
Functional analysis

Lecture 5: Variation of a measure; Hahn’s decomposition theorem;
the Riesz–Markov–Kakutani representation theorem for C0(X)∗

Proof of the Riesz–Markov–Kakutani theorem (cont.)

Part 7. M is a σ-algebra containing all Borel subsets of X.

Fix any compact set K ⊂ X. If A ∈M, then (X \A)∩K = K \ (A∩K) ∈MF which
shows that M is closed under complements. Now, assume A =

⋃∞
i=1Ai, where Ai ∈ M.

Define
B1 = A1 ∩K, (An ∩K) \ (B1 ∪ . . . ∪Bn−1) for n ≥ 2.

According to Part 6, these are pairwise disjoint elements of MF . Since A∩K =
⋃∞

i=1 Bi,
Part 4 implies that A ∩K ∈MF , hence A ∈M. Therefore, M is a σ-algebra.

Observe that for any closed set F ⊆ X, we have F ∩ K ∈ MF , thus F ∈ M. This
shows that M contains all closed sets, hence all Borel sets.

Part 8. MF = {E ⊆ X : µ(E) <∞}.
If E ∈MF , then by Parts 2,6, we have E ∩K ∈MF for every compact K and hence

E ∈ M. Conversely, assume E ∈ M satisfies µ(E) < ∞. Then, there exists an open
set V ⊂ X such that E ⊂ V and µ(V ) < ∞. By Parts 3,4, for any ε > 0 we may pick
a compact set K ⊂ V with µ(V \K) < ε. Since E ∩K ∈MF , there exists a compact set
H ⊆ E ∩K such that µ(E ∩K) < µ(H) + ε. We have E ⊆ (E ∩K) ∪ (V \K), hence
µ(E) ≤ µ(E ∩K) + µ(V \K) < µ(H) + 2ε. This shows that E ∈MF .

Note that in this way we have proved assertion (d).

Part 9. µ is σ-additive on M (and hence it is a positive Borel measure).

It follows from Parts 4 and 8.

Part 10. For every f ∈ Cc(X) we have

Λf =

∫
X

f dµ.

By splitting any complex-valued function into its real and imaginary parts, we can only
consider real-valued functions f ∈ Cc(X). Moreover, it is enough to prove the inequality

Λf ≤
∫
X

f dµ, (3.1)

as the reverse one follows by linearity: −Λf = Λ(−f) ≤ −
∫
X
f dµ.

Let K = supp(f) and choose real numbers a, b so that f(K) ⊂ [a, b]. Fix any ε > 0
and pick y0 < a < y1 < . . . < yn = b such that yi − yi−1 < ε for each 1 ≤ i ≤ n. Define

Ei = {x ∈ X : yi−1 < f(x) ≤ yi} ∩K (1 ≤ i ≤ n);

these are pairwise disjoint Borel sets whose union is K. For each 1 ≤ i ≤ n, pick an open
set Vi such that:

Ei ⊂ Vi, µ(Vi) < µ(Ei) +
ε

n
and f(x) < yi + ε for x ∈ Vi.
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Applying the partition of unity to the open cover V1, . . . , Vn of K, we get continuous
functions hi ≺ Vi (1 ≤ i ≤ n) such that

∑n
i=1 hi(x) = 1 for x ∈ K. Hence, f =

∑n
i=1 hif .

By Part 2, we have

µ(K) ≤ Λ
( n∑

i=1

hi

)
=

n∑
i=1

Λhi.

Also, observe that for each 1 ≤ i ≤ n, we have

hi(x)f(x) ≤ (yi + ε)hi(x) and yi − ε < f(x) for x ∈ Ei.

Therefore,

Λf =
n∑

i=1

Λ(hig) ≤
n∑

i=1

(yi + ε)Λhi

=
n∑

i=1

(|a|+ yi + ε)Λhi − |a|
n∑

i=1

Λhi

≤
n∑

i=1

(|a|+ yi + ε)
(
µ(Ei) +

ε

n

)
− |a|µ(K)

=
n∑

i=1

(yi − ε)µ(Ei) + 2εµ(K) +
ε

n

n∑
i=1

(|a|+ yi + ε)

≤
∫
X

f dµ+ ε
(
2µ(K) + |a|+ b+ ε

)
.

Passing to the limit as ε→ 0 we obtain (3.1) and thus the proof is completed.

Every metric spaceM can be isometrically embedded as a dense subspace in a complete
metric space which is defined in terms of classes of abstraction consisting of Cauchy
sequences in M . By applying the same procedure to any normed space X, we infer that
X has a completion which is a complete normed space, i.e. a Banach space. Of course, such
a completion is unique up to an isometric isomorphism. There is also a ‘canonical’ way
of defining the completion of X whose elements can be realized as absolutely convergent
series in X (see Problem 3.14).

Lemma 3.17. If X is a locally compact Hausdorff space, then the space C0(X) of func-
tions vanishing at infinity is the completion of the space Cc(X) under the supremum norm.

Proof. Our assertion is equivalent to the conjuction that C0(X) is complete and Cc(X)
is dense in C0(X). The former claim follows from Proposition 1 11. For the latter one,
fix any f ∈ C0(X) and ε > 0. Pick a compact set K such that |f(x)| < ε for x 6∈ K. By
Urysohn’s lemma, there is a function g ∈ Cc(X) such that 0 ≤ g ≤ 1 and g|K = 1. Let
h = fg; then h ∈ Cc(X) and ‖f − h‖∞ < ε.

Now, our goal is to prove a theorem characterizing the dual space C0(X)∗ for any
locally compact Hausdorff space X. We reduce the problem to considering positive linear
functionals and then apply Theorem 3.16. Such a reduction will be possible due to
decomposition (3.1) which we obtain using some general Banach lattice methods (see the
discussion after Remark 3.11).
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Lemma 3.18. The dual space and the completion of a normed Riesz space are Banach
lattices.

Proof. Let E be a normed Riesz space. In the dual space E∗ we introduce an order by:

f ≥ g ⇐⇒ f(x) ≥ g(x) for every x ∈ E+.

First, it is easily seen that E∗ then becomes an ordered vector space. Moreover, E∗ is
a Riesz space (vector lattice) with lattice operations given by

(f ∨ g)(x) = sup
{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
(x ∈ E+)

and
(f ∧ g)(x) = inf

{
f(y) + g(z) : y, z ∈ E+ and y + z = x

}
(x ∈ E+).

Notice that so far f ∨ g and f ∧ g are only defined on E+, but it is not difficult to extend
them to the whole of E. We prove it only for h := f ∨ g; the proof for f ∧ g is similar.

Obviously, h is positively homogeneous, i.e. h(λx) = λh(x) for λ ≥ 0, x ∈ E+. We
can rewrite the definition of h as

h(x) = sup
{
f(y) + g(x− y) : 0 ≤ y ≤ x

}
(x ∈ E+).

To see that h is additive, fix u, v ∈ E+. For arbitrary 0 ≤ u1 ≤ u and 0 ≤ v1 ≤ v, we
have

[f(u1) + g(u− u1)] + [f(v1) + g(v − v1)]

= f(u1 + v1) + g(u+ v − (u1 + v1)) ≤ h(u+ v),

whence h(u) + h(v) ≤ h(u+ v). For the converse inequality, we need the following result.

Claim (the Riesz Decomposition Property). If x1, . . . , xn, y ∈ E satisfy |y| ≤ |
∑n

i=1 xi|,
then there exist vectors y1, . . . , yn ∈ E such that y =

∑n
i=1 yi and |yi| ≤ |xi| for each

1 ≤ i ≤ n. If y is positive, then all yi’s can be chosen to be positive, too.

Proof of the Claim. We prove it for n = 2; the rest is an easy induction. So, assuming
|y| ≤ |x1 + x2|, define

y1 =
[
(−|x1|) ∨ y

]
∧ |x1| and y2 = y − y1.

Clearly, −|x1| ≤ y1 ≤ |x1|, i.e. |y1| ≤ |x1| (note also that if y ≥ 0, then 0 ≤ y1 ≤ y). We
are to prove that also |y2| ≤ |x2|. To this end, notice that in view of

|y| ≤ |x1 + x2| ≤ |x1|+ |x2|,

we have

−|x1| − |x2| ≤ y ≤ |x1|+ |x2|, i.e. − |x2| ≤ |x1|+ y and y − |x1| ≤ |x2|.

Hence,
−|x2| ≤ (|x1|+ y) ∧ 0 and (y − |x1|) ∨ 0 ≤ |x2|. (3.2)
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Now, calculate

y2 = y −
[
(−|x1|) ∨ y

]
∧ |x1|

= y +
[
|x1| ∧ (−y)

]
∨ (−|x1|)

=
[
(|x1|+ y) ∧ 0

]
∨ (y − |x1|)

and observe that, by (3.2), we have −|x2| ≤ y2 ≤ |x2|, as desired.

Now, let 0 ≤ y ≤ u+ v. By our Claim, there exist y1, y2 ∈ E+ such that y = y1 + y2,
0 ≤ y1 ≤ u and 0 ≤ y2 ≤ v. Hence,

f(y) + g((u+ v)− y) = [f(y1) + g(u− y1)] + [f(y2) + g(v − y2)] ≤ h(u) + h(v),

which proves that h is additive on E+.
We extend h by defining h̃ : E → R as h(x) = h(x+) − h(x−) (x ∈ E). Then, h is

a linear functional. Indeed, for any x, y ∈ E we have

(x+ y)+ − (x− u)− = x+ y = x+ − x− + y+ − y−,

hence (x+ y)+ + x− + y− = x+ + y+ + (x+ y)−. By the additivity of h, we obtain

h̃(x+ y) = h((x+ y)+)− h((x+ y)−)

= [h(x+)− h(x−)] + [h(y+)− h(y−)] = h̃(x) + h̃(y).

Also, observe that

h̃(−x) = h((−x)+)− h((−x)−) = h(x−)− h(x+) = −h̃(x)

and since h is positively homogeneous, it is homogeneous, hence linear. To see that h̃ is
continuous, fix any x ∈ E with ‖x‖ ≤ 1. Then 0 ≤ x+, x− ≤ |x| = 1, thus ‖x+‖, ‖x−‖ ≤ 1
(recall that E is a normed Riesz space). Given any y, z ∈ E+ with y + z = x+, we have
|f(y) + g(z)| ≤ (‖f‖+ ‖g‖)‖x+‖ and similarly for x−. Therefore,

|h̃(x)| ≤ |h(x+)|+ |h(x−)| ≤ (‖f‖+ ‖g‖)(‖x+‖+ ‖x−‖) ≤ 2(‖f‖+ ‖g‖)

which proves that h ∈ E∗.
Clearly, f ≤ h̃ and g ≤ h̃. Moreover, given any ϕ ∈ E∗ satisfying f ≤ ϕ and g ≤ ϕ,

we have for 0 ≤ y ≤ x that

f(y) + g(x− y) ≤ ϕ(y) + ϕ(x− y) = ϕ(x).

This shows that h̃ ≤ ϕ, that is, h̃ is the smallest upper bound for {f, g}.
We have shown that E∗ is a normed Riesz space. That it is complete follows from

Proposition 3.1. Hence, E∗ is a Banach lattice.
For the completion Ẽ of E, observe that Ẽ is the closure of E in the Banach lattice

E∗∗ (see Problem 3.14), so our assertion follows from the previous part.

Remark. In view of the above defined lattice structure on E∗, we have the following
formula for the positive part of a continuous linear functional f ∈ E∗:

f+ = f ∨ 0 = sup{f(y) : 0 ≤ y ≤ x}.
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Lemma 3.19 (Kantorovich). Let E and F be Riesz spaces and assume F is Archimedean.
Then, every additive map ϕ : E+ → F+ extends uniquely to a positive linear functional
Φ: E → F . Moreover, the unique positive linear extension is given by the formula

Φ(x) = ϕ(x+)− ϕ(x−) (x ∈ E).

Proof. Since x = x+ − x−, the uniqueness part is obvious.
For proving the announced properties of Φ, first observe that, by simple induction,

ϕ(kx) = kϕ(x) for all k ∈ N, x ∈ E+. Thus, for any positive rational r = m
n

(m,n ∈ N)
we have

rϕ(x) =
m

n
ϕ(x) =

m

n
ϕ
(nx
n

)
= mϕ

(x
n

)
= ϕ(rx).

Now, given any λ > 0, pick sequences (rn)∞n=1 and (tn)∞n=1 of rational numbers such that
0 < rn ↗ λ and tn ↘ λ. Then, for any x ∈ E+, 0 ≤ rnx ≤ λx ≤ tnx, whence

rnϕ(x) = ϕ(rnx) ≤ ϕ(λx) ≤ ϕ(tnx) = tnϕ(x). (3.3)

Recall that F is Archimedean if 0 ≤ ny ≤ z for all n ∈ N implies y = 0. This is equivalent
to saying that for each y ∈ F+ we have 1

n
y ↓ 0, i.e. the sequence ( 1

n
y)∞n=1 is decreasing

and infn
1
n
y = 0 in F . Hence, letting n→∞ in (3.3) we get ϕ(λx) = λϕ(x) for all λ > 0

and x ∈ E+.
In the proof of Lemma 3.18, we have already shown (for h̃ playing the role of Φ) that

the extension Φ is an additive odd function. Hence, the positive homogeneity of ϕ yields
the homogeneity of Φ and the proof is completed.

We are almost ready to prove a representation theorem for the dual of C0(X) over R,
for any locally compact Hausdorff space X. As indicated earlier, the representing object
are going to be regular Borel signed (i.e. with values in R) measures on X. To get a full
picture, we need to introduce the notion of variation (we do it in the general complex
case) and prove a very important Hahn’s decomposition theorem which nicely describes
the variation of a measure in the real case.

Definition 3.20. Let µ be a complex-valued measure defined on a σ-algebra M of subsets
of a set X. For any E ∈M we denote by Π(E) the collection of all measurable partitions
of E, that is

Π(E) =
{

(E1, . . . , En) : n ∈ N, Ei ∈M, Ei ∩ Ej = ∅ for 1 ≤ i 6= j ≤ n,
⋃n

i=1
Ei = E

}
.

We define the variation of µ by the formula

|µ|(E) = sup
{ n∑

i=1

|µ(Ei)| : (E1, . . . , En) ∈ Π(E)
}

(E ∈M);

the value |µ|(X) is called the total variation of µ.

Proposition 3.21. For any complex σ-additive measure µ, the variation |µ| is a positive
σ-additive measure.

Proof. (classes)
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It follows readily from Proposition 3.21 that |µ| yields the smallest positive measure
majorizing µ in the sense that |µ(E)| ≤ |µ|(E) for every E ∈ M. It may seem quite
surprising that |µ| happens to be always bounded, but recall that we deal with complex-
valued measures, so they do not attain the values ±∞. Boundedness of µ in the general
complex case will be proved later. In the real case (i.e. for signed measures) it follows
from Hahn’s decomposition theorem below, which also gives a simple description of |µ|.

Theorem 3.22 (Hahn decomposition theorem). Let µ be a signed measure defined
on a σ-algebra M of subsets of X. There exists sets A,B ∈ M such that A ∪ B = X,
A ∩B = ∅, µ(A ∩ E) ≥ 0 and µ(B ∩ E) ≤ 0 for each E ∈M. Moreover, if we define

µ+(E) = µ(A ∩ E), µ−(E) = −µ(B ∩ E) (E ∈M),

then |µ|(E) = µ+(A ∩ E) + µ−(B ∩ E).

We refer to the measures µ+ and µ− as the positive and negative part of µ, respectively.
The pair (A,B) is called Hahn’s decomposition of X determined by µ. The following,
surprisingly short proof is due to [R. Doss, The Hahn decomposition theorem, Proc. Amer.
Math. Soc. 80 (1980), p. 377].

Proof. We call a set E ∈ M positive (resp. negative) if µ(A) ≥ 0 (resp. µ(A) ≤ 0) for
every A ⊆ E, A ∈M.

Claim. Every set E ∈M contains a positive set P such that µ(P ) ≥ µ(E).

Indeed, observe that for each ε > 0 there is Aε ⊆ E in M such that

µ(Aε) ≥ µ(E) and M 3 D ⊆ Aε =⇒ µ(D) > −ε.

Assume not. Then, there is a sequence (Dk)∞k=1 of measurable sets such that D1 ⊆ E and
Dk ⊆ E \ (D1 ∪ . . . ∪ Dk−1) for k ≥ 2 and µ(Dk) ≤ −ε for each k ∈ N. As Dk’s are
pairwise disjoint, the set D =

⋃∞
k=1Dk would be of measure −∞ which is impossible.

Choose any sequence εk ↘ 0 and let (Aεk) be a sequence of measurable sets produced
by the above statement, where at the kth step we apply it to E ∩Aε1 ∩ . . . ∩Aεk−1

in the
place of E. Then, (Aεk) is descending and the intersection P :=

⋂∞
k=1Aεk is a positive set

with µ(P ) = limk µ(Aεk) ≥ µ(E). Thus, our Claim has been established.

Define s = sup{µ(E) : E ∈M} and pick a sequence (Pk)∞k=1 ⊂M with µ(Pk)↗ s. By
the Claim, we can assume that each Pk is a positive set. Therefore, the set P :=

⋃∞
k=1 Pk

is also positive and, plainly, µ(P ) = s. Hence, N := X \ P is negative, for if E ⊆ N and
µ(E) > 0, then µ(P ∪ E) = s+ µ(E) > s which is impossible.

Recall that M(X) is the space of regular Borel measures on a locally compact Haus-
dorff space X. At this point, we deal with the real case only, so M(X) consists here
of signed measures. It is easy to verify that M(X) becomes a real normed space with
natural operations and the total variation norm ‖µ‖ = |µ|(X). (Notice that Theorem 3.22
guarantees that every signed measure is of bounded variation.)

We also introduce a lattice structure onM(X) by considering the pointwise ordering
and lattice operations:

(µ ∨ ν)(E) = sup
{
µ(A) + ν(E \ A) : A ⊆ E, A measurable

}
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and
(µ ∧ ν)(E) = inf

{
µ(A) + ν(E \ A) : A ⊆ E, A measurable

}
.

It is an instructive exercise to verify that these formulas indeed satisfy the axioms of
supremum and infimum. Of course, a glance at Hahn’s theorem shows that |µ| ≤ |ν| (the
moduli defined by means of the supremum operation) implies ‖µ‖ ≤ ‖ν‖, which means
thatM(X) is a normed Riesz space. Also, the positive and negative parts defined in terms
of the lattice operations: µ∨ 0 and (−µ)∨ 0 coincide with µ+ and µ−, respectively, given
by the Hahn decomposition. Completeness of M(X) (i.e. the fact that it is a Banach
lattice) will follow automatically from the theorem below, where we identify this space as
a dual space (see Proposition 3.1).

Theorem 3.23 (Riesz–Markov–Kakutani for C0(X)∗). Let X be a locally compact
Hausdorff space and Λ ∈ C0(X)∗ be a continuous linear functional on the Banach space
(over R) of real-valued continuous functions on X vanishing at infinity. Then, there exists
a unique regular Borel σ-additive signed measure µ on X such that

Λf =

∫
X

f dµ for every f ∈ C0(X). (3.4)

Moreover, we have ‖Λ‖ = |µ|(X). On the other hand, every µ ∈ M(X) gives rise to
an element Λ of C0(X)∗ via formula (3.4). Consequently, the map Λ 7→ µ is an isometric
isomorphism

C0(X)∗ ∼=M(X).

Proof. In view of Lemma 3.17, every (positive) continuous linear functional on Cc(X) has
a unique (positive) extension to an element of C0(X)∗. Hence, the positive part of C0(X)∗

can be identified with the collection of all positive linear functionals on Cc(X). By virtue
of the Riesz–Markov–Kakutani theorem for positive functionals (Theorem 3.16), there is
a linear surjective isometry

M(X)+ ϕ−−→ [C0(X)∗]+. (3.5)

Surjectivity follows from the fact that every positive functional Λ is represented by a pos-
itive measure µ. That it is an isometry follows from the observation that if µ is positive,
we have

‖µ‖ = µ(X) = sup
{

Λf : f ≺ X
}

= sup
{
|Λf | : f ∈ C0(X), ‖f‖∞ ≤ 1

}
= ‖Λ‖.

As explained above,M(X) is a (normed) Riesz space and, by Lemma 3.18, so is C0(X)∗. It
is easy to verify that C0(X)∗ is also Archimedean. Therefore, according to the Kantorovich
Lemma 3.19, the isometry ϕ indicated in (3.5) has a unique extension to a positive linear
map

M(X)
Φ−−→ C0(X)∗. (3.6)

For every µ ∈ M(X) we have Φ(µ) = ϕ(µ+) − ϕ(µ−) which means that the functional
Λ = Φ(µ) is decomposed as

Λf =

∫
X

f dµ+ −
∫
X

f dµ− (f ∈ C0(X)). (3.7)

Claim. Φ(µ) ≥ 0 if and only if µ ≥ 0.

If µ ≥ 0, then Φ(µ) ≥ as Φ is positive. For the converse, assume Λ = Φ(µ) ≥ 0, that
is,
∫
X
f dµ ≥ 0 for every f ≥ 0, f ∈ C0(X). Fix any open set V ⊆ X. Since µ is regular,
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we just need to show that µ(V ) ≥ 0. Given any ε > 0, pick a closed set F ⊂ V with
µ−(V ) − µ−(F ) < ε. By Urysohn’s lemma, there is a function f with F ≺ f ≺ V . We
have

0 ≤
∫
X

f dµ =

∫
X

f dµ+−
∫
X

f dµ− ≤ µ+(V )−µ−(F ) ≤ µ+(V )−µ−(V ) + ε = µ(V ) + ε,

which proves our Claim.

It follows that Φ is one-to-one: the pre-image of the zero functional consists of measure
which are simultaneously positive and negative and there is just one such measure, the
zero measure. It also follows from our Claim that Φ is a lattice isomorphism, in particular,
it preserves the modulus: Φ(|µ|) = |Φ(µ)|. Hence, for Λ = Φ(µ), we have

‖Λ‖ = ‖|Λ|‖ = ‖ϕ(|µ|)‖ = ‖µ‖,

thus Φ is an isometry. Finally, Φ is surjective because so is ϕ and every Λ ∈ (C0(X))∗ is
the difference of two positive operators.

Remark. Given any Λ ∈ C0(X)∗, the Hahn decomposition µ = µ+−µ− of the representing
measure µ of Λ yields the decomposition given by (3.7). Moreover,

Λ+f =

∫
X

f dµ+, Λ−f =

∫
X

f dµ− and ‖Λ‖ = ‖Λ+‖+ ‖Λ−‖.

The proof of Theorem 3.23 in the complex case is postponed till we prove the Radon–
Nikodym theorem.
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