Section 2 with an important characterization of continuity for linear functionals
on normed spaces. First, we need the following lemma.

Lemma 2.8. Let M ( X be a closed subspace of a normed space X and let u ∈ X \M .
Then, we have:

(i) ‖y + λu‖ ≥ |λ| · dist(u,M) for all y ∈M , λ ∈ K;
(ii) for any (yn)∞n=1 ⊂ M and (λn)∞n=1 ⊂ K, the sequence (yn + λnu)∞n=1 is convergent in

X if and only if the both sequences (yn)∞n=1 and (λn)∞n=1 are convergent in M and K,
respectively;

(iii) the subspace M + Ku = lin(M ∪ {u}) is closed.

Proof. (i) For λ = 0 the assertion is trivial. For λ 6= 0, we have

‖y + λu‖ = |λ| ·
∥∥u− (−λ−1y)

∥∥ ≥ |λ| · dist(u, Y ).

(ii) Obviously, if both (yn)∞n=1 and (λn)∞n=1 are convergent, then (yn + λnu)∞n=1 converges
in X, as the algebraic operations are norm continuous. For the converse, suppose we have
yn + λnu → z ∈ X. Since the sequence (yn + λnu)∞n=1 is Cauchy, assertion (i) implies
that (λn)∞n=1 ⊂ K is also Cauchy, and hence convergent to some λ0 ∈ K (the scalar field
is complete). Now, λnu− λ0u→ 0 and yn + λnu− λ0u→ z − λ0u, whence yn → z − λ0u.
Hence, (yn)∞n=1 is also convergent and its limit belongs to M , as M is closed.

(iii) It follows readily from assertion (ii).

Corollary 2.9. Let X be a normed space. If M and F are linear subspaces of X such
that M is closed and F is finite-dimensional, then the subspace M + F is closed.

Proof. Follows from Lemma 2.8(iii) by a simple induction.

Proposition 2.10. Let X be a normed space over K and ϕ : X → K a linear functional.
Then, ϕ is continuous if and only if its kernel kerϕ is closed.

Proof. The necessity is clear. For sufficiency, assume kerϕ is a closed subspace of X. If
kerϕ = X, there is nothing to prove. Otherwise, pick any u ∈ X \ kerϕ, so that we have
kerϕ+ Ku = X (see Problem 1.12(a)). Obviously, ϕ(y + λu) = λϕ(u) for all y ∈ kerϕ
and λ ∈ K.

Fix any sequence (xn)∞n=1 = (yn + λnu)∞n=1 ⊂ X which converges to some x0 ∈ X. In
view of Lemma 2.8(ii) and our assumption, there exist y0 ∈ kerϕ and λ0 ∈ K such that
yn → y0 and λn → λ0. Hence, x0 = y0 + λ0u and we have

ϕ(xn) = λnϕ(u) −−−→
n→∞

λ0ϕ(u) = ϕ(x0)

which shows that ϕ is continuous.

Remark. The above result appeared in some form in Problem 1.13. Combining the
assertion of that problem with Proposition 2.10, we infer that if ϕ 6= 0 is a linear functional,
then the continuity of ϕ is equivalent to the closedness of kerϕ which is in turn equivalent
to kerϕ not being dense.
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3 Dual spaces and Riesz representation theorems

The main goal of this section is to give several characterizations of dual spaces of the
most classical Banach spaces. All these duality results are basically due to F. Riesz.

We start with an easy observation that the set of bounded linear operators/functionals
forms a normed space in its own right, and that it is complete if and only if the codomain
space is complete. Of course, the linear operations considered in L (X, Y ) are the point-
wise ones: (S + T )x = Sx+ Tx and (λT )x = λTx, and the norm is considered to be the
operator norm as in Definition 2.1.

Proposition 3.1. Let X and Y be normed spaces. Then L (X, Y ) is a normed space as
well. It is complete if and only if Y is complete. In particular, for any normed space X,
the dual space X∗ is a Banach space.

Proof. (classes)

Definition 3.2. Let X, Y be normed spaces over the same scalar field R or C and let
T : X → Y be a linear operator. We call T :

• an isomorphism (or normed space isomorphism) provided that T is a bijection such
that both T and T−1 are bounded, i.e. T ∈ L (X, Y ) and T−1 ∈ L (Y,X),

• an isometry provided that ‖Tx‖ = ‖x‖ for each x ∈ X,

• an isometric isomorphism provided that it is a bijective isometry (so, an isometry
and an isomorphism at the same time),

• an isomorphic embedding if it is an isomorphism onto its range, i.e. T : X → T (X)
is an isomorphism,

• an isometric embedding provided it is an isometry and an isomorphic embedding,

• bounded below provided that there exists δ > 0 such that ‖Tx‖ ≥ δ‖x‖ for every
x ∈ X.

Remarks. (a) Plainly, for any linear isometry T we have ‖T‖ = 1. Thus, for any isometric
embedding T we have ‖T‖ = ‖T−1‖ = 1 (the inverse being defined on the range of T ).

(b) It is easy to see that T ∈ L (X, Y ) is an isomorphic embedding if and only if it is
bounded below, which means that for some δ > 0 we have

δ‖x‖ ≤ ‖Tx‖ ≤ ‖T‖‖x‖ for every x ∈ X. (3.1)

Indeed, inequality (3.1) easily implies that T is one-to-one, so T is a bijection onto the
range of T . Then, T−1 is linear and also bounded, because (3.1) yields that ‖T−1‖ ≤
δ−1. Conversely, if T is an isomorphic embedding, then inequality (3.1) follows from the
definition of operator norm.

(c) It follows from Theorem 1.6 that all normed spaces of a given finite dimension n ∈ N
are mutually isomorphic (but, of course, not isometric). Indeed, consider any normed
spaces (X, ‖·‖X) and (Y, ‖·‖Y ) with dim X = dim Y = n < ∞. Picking any Hamel
bases, we get the associated linear isomorphisms ϕ : X → Kn and ψ : Y → Kn. Now,
consider the linear isomorphism ψ−1 ◦ ϕ : X → Y . It is easily seen that the formula
‖x‖′ := ‖(ψ−1 ◦ ϕ)x‖Y defines a new norm on X, therefore equivalent to ‖·‖X . This means
that for some constants 0 < c ≤ C <∞ we have c‖x‖X ≤ ‖(ψ−1 ◦ ϕ)x‖Y ≤ C‖x‖X , that
is, ψ−1 ◦ ϕ is an isomorphism between the normed spaces X and Y .
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(d) Any normed space isomorphism yields a linear and topological isomorphism (homeo-
morphism) at the same time. Thus, isomorphic normed spaces share the same structures
from the point of view of algebra and topology. However, unless they are isometrically
isomorphic, their geometries may be different—in particular, the shapes of their unit balls.
Compare, for example, the unit balls of `21, `

2
2 and `2∞. We have `21

∼= `2∞ but neither of
these spaces is isometrically isomorphic to `22 (why?).

For any normed spaces X and Y , we will use the following notation:

• X ∼ Y if X and Y are isomorphic, i.e. there exists an isomorphism T ∈ L (X, Y ),

• X ∼= Y if X and Y are isometrically isomorphic, i.e. there exists an isometric
isomorphism T ∈ L (X, Y ),

• X ↪−→ Y ifX isomorphically embeds in Y , i.e. there exists an isomorphic embedding
T ∈ L (X, Y ),

• X
1
↪−→ Y if X isometrically embeds into Y , i.e. there exists an isometric embedding

T ∈ L (X, Y ).

Proposition 3.3. We have the following isometric isomorphisms:

(a) c∗0
∼= `1,

(b) `∗1
∼= `∞,

(c) `∗p
∼= `q, where p, q ∈ (1,∞) and 1

p
+ 1

q
= 1.

More precisely, for every functional ϕ ∈ c∗0 (resp. `∗1, `
∗
p) there exists a unique sequence

(ai)
∞
i=1 ∈ `1 (resp. `∞, `q) such that

ϕ(x) =
∞∑
i=1

aixi for every x = (xi)
∞
i=1 ∈ c0 (resp. `1, `p) (3.2)

and, moreover, ‖ϕ‖ = ‖(ai)∞i=1‖1 (resp. ‖(ai)∞i=1‖∞, ‖(ai)∞i=1‖q). On the other hand, any
such (ai)

∞
i=1 gives rise to a continuous linear functional via formula (3.2), and hence the

map ϕ 7→ (ai)
∞
i=1 yields the desired isometric isomorphism.

Proof. Clauses (a) and (b) are easier and are left as an exercise (classes). We prove
assertion (c).

Let p, q ∈ (1,∞) be conjugate exponents and fix any ϕ ∈ `∗p. Define

ai = ϕ(ei), where ei = (0, . . . , 0, 1
i
, 0, 0, . . .)

is the ith vector of the canonical basis1. For any x = (xi)
∞
i=1 ∈ `p and n ∈ N let

x(n) = (x1, . . . , xn, 0, 0, . . .)

1The term basis must be understood correctly. The system (ei : i ∈ N) is not a Hamel (algebraic)
basis for any of the spaces c0 or `p (1 ≤ p ≤ ∞), because it spans only the space c00 of finitely supported
sequences, i.e.

• c00 = {(xn)∞n=1 ∈ KN : xn 6= 0 for finitely many n’s} = lin{ei : i ∈ N}.

However, it forms a so-called Schauder basis (but not for `∞ as this one is nonseparable). We have not
introduced this notion yet, but we use the word ‘basis’ just for terminological purposes.
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and notice that ‖x(n) − x‖p → 0 as n→∞2. Since ϕ is linear and continuous, we have

n∑
i=1

aixi = ϕ
( n∑
i=1

xiei

)
= ϕ(x(n)) −−−→

n→∞
ϕ(x).

This shows that formula (3.2) holds true, in particular, the series at the right-hand side
is convergent for every x ∈ `p.

Now, we want to show that (ai)
∞
i=1 ∈ `q and estimate its `q-norm. For n ∈ N, define

z(n) =
( n∑
i=1

|ai|q
)−1/p

·
n∑
i=1

ai |ai|q−2ei

(if for some i we have ai = 0, then we omit the corresponding summand, so we use the
convention that 0q−2 = 0). Note that

‖z(n)‖p =
( n∑
i=1

|ai|q
)−1/p

·
( n∑
i=1

(|ai|q−1)p
)1/p

= 1,

as we have p = q
q−1 . We also have

ϕ(z(n)) =
( n∑
i=1

|ai|q
)−1/p

·
n∑
i=1

aiai |ai|q−2 =
( n∑
i=1

|ai|q
)1−1/p

= ‖(ai)∞i=1‖q.

Therefore, the `q-norm of (ai)
∞
i=1 is finite and, moreover,

‖(ai)∞i=1‖q = ϕ(z(n)) ≤ ‖ϕ‖‖z(n)‖p = ‖ϕ‖. (3.3)

To show that the above inequality is in fact equality, consider an arbitrary (ai)
∞
i=1 ∈ `q

and define ϕ by means of formula (3.2). That series is convergent and defines a continuous
linear functional on `p, because by Hölder’s inequality we have

∞∑
i=1

|aixi| ≤ ‖(ai)∞i=1‖q · ‖(xi)
∞
i=1‖p <∞.

This also shows that ‖ϕ‖ ≤ ‖(ai)∞i=1‖q which jointly with (3.3) yields that every ϕ ∈ `∗p
corresponds to an element of `q with the same norm as ϕ, and vice versa. Clearly, such
an element of `q is unique, so the map ϕ 7→ (ai)

∞
i=1 is well-defined, obviously linear, and

yields an isometric isomorphism.

Remark 3.4. By a similar argument, one can show that analogous statements hold true
for finite-dimensional versions of the sequence spaces c0 and `p. Namely, for each n ∈ N
and any 1 ≤ p, q ≤ ∞ satisfying 1

p
+ 1

q
= 1 we have

(`np )∗ ∼= `nq ,

where for p = 1 we take q = ∞ and vice versa (recall that cn0 coincides with `n∞). The
duality is given in the same way as in Proposition 3.3, that is, any functional ϕ ∈ (`np )∗

corresponds to a unique sequence (ai)
n
i=1 ∈ `nq via the formula

ϕ(x1, . . . , xn) =
n∑
i=1

aixi.

2This is not true in `∞ which is easily seen by considering e.g. the sequence x = (1, 1, . . .).
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Remark 3.5. In Proposition 3.3(c) we did not include the case p =∞. This is, of course,
not accidental as it turns out that

`∗∞ 6∼= `1.

The space `∗∞ is considerably larger than `1; see Problems 2.13 and also 2.20. Another
argument for this is that `∗∞ must be nonseparable (see Problem 2.22). This dual space
can be described in terms of finitely addivite bounded measures on the σ-algebra of all
subsets of N, which will be the subject of Problem 3.15.

Observe, however, that we have

`1
1
↪−→ `∗∞,

because `∗∞
∼= `∗∗1 and every normed space X embeds isometrically into its bidual X∗∗

(every x ∈ X corresponds to an element ι(x) ∈ X∗∗ acting as 〈x∗, ι(x)〉 = 〈x, x∗〉).

Now, we proceed to very important duality results for spaces of integrable and con-
tinuous functions. Just for simplicity, we formulate and prove them for the unit interval
[0, 1]. The first result is in fact valid for any interval (even unbounded) on R with basically
the same proof, so we have e.g. Lp(R)∗ ∼= Lq(R) for any p, q ∈ (1,∞) with 1

p
+ 1

q
= 1. The

second result, Theorem 3.9, holds true for any compact interval. Later, we will prove a
much more general Riesz representation theorem for the dual of C0(K), where K is any
locally compact Hausdorff space.

Recall that a real- or complex-valued function f defined on a (possibly unbounded)
interval I ⊆ R is called absolutely continuous if for each ε > 0 there is δ > 0 satisfying
the following condition: for any finite collection {[τi, ti] : 1 ≤ i ≤ n} of subintervals of I
with mutually disjoint interiors we have

n∑
i=1

(ti − τi) < δ =⇒
n∑
i=1

|f(ti)− f(τi)| < ε.

Absolutely continuous functions are a.e. differentiable and satisfy the Newton–Leibniz
formula, that is,

f(x)− f(a) =

∫ x

a

f ′(t) dt.

This result is sometimes referred to as Lebesgue’s Fundamental Theorem of Calculus (see,
e.g., [W. Rudin, Real and complex analysis; Thm. 8.18]).

Proposition 3.6. Let 1 < p, q <∞ be conjugate exponents, that is, 1
p

+ 1
q

= 1. For every

functional Λ ∈ (Lp[0, 1])∗ there exists a unique f ∈ Lq[0, 1] such that

Λg =

1∫
0

f(x)g(x) dx for every g ∈ Lp[0, 1] (3.4)

and, moreover, ‖Λ‖ = ‖f‖q. On the other hand, any f ∈ Lq[0, 1] gives rise to a continuous
linear functional on Lp[0, 1] via formula (3.4). Consequently, the map Λ 7→ f yields
an isometric isomorphism

(Lp[0, 1])∗ ∼= Lq[0, 1].
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Proof. We prove this theorem in the case K = R. However, it is not too difficult to modify
it to work in the complex case as well, and the proof of Proposition 3.3 can provide a hint
(Problem 3.16).

Fix any Λ ∈ (Lp[0, 1])∗ and define a function α : [0, 1]→ R by

α(t) = Λut, where ut = 1[0,t).

Claim 1. α is absolutely continuous on [0, 1].

Fix any finite collection {[τi, ti] : 1 ≤ i ≤ n} of subintervals of [0, 1] having mutually
disjoint interiors. Set εi = sgn(α(ti)− α(τi)) for 1 ≤ i ≤ n and estimate:

n∑
i=1

|α(ti)− α(τi)| =
n∑
i=1

εi(α(ti)− α(τi)) = Λ
( n∑
i=1

εi(uti − uτi)
)

≤ ‖Λ‖ ·
∥∥∥ n∑
i=1

εi(uti − uτi)
∥∥∥
Lp

= ‖Λ‖ ·
{∫ 1

0

∣∣∣ n∑
i=1

εi(uti(x)− uτi(x))
∣∣∣ dx}1/p

= ‖Λ‖ ·
{ n∑

i=1

∫ ti

τi

dx
}1/p

= ‖Λ‖ ·
( n∑
i=1

(ti − τi)
)1/p

.

This shows that the initial expression can be arbitrarily small, provided that the sum of
lengths of the intervals from our collection is sufficiently small. So, the requirement from
the definition of absolute continuity is satisfied and Claim 1 has been proved.

By the Lebesgue Fundamental Theorem of Calculus, the derivative α′ exists a.e. on
[0, 1] and for every t ∈ [0, 1] we have

α(t) = α(t)− α(0) =

∫ t

0

α′(x) dx (3.5)

(note that α(0) = Λu0 = 0). Consider f = α′ as a function defined a.e.

Claim 2. Λg =

∫ 1

0

f(x)g(x) dx for every bounded measurable function g : [0, 1]→ R.

First, note that in view of (3.5), we have

Λut = α(t) =

∫ t

0

f(x) dx =

∫ 1

0

f(x)ut(x) dx,

so the required formula holds for every ut (t ∈ [0, 1]). Secondly, as Λ is linear, our formula
also holds for every function g of the form

gn =
n∑
k=1

ck
(
u k

n
− u k−1

n

)
(n ∈ N, ck ∈ R).

Now, we use the fact that every bounded measurable function g on [0, 1] is an a.e. point-
wise limit of a sequence of step functions, that is, finite linear combinations of indicator
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functions of intervals3. It is therefore possible to find a uniformly bounded sequence
(gn)∞n=1 of measurable functions as in the formula above such that gn(x)→ g(x) a.e. No-
tice that by Lebesgue’s Dominated Convergence Theorem, we have ‖g − gn‖Lp

→ 0, and
hence Λgn → Λg. But using Lebesgue’s theorem once again, we infer that

Λgn =

∫ 1

0

f(x)gn(x) dx −−−→
n→∞

∫ 1

0

f(x)g(x) dx

which establishes Claim 2.

Claim 3. f ∈ Lq[0, 1] and ‖f‖q ≤ ‖Λ‖
Define a sequence (hn)∞n=1 of bounded measurable functions by the formula

hn(x) =

{
sgn(f(x)) · |f(x)|q−1 if |f(x)| ≤ n

0 if |f(x)| > n.

Note that in view of Claim 2, f is integrable and hence |hn(x)| → |f(x)|q−1 a.e. So, we
can use hn’s in order to show that Lq-norm of f is finite, but first compute

‖hn‖pp =

∫ 1

0

|hn(x)|p dx =

∫ 1

0

|hn(x)| · |hn(x)|1/(q−1) dx

≤
∫ 1

0

|hn(x)| · |f(x)| dx =

∫ 1

0

hn(x)f(x) dx = Λhn ≤ ‖Λ‖ · ‖hn‖p,

whence ‖hn‖p/qp ≤ ‖Λ‖. Using Fatou’s lemma, we obtain

‖f‖q =
{∫ 1

0

|f(x)|(q−1)p dx
}1/q

≤ lim inf
n→∞

{∫ 1

0

|hn(x)|p dx
}1/q

≤ ‖Λ‖

which proves Claim 3.

Claim 4. Λg =

∫ 1

0

f(x)g(x) dx for every g ∈ Lp[0, 1].

Fix any g ∈ Lp[0, 1] and pick a sequence (gn)∞n=1 of bounded measurable functions such
that gn(x) → g(x) a.e. As we observed before, we then have ‖gn − g‖Lp

→ 0 and hence
Λgn → Λg. Also, by Hölder’s inequality and Claim 2, we have

Λgn =

∫ 1

0

f(x)gn(x) dx −−−→
n→∞

∫ 1

0

f(x)g(x) dx,

so the resulting limit must be equal to Λg.

Now, every f ∈ Lq[0, 1] defines a functional Λ ∈ (Lp[0, 1])∗ via formula (3.4). The
existence of this integral, as well as continuity of Λ, follows from Hölder’s inequality:∫ 1

0

|f(x)g(x)| dx ≤ ‖f‖Lq
· ‖g‖Lp

.

3This is quite a standard fact from measure theory. It follows e.g. from a corollary of Luzin’s theorem
which implies that every bounded measurable function on [0, 1] is an a.e. pointwise limit of a sequence of
continuous functions (see [W. Rudin, Real and complex analysis; Thm. 2.23 and the subsequent corollary]),
and continuous functions can certainly be approximated by step functions.
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Finally, the uniqueness of f is easy: If there were two functions f, f ′ ∈ Lq[0, 1] representing
the same functional Λ ∈ (Lp[0, 1])∗, then for every g ∈ Lp[0, 1] the integral of (f − f ′)g
would vanish, which easily implies that f and f ′ coincide a.e. Thus, the map Λ 7→ f
is well-defined and yields an isometric isomorphism according to what we have shown
above.

Proposition 3.7. For every functional Λ ∈ (L1[0, 1])∗ there exists a unique f ∈ L∞[0, 1]
such that

Λg =

1∫
0

f(x)g(x) dx for every g ∈ L1[0, 1] (3.6)

and, moreover, ‖Λ‖ = ‖f‖∞. On the other hand, any f ∈ L∞[0, 1] gives rise to a contin-
uous linear functional on L1[0, 1] via formula (3.6). Consequently, the map Λ 7→ f yields
an isometric isomorphism

(L1[0, 1])∗ ∼= L∞[0, 1].

Proof. The proof is similar to the one above (classes).

Remark 3.8. Similarly to Remark 3.5, we did not include p =∞ in Proposition 3.6. In
fact,

(L∞[0, 1])∗ 6∼= L1[0, 1]

and (L∞[0, 1])∗ = (L1[0, 1])∗∗ is a huge space compared to L1[0, 1] (which is separable).

In the future, we will prove that the duality between Lp- and Lq-spaces, for p and q
being conjugate, holds true over any measure space with a σ-finite measure. But to this
end, we need the Radon–Nikodym theorem which will be proved after discussing Hilbert
space theory.

Now, we prove the Riesz representation theorem for the space of real-valued continuous
functions on a compact interval. Before doing it, let us recall some necessary terminology
and tools from real analysis.

A real- or complex-valued function f defined on an interval [a, b] is said to have bounded
variation, in which case we write f ∈ BV([a, b]) provided that

V b
a (f) := sup

{ n∑
j=1

|f(xj)− f(xj−1)| : a ≤ x0 < . . . < xn ≤ b
}
<∞.

The left-hand side defines the (total) variation of f on the interval [a, b]. Two fundamental
facts on functions of bounded variation are the following (see [W. Rudin, Real and complex
analysis; Ch. 8]):

• f ∈ BV([a, b]) if and only if there exist increasing functions g and h on [a, b] such
that f = g− h (Jordan decomposition theorem). More precisely, we can define these
functions by g(x) = 1

2
(V x

a (f) + f(x)) and h(x) = 1
2
(V x

a (f)− f(x)).

• If f ∈ BV([a, b]), then f ′(x) exists a.e. on [a, b] and f ′ ∈ L1[a, b], i.e. f ′ is integrable.
However, in this case the Newton–Leibniz formula for f may fail. In fact, there
exist monotone (even strictly monotone) singular functions f (i.e. nonconstant,
continuous and such that f ′(x) = 0 a.e.). A classical example is the Cantor staircase
function on [0, 1] whose derivative vanishes outside the Cantor set.
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Theorem 3.9 (Riesz). For every R-linear functional Λ ∈ (C[0, 1])∗ there exists a real-
valued function f ∈ BV([0, 1]) such that

Λg =

1∫
0

g df for every g ∈ C[0, 1] (3.7)

(the Riemann–Stieltjes integral) and, moreover, ‖Λ‖ = V 1
0 (f). On the other hand, any

real-valued function f ∈ BV([0, 1]) gives rise to a continuous linear functional Λ on C[0, 1]
by means of formula (3.7).

Proof. First, assume Λ ∈ (C[0, 1])∗. Consider the space `∞[0, 1] of all bounded real-valued
functions on [0, 1], equipped with the supremum norm. By standard arguments, `∞[0, 1]
is a Banach space and C[0, 1] is its closed subspace. In view of the Hahn–Banach theorem,

we can extend Λ to a functional Λ̃ : `∞[0, 1]→ R preserving its norm, so that we have

|Λ̃g| ≤ ‖Λ‖ · ‖g‖∞ for each g ∈ `∞[0, 1].

For any t ∈ [0, 1] consider ut = 1[0,t) ∈ `∞[0, 1] and define f : [0, 1]→ R by f(t) = Λ̃ut.

Claim. f ∈ BV([0, 1]) and V 1
0 (f) ≤ ‖Λ‖.

Indeed, fix any partition 0 = t0 < t1 < . . . < tn−1 < tn = 1 and set

εi = sgn(f(ti)− f(ti−1)) for 1 ≤ i ≤ n.

Then,

n∑
i=1

|f(ti)− f(ti−1)| =
n∑
i=1

εi(f(ti)− f(ti−1)) = Λ̃
( n∑
i=1

εi(uti − uti−1
)
)

≤ ‖Λ̃‖ ·
∥∥∥ n∑
i=1

εi(uti − uti−1
)
∥∥∥
∞

= ‖Λ̃‖ = ‖Λ‖,

which proves our Claim.

Fix any g ∈ C[0, 1] and consider a sequence (gn)∞n=1 ⊂ `∞[0, 1] defined as

gn =
n∑
k=1

g
(k
n

)
(u k

n
− u k−1

n
) (n ∈ N).

As g is continuous, it is Riemann–Stieltjes integrable with respect to f . On the other
hand,

Λ̃gn =
n∑
k=1

g
(k
n

)(
f
(k
n

)
− f

(k − 1

n

))
is an integral sum for g corresponding to the partion { k

n
: 0 ≤ k ≤ n}. Hence,

lim
n→∞

Λ̃gn =

1∫
0

g df.
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Since Λ̃ ∈ (`∞[0, 1])∗ and ‖gn − g‖∞ → 0, we have

Λ̃g = Λ̃( lim
n→∞

gn) = lim
n→∞

Λ̃gn =

∫ 1

0

g df,

and since Λ̃ is an extension of Λ, we have proved formula (3.7). Moreover, in view of our
Claim, the function f has all the desired properties.

On the other hand, from the general theory of Riemann–Stieltjes integral4 we know
that for each f ∈ BV([0, 1]), the functional C[0, 1] 3 g 7→

∫ 1

0
g df is linear and satisfies

the estimate ∣∣∣∣∣
∫ 1

0

g df

∣∣∣∣∣ ≤ V 1
0 (f) · ‖g‖∞.

Hence, this functional is bounded with norm not greater than (and hence equal to) V 1
0 (f).

This completes the proof.

4In the first step, the Riemann–Stieltjes integral is defined with respect to any monotone increasing
function. Then, we can integrate over any function of bounded variation, as these are differences of
increasing functions, in view of the Jordan decomposition. Every continuous function on a compact
interval is Riemann–Stieltjes integrable; see [W. Rudin, Principles of mathematical analysis; Ch. 6].
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