Functional analysis

Lecture 4: NORMALIZED FUNCTIONS OF BOUNDED VARIATION; REGULAR BOREL MEASURES; THE RIESZ-MARKOV-KAKUTANI THEOREM;

Remark 3.10. Assume that the functional Λ above is *positive* (i.e. $\Lambda f \geq 0$ for $f \geq 0$). We observe that the extension $\tilde{\Lambda}$ is also positive and hence the constructed function f is then monotone increasing. Indeed, suppose that there is $g \in \ell_{\infty}[0,1]$ with $g(t) \geq 0$ for each $t \in [0,1]$ but $\tilde{\Lambda}g < 0$. By normalizing, we can assume that $\|g\|_{\infty} = 1$, thus $0 \leq g(t) \leq 1$ for each $t \in [0,1]$. Let **1** be the constant 1 function. As Λ is positive and linear, it is monotone (i.e. $\Lambda g \leq \Lambda h$ if $g \leq h$), and hence $\Lambda \mathbf{1} = \|\Lambda\|$. We have $\|\mathbf{1} - g\|_{\infty} \leq 1$ and

$$\widetilde{\Lambda}(\mathbf{1}-g) = \Lambda \mathbf{1} - \widetilde{\Lambda}g = \|\Lambda\| - \widetilde{\Lambda}g > \|\Lambda\| = \|\widetilde{\Lambda}\|,$$

which gives a contradicition.

Therefore, positive continuous functionals on C[a, b] correspond to increasing functions on [a, b], while general continuous functionals correspond to functions of bounded variation.

Remark 3.11. Since every $f \in BV([a, b])$ is the difference of two increasing functions, we see that every $\Lambda \in (C[a, b])^*$ can be written as

$$\Lambda = \Lambda^{+} - \Lambda^{-}, \quad \text{where } \Lambda^{+}, \Lambda^{-} \text{ are positive.}$$
(3.1)

The conclusion of Remark 3.11 can be justified without appealing to Riesz' Theorem 3.9. To this end, let us use a more general language which will be also useful in the sequel.

By an ordered vector space we mean any vector space E over \mathbb{R} equipped with a partial order relation \geq compatible with the algebraic operations in the sense that $x \geq y$ implies $x + z \geq y + z$ for all $x, y, z \in E$ and $x \geq y$ implies $\lambda x \geq \lambda y$ for all $x, y \in E$, $\lambda \geq 0$. We denote by E^+ the positive cone of E defined by $\{x \in E : x \geq 0\}$. An ordered vector space which is also a lattice with respect to the given order is called a *Riesz space* or a vector lattice.

If E is a Riesz space and \lor , \land denote the lattice operations, then for any vector $x \in E$ we define its *positive part* x^+ , *negative part* x^- and its modulus |x| by

$$x^+ = x \lor 0, \quad x^- = (-x) \lor 0, \quad |x| = x \lor (-x).$$

We then have $x = x^+ - x^-$ and $|x| = x^+ + x^-$, so this gives a decomposition of x as the difference between two positive elements. A Riesz space is called *Archimedean* if whenever $0 \le nx \le y$ for all $n \in \mathbb{N}$ and some $y \in E^+$, then x = 0.

If E is a Riesz space and a normed space with a norm $\|\cdot\|$ satisfying the condition

$$|x| \le |y| \implies ||x|| \le ||y||$$
 for all $x, y \in E$,

then E is called a normed Riesz space, and in the case where the norm is complete, we call E a Banach lattice. There are plenty of examples of Banach lattices: \mathbb{R}^n with the pointwise ordering and any of the norms $\|\cdot\|_n$ $(1 \le p \le \infty)$, the space C(X) of continuous

functions, and $C_b(X)$ of bounded continuous functions on any topological space X, also considered with the pointwise ordering and the supremum norm, as well as $L_p(\mu)$ -spaces under the a.e. pointwise ordering.

If E is a normed Riesz space, then its dual E^* can be ordered in a natural way by defining $f \ge g$ if and only if $f(x) \ge g(x)$ for every $x \in E^+$ $(f, g \in E^*)$. We will see (Lemma 3.18 below) that in this way we equip E^* with a Banach lattice structure¹. In particular, the decomposition (3.1) is possible in the Banach lattice $(C[a, b])^*$.

Actually, decomposition (3.1) holds true with a further requirement that

$$\|\Lambda\| = \|\Lambda^+\| + \|\Lambda^-\|$$

and in a much more general setting of the so-called *order unit normed Riesz spaces* (see **Problem 3.22**). For C[a, b] we will obtain that equality with the aid of Hahn's decomposition theorem.

As we know that every continuous linear functional on the real space C[a, b] is represented by a function $f \in BV[a, b]$, let us consider the problem of uniqueness of this representation.

Obviously, f is not unique as stated in Theorem 3.9, because adding any constant function to f does not change the Riemann-Stieltjes integral. So, one normalization would be to require that e.g. f(a) = 0. By Jordan's decomposition, we have f = g - h for some increasing functions g and h, and therefore f has at most countably many points of discontinuity in (a, b). Observe that by modifying the values of f at each of these points, but keeping the variation bounded, we do not change the value of the integral in formula (3.7). Indeed, any $g \in C[a, b]$ is Riemann-Stieltjes integrable, hence its integral can be approximated by any sequence of integral sums over partitions with diameters converging to zero². In particular, we can avoid each point of discontinuity of f (except the endpoints) in these partitions. Consequently, another normalization condition which does not affect the validity of (3.7) is that f(t+) = f(t) for each $t \in (a, b)$, i.e. f is rightcontinuous inside the interval (a, b) (the choice of the left or right limit is arbitrary). Every $f \in BV([a, b])$ satisfying the above two normalization conditions is called a *normalized* function of bounded variation, and we denote the class of all such functions by

• $NBV([a, b]) = \{f \in BV([a, b]) : f(a) = 0 \text{ and } f \text{ is right-continuous in } (a, b)\}.$

By modifying the representing function f in Theorem 3.9 as described above, we can guarantee that it belongs to the class NBV([a, b]). Moreover, it turns out that in this class the function f is *unique*. We will obtain this as a particular case of the 'uniqueness part' of Theorem 3.16 below. Before proceeding to that result, let us build a 'bridge' between the special Riesz Theorem 3.9 and the much more general Riesz–Markov–Kakutani Theorem 3.16.

Given any function $f \in BV([a, b])$, we define a measure μ_f on the field \mathcal{F} consisting of finite unions of the intervals |y, x| $(a \leq y < x \leq b)$ which are all right-closed and left-open unless y = a in which case we take the closed interval [a, x]. Namely:

- $\mu_f([a, x]) = f(x) f(a),$
- $\mu_f((y, x]) = f(x) f(y)$ for $a < y < x \le b$.

¹An interested reader may consult e.g. [C.D. Aliprantis, K.C. Border, *Infinite dimensional analysis*. A hitchhiker's guide, 3rd edition, Springer 2006; Ch. 8 and 9].

²See [W Rudin, *Principles of mathematical analysis*; Thms. 6.6 and 6.8].

Notice that the measure μ_f is finitely additive and satisfies

$$\mu_f(E) = \sum_{j=1}^n (f(b_j) - f(a_j)) \quad \text{for } E = [a_1, b_1] \cup \bigcup_{j=2}^n (a_j, b_j] \in \mathcal{F},$$

where $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \ldots \leq a_n < b_n \leq b$. Moreover, μ_f is bounded because f is of bounded variation. But, as we will see, μ_f has also another nice property of being *regular*, provided that f belongs to the class NBV([a, b]).

Definition 3.12. Let \mathcal{F} be a field of subsets of a topological space X and $\mu: \mathcal{F} \to \mathbb{K}$ be a finitely additive set function, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. We say μ is *regular* if for every $E \in \mathcal{F}$ and $\varepsilon > 0$ there exist a set $F \in \mathcal{F}$ with $\overline{F} \subseteq E$ and a set $G \in \mathcal{F}$ with int $G \supseteq E$ satisfying

$$|\mu(C)| < \varepsilon$$
 for every $C \in \mathcal{F}, \ C \subseteq G \setminus F$.

If $f \in \text{NBV}([a, b])$, it is possible to extend μ_f to a regular σ -additive measure defined on all Borel subsets of [a, b]. It follows from the following general result on extensions of measures. (Actually, we only need a simplified version of this result, as the measure μ_f is trivially σ -additive in the sense that there are no countably infinite, but not finite, unions of the intervals [c, d] in \mathcal{F} .)

Extension theorem. Let \mathcal{F} be a field of subsets of some topological space X and let $\mu: \mathcal{F} \to \mathbb{K}$ be a bounded, regular, finitely additive set function, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Then, μ has a unique regular, σ -additive extension $\tilde{\mu}: \sigma(\Sigma) \to \mathbb{K}$ to the σ -algebra $\sigma(\mathcal{F})$ generated by \mathcal{F} .

For the proof see e.g. [N. Dunford, J.T. Schwartz, *Linear operators* (vol. 1: *General theory*), Wiley–Interscience 1988; Ch. III.5]. This theorem is a combination of two classical measure theory results:

- the Alexandroff theorem which says that every bounded regular finitely additive (realor complex-valued) set function on a field of subsets of a compact topological space is σ -additive;
- the Carathéodory extension theorem which guarantees that positive σ -additive measures defined on a ring \mathcal{R} can be extended to positive σ -additive measures on the σ -algebra generated by \mathcal{R} .

(It should also be noted that a measure is regular if and only the positive and negative parts of its real and imaginary parts are regular.)

Lemma 3.13. If $f \in BV([a, b])$, then for every $t \in [a, b)$ we have

$$\lim_{\varepsilon \to 0+} V(f, [t, t+\varepsilon]) = 0.$$

Proof. (classes)

Now, assume that $f \in \text{NBV}([a, b])$. Since f is right-continuous on (a, b), we have $\lim_{\varepsilon \to 0} f(t + |\varepsilon|) = f(t)$ for every $t \in (a, b)$ and it follows that for every interval $|c, d] \in \mathcal{F}$,

$$V(f, [c, d]) = \sup \Big\{ \sum_{j=1}^{n} |\mu_f(I_j)| \colon I_j \in \mathcal{F}, \ I_j \cap I_k = \emptyset \text{ for } j \neq k, \ \bigcup_{j=1}^{n} I_j \subseteq |c, d] \Big\}.$$

(The right-hand side defines the variation of μ_f on the set |c, d|; we will introduce this notion later on.) Plainly, we can extend this formula to any set $E \in \mathcal{F}$ in the sense that if $E = I_1 \cup \ldots \cup I_m$, with $I_j = |c_j, d_j| \in \mathcal{F}$ $(1 \leq j \leq m)$, then the left-hand side is $\sum_{j=1}^m V(f, [a_j, b_j])$, whereas the right-hand side is the variation of μ_f on E, denoted by $|\mu_f|(E)$. For any such E we can assume that $a \leq c_1 < d_1 < c_2 < d_2 < \ldots < c_m < d_m \leq b$. Pick

$$0 < \varepsilon < \min_{1 \le j \le m} (d_j - c_j), \ \min_{1 \le j < m} (c_{j+1} - d_j)$$

and define

$$E_1(\varepsilon) = \bigcup_{j=1}^m (c_j + \varepsilon, d_j], \quad E_2(\varepsilon) = \bigcup_{j=1}^m (c_j, d_j + \varepsilon].$$

(The interval $(c_1, d_1 + \varepsilon]$ should be replaced by $[a, d_1 + \varepsilon]$ in the case where $c_1 = a$.) Then, in view of the formula above and Lemma 3.13, we have

$$|\mu_f|(E \setminus E_1(\varepsilon)) = \sum_{j=1}^m V(f, [c_j, c_j + \varepsilon]) \xrightarrow[\varepsilon \to 0+]{} 0$$

and

$$|\mu_f|(E_2(\varepsilon) \setminus E) = \sum_{j=1}^m V(f, [d_j, d_j + \varepsilon]) \xrightarrow[\varepsilon \to 0+]{} 0.$$

This shows that μ_f is regular and thus the extension theorem applies.

For σ -additive measures we shall use the following common definition of regularity. It does not completely coincide with Definition 3.12 in general, but it does if X is a locally compact, σ -compact³ Hausdorff space. In this case, a positive Borel measure on X is regular if and only if for every Borel set $E \subseteq X$ and each $\varepsilon > 0$ there exist a closed set F and an open set V such that $F \subseteq E \subseteq V$ and $\mu(V \setminus F) < \varepsilon$ (classes).

Definition 3.14. Let μ be a positive Borel measure on a locally compact Hausdorff space X. A Borel set $E \subseteq X$ is called *outer regular* (resp. *inner regular*) if

$$\mu(E) = \inf \left\{ \mu(V) \colon E \subseteq V, \ V \text{ is open} \right\}$$

(resp. $\mu(E) = \sup \left\{ \mu(K) \colon K \subseteq E, \ K \text{ is compact} \right\}$)

The measure μ is called *regular* if every Borel subset of X is both outer and inner regular.

We have proved that any $f \in \text{NBV}([a, b])$ gives rise to a bounded, regular, finitely additive measure on \mathcal{F} to which we can apply the extension theorem. Also, it is not difficult to see that, in the converse direction, the regularity of μ_f implies that f is rightcontinuous on (a, b). Summarizing, we have the following result.

Proposition 3.15. Let $f \in BV([a, b])$ (real- or complex-valued), f(a) = 0, let \mathcal{F} be the field of finite unions of the intervals of the form [a, d] and (c, d] ($a < c < d \le b$), and let $\mu_f \colon \mathcal{F} \to \mathbb{R}$ be the finitely additive (real- or complex-valued) measure associated with f as above. Then, μ_f is regular if and only if $f \in NBV([a, b])$ in which case μ_f can be uniquely extended to a Borel, regular, σ -additive measure.

 $^{{}^{3}}X$ is σ -compact if it is a countable union of compact sets.

In the Riesz–Markov–Kakutani theorem we deal with positive functionals on the space of compactly supported continuous functions. We use the following notation:

- $\operatorname{supp}(f) = \overline{\{x \in X \colon f(x) \neq 0\}}$
- $C_c(X) = \{f \colon X \to \mathbb{K} \mid \operatorname{supp}(f) \text{ is compact}\}$

Also, when given a topological space X, we write:

- $K \prec f$ if $K \subseteq X$ is compact, $f \in C_c(X), 0 \le f \le 1$ and $f|_K = 1$,
- $f \prec V$ if $V \subseteq X$ is open, $f \in C_c(X), 0 \le f \le 1$ and $\operatorname{supp}(f) \subset V$,
- $K \prec f \prec V$ if $K \prec f$ and $f \prec V$.

Two basic topological tools which are essential in the proof are the following results:

Urysohn's lemma. Let X be a locally compact Hausdorff space, $V \subseteq X$ be an open set and $K \subset V$ a compact set. Then, there exists a function $f \in C_c(X)$ such that

$$K \prec f \prec V.$$

Partition of unity. Let X be a locally compact Hausdorff space. Suppose $V_1, \ldots, V_n \subseteq X$ are open set and K is a compact set, $K \subset V_1 \cup \ldots \cup V_n$. Then, there exist functions $h_i \prec V_i$ (for $1 \leq i \leq n$) satisfying

$$h_1(x) + \ldots + h_n(x) = 1$$
 for every $x \in K$.

In what follows, the space $C_c(X)$ can consist of real- or complex-valued continuous functions with compact support. Correspondingly, Λ can be real-valued and \mathbb{R} -linear, as well as complex-valued and \mathbb{C} -linear. However, the crucial assumption is that Λ is positive. Notice that the measure μ produced by the theorem below can be infinite. For example, one can think of $X = \mathbb{R}$ (or, more generally \mathbb{R}^k) and $\Lambda f = \int_{-\infty}^{+\infty} f(x) \, dx$ in which case the measure μ is the Lebesgue measure on \mathbb{R} .

Theorem 3.16 (Riesz–Markov–Kakutani). Let X be a locally compact Hausdorff space and Λ be a positive linear functional on $C_c(X)$. Then, there exist: a σ -algebra \mathfrak{M} in X which contains all Borel subsets of X, and a positive measure μ on \mathfrak{M} satisfying the following conditions:

- (a) $\Lambda f = \int_X f \, \mathrm{d}\mu$ for every $f \in C_c(X)$;
- (b) for every compact set $K \subset X$ we have $\mu(K) < \infty$;
- (c) for every $E \in \mathfrak{M}$,

$$\mu(E) = \inf \{ \mu(V) \colon E \subseteq V, \ V \ is \ open \};$$

(d) for every open set E and every $E \in \mathfrak{M}$ with $\mu(E) < \infty$,

$$\mu(E) = \sup \left\{ \mu(K) \colon K \subseteq E, \ E \ is \ compact \right\};$$

(e) (X, \mathfrak{M}, μ) is complete, i.e. if $E \in \mathfrak{M}$, $\mu(E) = 0$ and $A \subset E$, then $A \in \mathfrak{M}$.

Moreover, the measure μ is unique in the class of positive measures on \mathfrak{M} satisfying conditions (a)-(d).

Proof. The proof consists of three main steps. First, we show that there is at most one measure μ satisfying the announced properties. Next, we provide definitions of μ and \mathfrak{M} , together with an auxiliary class \mathfrak{M}_F . We do it in such a way that assertion (c) follows from the very definition, while (e) is trivial. Finally, and this will be the toughest part, we shall show that \mathfrak{M} is a σ -algebra containing all Borel set, μ is σ -additive on \mathfrak{M} and satisfies (a), (b) and (d). For clarity, the last, most complicated step will be split into ten parts.

<u>Uniqueness</u>. If \mathfrak{M} and μ satisfy (c) and (d), then μ is completely determined by its values on compact sets. Hence, if ν is another positive measure on \mathfrak{M} satisfying (a)–(d), it is enough to show that $\mu(K) = \nu(K)$ for every compact set $K \subset X$. For any $\varepsilon > 0$, conditions (b) and (c) imply that there exists an open set V such that $K \subset V$ and $\nu(V) < \nu(K) + \varepsilon$. By Urysohn's lemma, there is a function f with $K \prec f \prec V$, and hence

$$\mu(K) = \int_X \mathbb{1}_K \,\mathrm{d}\mu \le \int_X f \,\mathrm{d}\mu = \Lambda f = \int_X f \,\mathrm{d}\nu \le \int_X \mathbb{1}_V \,\mathrm{d}\nu = \nu(V) < \nu(K) + \varepsilon.$$

Therefore, $\mu(K) \leq \nu(K)$ and, by symmetry, $\mu(K) = \nu(K)$.

Construction of \mathfrak{M} and μ . We define:

$$\mu(V) = \sup \left\{ \Lambda f \colon f \prec V \right\} \qquad \text{for any open set } V \subseteq X, \qquad (3.2)$$

$$\mu(E) = \inf \left\{ \mu(V) \colon E \subseteq V, \ V \text{ is open} \right\} \quad \text{for an arbitrary } E \subseteq X. \tag{3.3}$$

Notice these two definitions are compatible. For, if E is open, then for any open set $U \supseteq E$, the values of μ defined by (3.2) satisfy $\mu(E) \leq \mu(U)$. Hence, $\mu(E)$ defined by formula (3.3) is the same as that defined by (3.2). Next, define \mathfrak{M}_F to be the collection of all sets $E \subset X$ such that

$$\mu(E) < \infty$$
 and $\mu(E) = \sup \{ \mu(K) \colon K \subseteq E, K \text{ is compact} \}.$

Finally, let

$$\mathfrak{M} = \{ E \subset X \colon E \cap K \in \mathfrak{M}_F \text{ for every compact set } K \subset X \}.$$

Observe that by formula (3.2) we have guaranteed condition (c). Of course, the function μ is monotone, i.e. $A \subseteq B$ implies $\mu(A) \leq \mu(B)$ and it implies that condition (e) is also satisfied.

Proof of properties (a), (b) *and* (d).

<u>Part 1</u>. μ is an outer measure, that is, for any sequence $(E_i)_{i=1}^{\infty}$ of subsets of X we have

$$\mu\Big(\bigcup_{i=1}^{\infty} E_i\Big) \le \sum_{i=1}^{\infty} \mu(E_i).$$

First, we show this inequality for two open sets. So, assume $V_1, V_2 \subseteq X$ are open and pick a function g with $g \prec V_1 \cup V_2$. Using the partition of unity, we produce functions h_1, h_2 such that $h_1 \prec V_1, h_2 \prec V_2$ and $h_1(x) + h_2(x) = 1$ for each $x \in \text{supp}(g)$. Hence, $h_1g \prec V_1, h_2g \prec V_2$ and $g = h_1g + h_2g$ which yields

$$\Lambda g = \Lambda(h_1g) + \Lambda(h_2g) \le \mu(V_1) + \mu(V_2).$$

Passing to supremum over all the functions g with $g \prec V_1 \cup V_2$, we obtain $\mu(V_1 \cup V_2) \leq \mu(V_1) + \mu(V_2)$. The rest of the proof is left for the **classes**.

<u>Part 2</u>. For any compact set $K \subset X$ we have $K \in \mathfrak{M}_F$ and

$$\mu(K) = \inf \left\{ \Lambda f \colon K \prec f \right\}.$$

Consider any function f with $K \prec f$ and $\alpha \in (0, 1)$. Define $V_{\alpha} = \{x \in X : f(x) > \alpha\}$ and note that $K \subset V_{\alpha}$ and $\alpha g \leq f$ provided that $g \prec V_{\alpha}$. Hence,

$$\mu(K) \le \mu(V_{\alpha}) = \sup \left\{ \Lambda g \colon g \prec V_{\alpha} \right\} \le \alpha^{-1} \Lambda f_{\alpha}$$

Passing to the limit as $\alpha \to 1$, we get $\mu(K) \leq \Lambda f < \infty$. Therefore, K satisfies the requirements of the definition of \mathfrak{M}_F , thus $K \in \mathfrak{M}_F$.

We have established assertion (b).

<u>Part 3</u>. Every open set $V \subseteq X$ satisfies

$$\mu(V) = \sup \left\{ \mu(K) \colon K \subseteq V, \ K \text{ is compact} \right\},\$$

and hence \mathfrak{M}_F contains all open sets V for which $\mu(V) < \infty$.

(classes)

Part 4. Let $(E_i)_{i=1}^{\infty}$ be a sequence of mutually disjoint sets from the class \mathfrak{M}_F . Then,

$$\mu\Big(\bigcup_{i=1}^{\infty} E_i\Big) = \sum_{i=1}^{\infty} \mu(E_i)$$

Moreover, if $\mu(\bigcup_{i=1}^{\infty} E_i) < \infty$, then $\bigcup_{i=1}^{\infty} E_i \in \mathfrak{M}_F$.

We will prove that

$$\mu(K_1 \cup K_2) = \mu(K_1) + \mu(K_2) \quad \text{for compact } K_1, K_2 \subset X, \ K_1 \cap K_2 = \emptyset.$$
(3.4)

Fix any $\varepsilon > 0$. By Urysohn's lemma, there is a function $f \in C_c(X)$ such that $f|_{K_1} = 1$ and $f|_{K_2} = 0$. In view of Part 2, we can pick a function g with

$$K_1 \cup K_2 \prec g$$
 and $\Lambda g < \mu(K_1 \cup K_2) + \varepsilon$.

Notice that $K_1 \prec fg$ and $K_2 \prec (1-f)g$. Since in Part 2 we have proved that $\mu(K) \leq \Lambda h$ for any compact K and any h with $K \prec h$, we have

$$\mu(K_1) + \mu(K_2) \le \Lambda(fg) + \Lambda(g - fg) = \Lambda g < \mu(K_1 \cup K_2) + \varepsilon.$$

Therefore, we obtain formula (3.4) by the fact that $\varepsilon > 0$ was arbitrary. The rest of the proof is left for the classes.

<u>Part 5</u>. For every $E \in \mathfrak{M}_F$ and any $\varepsilon > 0$ there exist a compact set K and an open set V such that $K \subseteq E \subseteq V$ and $\mu(V \setminus K) < \varepsilon$.

(classes)

<u>Part 6</u>. If $A, B \in \mathfrak{M}_F$, then $A \cup B, A \cap B, A \setminus B \in \mathfrak{M}_F$. (classes)

TBC