Functional analysis

Lecture 4: NORMALIZED FUNCTIONS OF BOUNDED VARIATION;
REGULAR BOREL MEASURES; THE RIESZ—-MARKOV—KAKUTANI THEOREM;

Remark 3.10. Assume that the functional A above is positive (i.e. Af > 0 for f > 0).
We observe that the extension A is also positive and hence the constructed function f
is then monotone increasing. Indeed, suppose that there is g € £[0, 1] with g(¢) > 0
for each ¢ € [0,1] but Ag < 0. By normalizing, we can assume that lgll.. = 1, thus
0 < g(t) < 1 for each t € [0,1]. Let 1 be the constant 1 function. As A is positive
and linear, it is monotone (i.e. Ag < Ah if ¢ < h), and hence A1 = ||A||. We have
|1 —gl|lec <1 and

A1 —g)=A1—Ag=|[A = Ag > [|All = A,

which gives a contradicition.

Therefore, positive continuous functionals on Cla,b] correspond to increasing func-
tions on [a, b], while general continuous functionals correspond to functions of bounded
variation.

Remark 3.11. Since every f € BV([a,b]) is the difference of two increasing functions,
we see that every A € (Cla, b])* can be written as

A=AT—A", where AT, A~ are positive. (3.1)

The conclusion of Remark 3.11 can be justified without appealing to Riesz’ Theo-
rem 3.9. To this end, let us use a more general language which will be also useful in the
sequel.

By an ordered vector space we mean any vector space F over R equipped with a partial
order relation > compatible with the algebraic operations in the sense that x > y implies
x+2z>y+zforal x,y,z € E and z > y implies Ax > Ay for all x,y € E, A > 0. We
denote by E* the positive cone of E defined by {z € E: x > 0}. An ordered vector space
which is also a lattice with respect to the given order is called a Riesz space or a wvector
lattice.

If F is a Riesz space and V, A denote the lattice operations, then for any vector z € F
we define its positive part ™, negative part x~ and its modulus |z| by

rr=2Vv0, a2 =(-2)V0, |z|]=2V(-x).

We then have z = ™ — 2~ and |z| = 2% + 27, so this gives a decomposition of z as the
difference between two positive elements. A Riesz space is called Archimedean if whenever
0 <nx <yforalln € Nand some y € ET, then z = 0.

If E is a Riesz space and a normed space with a norm ||-|| satisfying the condition

[z <yl = llzl| <yl forallz,yec E,

then E is called a normed Riesz space, and in the case where the norm is complete, we
call E a Banach lattice. There are plenty of examples of Banach lattices: R™ with the
pointwise ordering and any of the norms |||, (1 < p < o0), the space C'(X) of continuous
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functions, and Cy(X) of bounded continuous functions on any topological space X, also
considered with the pointwise ordering and the supremum norm, as well as L,(u)-spaces
under the a.e. pointwise ordering.

If E is a normed Riesz space, then its dual E* can be ordered in a natural way by
defining f > g if and only if f(x) > g(x) for every x € ET (f,g € E*). We will see
(Lemma 3.18 below) that in this way we equip E* with a Banach lattice structure!. In
particular, the decomposition (3.1) is possible in the Banach lattice (Cla, b])*.

Actually, decomposition (3.1) holds true with a further requirement that

1A= [[AF]] + (A7)

and in a much more general setting of the so-called order unit normed Riesz spaces (see
Problem 3.22). For Cfa,b] we will obtain that equality with the aid of Hahn’s decom-
position theorem.

As we know that every continuous linear functional on the real space C|a,b] is rep-
resented by a function f € BV]a,b|, let us consider the problem of uniqueness of this
representation.

Obviously, f is not unique as stated in Theorem 3.9, because adding any constant
function to f does not change the Riemann—Stieltjes integral. So, one normalization
would be to require that e.g. f(a) = 0. By Jordan’s decomposition, we have f = g— h for
some increasing functions g and h, and therefore f has at most countably many points
of discontinuity in (a,b). Observe that by modifying the values of f at each of these
points, but keeping the variation bounded, we do not change the value of the integral in
formula (3.7). Indeed, any g € C|a,b] is Riemann—Stieltjes integrable, hence its integral
can be approximated by any sequence of integral sums over partitions with diameters
converging to zero®. In particular, we can avoid each point of discontinuity of f (except
the endpoints) in these partitions. Consequently, another normalization condition which
does not affect the validity of (3.7) is that f(t+) = f(¢) for each t € (a,b), i.e. f is right-
continuous inside the interval (a, b) (the choice of the left or right limit is arbitrary). Every
f € BV([a,b]) satisfying the above two normalization conditions is called a normalized
function of bounded variation, and we denote the class of all such functions by

« NBV([a,b]) ={f € BV([a,b]): f(a) =0 and f is right-continuous in (a,b)}.

By modifying the representing function f in Theorem 3.9 as described above, we can
guarantee that it belongs to the class NBV([a, b]). Moreover, it turns out that in this
class the function f is unique. We will obtain this as a particular case of the ‘uniqueness
part’ of Theorem 3.16 below. Before proceeding to that result, let us build a ‘bridge’ be-
tween the special Riesz Theorem 3.9 and the much more general Riesz—Markov-Kakutani
Theorem 3.16.

Given any function f € BV([a, b]), we define a measure 1y on the field F consisting of
finite unions of the intervals |y, z] (a <y < x < b) which are all right-closed and left-open
unless y = a in which case we take the closed interval [a, xz]. Namely:

 uplla,a)) = f(x) - fla),
(g, a]) = f(2) — f(y) fora <y <= <b

L An interested reader may consult e.g. [C.D. Aliprantis, K.C. Border, Infinite dimensional analysis.
A hitchhiker’s guide, 3*? edition, Springer 2006; Ch. 8 and 9].
2See [W Rudin, Principles of mathematical analysis; Thms. 6.6 and 6.8].




Notice that the measure py is finitely additive and satisfies

n n

pr(E) = (f(by) = fla;)) for E = |ay,bo] U | J(a;, bj] € F,

J=1 Jj=2

where a < a; <b; <ay <by <...<a, <b, <b. Moreover, us is bounded because f
is of bounded variation. But, as we will see, piy has also another nice property of being
reqular, provided that f belongs to the class NBV([a, b]).

Definition 3.12. Let F be a field of subsets of a topological space X and p: F — K be
a finitely additive set function, where K € {R, C}. We say p is regular if for every £ € F
and € > 0 there exist a set F' € F with F' C E and a set G € F with int G O F satisfying

lu(C)| <e forevery C e F, CCG\F.

If f € NBV([a,b]), it is possible to extend pf to a regular o-additive measure defined
on all Borel subsets of [a,b]. It follows from the following general result on extensions of
measures. (Actually, we only need a simplified version of this result, as the measure p is
trivially o-additive in the sense that there are no countably infinite, but not finite, unions
of the intervals |c,d] in F.)

Extension theorem. Let F be a field of subsets of some topological space X and let
pw: F — K be a bounded, reqular, finitely additive set function, where K € {R,C}. Then,
p has a unique regular, o-additive extension ji: 0(X) — K to the o-algebra o(F) generated
by F.

For the proof see e.g. [N. Dunford, J.T. Schwartz, Linear operators (vol. 1: General
theory), Wiley—Interscience 1988; Ch. II1.5]. This theorem is a combination of two classical
measure theory results:

« the Alexandroff theorem which says that every bounded regular finitely additive (real-
or complex-valued) set function on a field of subsets of a compact topological space
is o-additive;

. the Carathéodory extension theorem which guarantees that positive o-additive mea-
sures defined on a ring R can be extended to positive o-additive measures on the
o-algebra generated by R.

(It should also be noted that a measure is regular if and only the positive and negative
parts of its real and imaginary parts are regular.)

Lemma 3.13. If f € BV([a,b]), then for every t € [a,b) we have
lim V(. [tt+e]) = 0.

Proof. (classes) O

Now, assume that f € NBV([a,b]). Since f is right-continuous on (a,b), we have
lim. o f(t+ |e]) = f(t) for every t € (a,b) and it follows that for every interval |c,d] € F,

V(S levd)) =sup { 3 lugL)l: [ € Fy L0 Iy = 2 for j # k, Uyl € le.d) .
j=1
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(The right-hand side defines the wvariation of y1; on the set |c, d]; we will introduce this
notion later on.) Plainly, we can extend this formula to any set £ € F in the sense that
if £ =LU...Ul,, with I; = |¢;,d;] € F (1 < j < m), then the left-hand side is
> 21 V(f,laj, b)), whereas the right-hand side is the variation of y; on F, denoted by
|pf|(E). For any such E we can assume that a <¢; <dy < <dy <...< ¢y <d, <D.
Pick

0<e< min (d; —¢;), min (cjr1—d;)
and define . .
Ei(e) = | J(¢j+e.dj],  Eale) = (e d; +¢].
j=1 j=1

(The interval (c;, dy + €] should be replaced by [a, d; 4 €] in the case where ¢; = a.) Then,
in view of the formula above and Lemma 3.13, we have

m

sl (E\ Ex(e)) = ZV(f, [ej 5+ e]) =50

and

sl (E2(e) \ E) = ; V(f,ldj,dj +¢]) —— 0.
This shows that j; is regular and thus the extension theorem applies.

For o-additive measures we shall use the following common definition of regularity. It
does not completely coincide with Definition 3.12 in general, but it does if X is a locally
compact, o-compact® Hausdorff space. In this case, a positive Borel measure on X is
regular if and only if for every Borel set F C X and each € > 0 there exist a closed set F’
and an open set V such that F C E CV and u(V \ F') < ¢ (classes).

Definition 3.14. Let u be a positive Borel measure on a locally compact Hausdorff space
X. A Borel set E C X is called outer reqular (resp. inner regular) if

w(E) =inf {u(V): ECV, Vis open}

(resp. w(E) =sup {u(K): K C E, K is compact}).

The measure p is called regular if every Borel subset of X is both outer and inner regular.

We have proved that any f € NBV([a,b]) gives rise to a bounded, regular, finitely
additive measure on F to which we can apply the extension theorem. Also, it is not
difficult to see that, in the converse direction, the regularity of 1y implies that f is right-
continuous on (a,b). Summarizing, we have the following result.

Proposition 3.15. Let f € BV([a,b]) (real- or complez-valued), f(a) =0, let F be the
field of finite unions of the intervals of the form [a,d] and (¢,d] (a < ¢ < d <b), and let
pr: F — R be the finitely additive (real- or complex-valued) measure associated with f as
above. Then, iy is reqular if and only if f € NBV([a,b]) in which case py can be uniquely
extended to a Borel, reqular, o-additive measure.

3X is o-compact if it is a countable union of compact sets.



In the Riesz—Markov—Kakutani theorem we deal with positive functionals on the space
of compactly supported continuous functions. We use the following notation:

- supp(f) = {z € X: f(z) # 0}
« C(X)=A{f: X - K| supp(f) is compact}

Also, when given a topological space X, we write:
c K< f if K C X is compact, f € C.(X),0< f<1and flx =1,
. =V if V.C X isopen, f € C.(X),0< f<1andsupp(f) CV,
e K< fVitK<fand f<V.

Two basic topological tools which are essential in the proof are the following results:

Urysohn’s lemma. Let X be a locally compact Hausdorff space, V- C X be an open set
and K C'V a compact set. Then, there exists a function f € C.(X) such that

K<f=<V

Partition of unity. Let X be a locally compact Hausdorff space. Suppose Vi,...,V, C X
are open set and K is a compact set, K C ViU...UV,. Then, there exist functions h; <V
(for 1 < i <n) satisfying

hi(z)+ ...+ hy(z) =1 for every x € K.

In what follows, the space C.(X) can consist of real- or complex-valued continuous
functions with compact support. Correspondingly, A can be real-valued and R-linear,
as well as complex-valued and C-linear. However, the crucial assumption is that A is
positive. Notice that the measure p produced by the theorem below can be infinite. For
example, one can think of X = R (or, more generally R¥) and Af = fjoc;o f(z) dz in which
case the measure p is the Lebesgue measure on R.

Theorem 3.16 (Riesz—Markov—Kakutani). Let X be a locally compact Hausdorff
space and A be a positive linear functional on C.(X). Then, there exist: a o-algebra
in X which contains all Borel subsets of X, and a positive measure p on M satisfying the
following conditions:

(a) Af = /deu for every f € C.(X);

(b) for every compact set K C X we have u(K) < oo,

(c) for every E € I,
w(E) = inf {,u(V): ECV, Vis open};

(d) for every open set E and every E € M with u(E) < oo,
n(E) =sup {u(K): K C E, E is compact};
(e) (X, 9, u) is complete, i.e. if E €M, w(E) =0 and A C E, then A € M.

Moreover, the measure p is unique in the class of positive measures on M satisfying
conditions (a)—(d).



Proof. The proof consists of three main steps. First, we show that there is at most one
measure g satisfying the announced properties. Next, we provide definitions of pu and 901,
together with an auxiliary class 9Mp. We do it in such a way that assertion (c) follows
from the very definition, while (e) is trivial. Finally, and this will be the toughest part,
we shall show that 90t is a o-algebra containing all Borel set, p is o-additive on 9 and
satisfies (a), (b) and (d). For clarity, the last, most complicated step will be split into ten
parts.

Uniqueness. If M and p satisty (c¢) and (d), then p is completely determined by its values
on compact sets. Hence, if v is another positive measure on 9 satisfying (a)—(d), it
is enough to show that p(K) = v(K) for every compact set K C X. For any ¢ > 0,
conditions (b) and (c) imply that there exists an open set V' such that K C V and
v(V) < v(K)+e. By Urysohn’s lemma, there is a function f with K < f <V, and hence

M(K):/X]leug/deu:Af:/deug/X]lVdV:V(V)<V(K)+5.

Therefore, p(K) < v(K) and, by symmetry, u(K) = v(K).
Construction of M and p. We define:

p(V)=sup{Af: f <V} for any open set V C X, (3.2)
n(E) =inf {u(V): ECV, Visopen} for an arbitrary £ C X. (3.3)

Notice these two definitions are compatible. For, if E is open, then for any open set
U DO E, the values of u defined by (3.2) satisfy u(E) < u(U). Hence, p(E) defined by
formula (3.3) is the same as that defined by (3.2). Next, define 9t to be the collection
of all sets £ C X such that

nw(E) <oco and p(E)=sup{u(K): K C E, K is compact}.
Finally, let
M = {ECX: ENK e Mg for every compact set KCX}.

Observe that by formula (3.2) we have guaranteed condition (c). Of course, the function
p is monotone, i.e. A C B implies u(A) < u(B) and it implies that condition (e) is also
satisfied.

Proof of properties (a), (b) and (d).

Part 1. p is an outer measure, that is, for any sequence (E;)°; of subsets of X we have

/’L(DE’L) < iM(Ez)

First, we show this inequality for two open sets. So, assume Vi, V5, C X are open and
pick a function g with g < Vi U V5. Using the partition of unity, we produce functions
hi, ho such that hy < Vi, hy < V4 and hy(x) 4+ ho(z) = 1 for each x € supp(g). Hence,
hig < Vi, hog < V5 and g = hig + hog which yields

Ag = A(h1g) + Alhag) < (V1) + pu(Va).
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Passing to supremum over all the functions g with g < V3 U V4, we obtain p(V; U V3) <
u(V1) + u(Vz). The rest of the proof is left for the classes.

Part 2. For any compact set K C X we have K € 9z and
w(K) =inf {Af: K < f}.

Consider any function f with K < f and a € (0,1). Define V,, = {z € X: f(z) > a}
and note that K C V,, and ag < f provided that g < V,,. Hence,

w(K) < p(Vy) =sup{Ag: g = Vo} <a'Af.

Passing to the limit as @ — 1, we get u(K) < Af < oo. Therefore, K satisfies the
requirements of the definition of Mg, thus K € Mp.
We have established assertion (b).

Part 3. Every open set V C X satisfies

n(V) =sup {u(K): K CV, K is compact},
and hence My contains all open sets V' for which u(V') < oc.
(classes)

Part 4. Let (E;)2, be a sequence of mutually disjoint sets from the class 9r. Then,

(UE) =3 (e

Moreover, if p(lJ;2, E;) < oo, then ;= E; € Mp.
We will prove that
(K7 U Ky) = p(Ky) + u(Ks)  for compact K1, Ky C X, KiNKy =@. (3.4)

Fix any ¢ > 0. By Urysohn’s lemma, there is a function f € C.(X) such that f|x, = 1
and f|g, = 0. In view of Part 2, we can pick a function g with

K1UK2-<g and Ag<M(K1UK2>+€.

Notice that K; < fg and K3 < (1 — f)g. Since in Part 2 we have proved that u(K) < Ah
for any compact K and any h with K < h, we have

(K1) + p(I) < A(fg) + Mg — fg) = Ag < p(K1 U Ko) + €.

Therefore, we obtain formula (3.4) by the fact that e > 0 was arbitrary. The rest of the
proof is left for the classes.

Part 5. For every ' € Mp and any € > 0 there exist a compact set K and an open set
V such that K C ECV and p(V \ K) < e.

(classes)

Part 6. If A, B € Mp, then AUB, ANB, A\ B € Mg.
(classes) TBC



