
Functional analysis

Lecture 6: Invertibility; basic properties of the spectrum;
compact operators and the Riesz–Schauder theorem

4 Compact operators and their spectral properties

In this section, we generally consider Banach spaces over either real or complex numbers,
however, there are important exceptions (Proposition 4.7 and Theorem 4.8), where the
assumption that the scalar field K = C is crucial.

Recall that by L (X) we denote the space of all bounded linear operators from X into
itself. By I we denote the identity operator. Usually, it will be clear from the context
what is the domain of that operator. Otherwise, we will indicate it by writing IX if X is
the domain space. An operator T ∈ L (X) is invertible if it is one-to-one, surjective and
the inverse T−1 ∈ L (X), so T is an isomorphism of X onto itself1.

The space L (X) is not only a Banach space (if X is a Banach space), but also has
an algebra structure, where the multiplication is given by composition: (TS)x = T (Sx).
Obviously, we have ‖TS‖ ≤ ‖T‖‖S‖ for all T, S ∈ L (X). In particular ‖T n‖ ≤ ‖T‖n for
every n ∈ N. Also, notice that if Tn → T and Sn → S in L (X), then

‖TS − TnSn‖ = ‖TS − TnS + TnS − TnSn‖
≤ ‖T − Tn‖·‖S‖+ ‖S − Sn‖·‖Tn‖ −−−→

n→∞
0,

which means that the multiplication in L (X) is continuous.

Proposition 4.1. Let X be a Banach space and T ∈ L (X). If ‖T‖ < 1, then I + T is
invertible and its inverse is expressed as the sum of an absolutely convergent series,

(I + T )−1 =
∞∑
n=0

(−1)nT n. (4.1)

Moreover, ∥∥(I + T )−1 − I + T
∥∥ ≤ ‖T‖2

1− ‖T‖
. (4.2)

Proof. Since ‖T n‖ ≤ ‖T‖n for each n ∈ N and ‖T‖ < 1, the series (4.1) is absolutely
convergent, and hence convergent in L (X). Indeed, let

SN = I − T + T 2 − . . .+ (−1)NTN (N ∈ N)

and observe that (SN)∞N=1 is a Cauchy sequence in L (X). Define S = limN→∞ SN , i.e. S
is the sum of the series in (4.1). We have

(I + T )SN = I + (−1)NTN+1 = SN(I + T )

1It follows from the Open Mapping Theorem (which will be proved later) that if X is a Banach space
and T ∈ L (X) is bijective, then T−1 is automatically bounded, hence T−1 ∈ L (X). Therefore, in order
to verify that T is invertible it is enough to know that it is one-to-one and onto.
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and, since the multiplication in L (X) is continuous, (I + T )S = I = S(I + T ), which
means that S = (I + T )−1 (note that S is bounded because ‖S‖ ≤

∑∞
n=0 ‖T‖

n < ∞).
Inequality (4.2) follows from the estimate:∥∥∥ ∞∑

n=2

(−1)nT n
∥∥∥ ≤ ∞∑

n=2

‖T‖n =
‖T‖2

1− ‖T‖
.

From the above assertion we infer that the set of invertible operators in L (X) contains
an open ball centered at the identity I and with radius 1. This can be generalized as
follows.

Corollary 4.2. Let X be a Banach space and let T ∈ L (X) be invertible with ‖T−1‖ = 1
α

.
Assume S ∈ L (X) satisfies ‖S‖ = β < α. Then T + S is invertible and∥∥(T + S)−1 − T−1 + T−1ST−1

∥∥ ≤ β2

α2(α− β)
. (4.3)

Proof. Note that T + S = T (I + T−1S), hence it is enough to show that I + T−1S is
invertible. To this end, we observe that ‖T−1S‖ ≤ ‖T−1‖‖S‖ = β

α
< 1 and appeal to

Proposition 4.1. Notice that

(T + S)−1 − T−1 + T−1ST−1 =
[
(I + T−1S)−1 − I + T−1S

]
T−1,

thus inequality (4.2) yields∥∥(T + S)−1 − T−1 + T−1ST−1
∥∥ ≤ ‖T−1S‖2‖T−1‖

1− ‖T−1S‖
≤ β2

α3(1− β/α)
=

β2

α2(α− β)
.

For any Banach space X, we denote:

• G (X) = {T ∈ L (X) : T is invertible}

Corollary 4.3. For every Banach space X, G (X) is an open subset of L (X). More-
over, the map J : T 7→ T−1 is a C1-diffeomorphism of G (X) onto itself and its Fréchet
derivative dJ (T ) ∈ L (L (X)) is given by

dJ (T )S = −T−1ST−1 (S ∈ L (X)). (4.4)

Proof. In view of Corollary 4.2, every invertible operator T is contained in G (X) together
with a certain open ball centered at T . Moreover, inequality (4.3) can be rewritten as

J (T + S)− J (T ) + T−1ST−1 = o(‖S‖),

where S 7→ −T−1ST−1 is a bounded linear operator on L (X). Hence, the Fréchet
derivative is indeed given by formula (4.4). In particular, J is continuous and hence it is
a homeomorphism of G (X) into itself as J −1 = J .

In order to show that the map L (X) 3 T 7→ dJ (T ) ∈ L (L (X)) is continuous (i.e.
that J is of class C1), notice that it is the composition of the inverse map T 7→ T−1,
which we already know to be continuous, and the map Φ(T )S = −TST . Since

‖TnSTn − TST‖ ≤ ‖TnSTn − TSTn‖+ ‖TSTn − TST‖
≤ (‖Tn‖+ ‖T‖)‖Tn − T‖‖S‖,

we have
‖Φ(Tn)− Φ(T )‖ ≤ (‖Tn‖+ ‖T‖)‖Tn − T‖ −−−→

n→∞
0

whenever Tn → T in L (X). Hence, Φ is continuous and so is the map T 7→ dJ (T ).
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Definition 4.4. Let X be a Banach space over K ∈ {R,C} and T ∈ L (X). We define
the spectrum of T by

σ(T ) =
{
λ ∈ K : T − λI 6∈ G (X)}.

The set ρ(T ) = K \ σ(T ) is called the resolvent set for T , and the function

R(λ) = (T − λI)−1 (λ ∈ ρ(T ))

is called the resolvent of T .

Notice that T − λI may be noninvertible for two reasons; that it is not one-to-one,
which means that ker(T − λI) 6= {0}, or that it is not surjective2, i.e. (T − λI)(X) is
a proper subspace of X. The latter situation admits two cases: the range of T − λI is
dense but not closed or it is not dense in X. Therefore, we can distinguishe three mutually
exclusive types of elements of the spectrum.

Definition 4.5. Let X be a Banach space over K ∈ {R,C} and T ∈ L (X). We define:

• the point spectrum of T ,

σp(T ) =
{
λ ∈ K : ker(T − λI) 6= {0}

}
,

• the continuous spectrum of T ,

σc(T ) =
{
λ ∈ σ(T ) \ σp(T ) : (T − λI)(X) is a dense proper subspace of X

}
,

• the residual spectrum of T ,

σr(T ) =
{
λ ∈ σ(T ) \ σp(T ) : (T − λI)(X) is not dense in X

}
.

Every element λ of σp(T ) is called an eigenvalue of T , and every vector x ∈ X satisfying
Tx = λx is called an eigenvector corresponding to the eigenvalue λ. Also, the dimension
dim ker(T − λI) is called the multiplicity of the eigenvalue λ.

Remark. In general, for any Banach space X and T ∈ L (X) we have

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ). (4.5)

This follows from the already mentioned Open Mapping Theorem which guarantees that
any bijective bounded operator between Banach spaces has a bounded inverse. This
theorem will be proved later, but we do not really need to refer to decomposition (4.5) at
this point.

Proposition 4.6. For any Banach space X and any T ∈ L (X), the spectrum σ(T ) is
a compact subset of K. Moreover, for every λ ∈ σ(T ) we have |λ| ≤ ‖T‖.

Proof. If |λ| > ‖T‖ then I − λ−1T ∈ G (X) in view of Proposition 4.1. Hence, λI − T ∈
G (X) which means that λ 6∈ σ(T ) and proves the last assertion.

As we already know that σ(T ) is bounded, we are to prove that it is closed. Notice
that λ ∈ σ(T ) if and only if T − λI ∈ L (X) \ G (X) which, by Corollary 4.3, is a closed
subset of L (X). Of course, the map K 3 λ 7→ T − λI is norm continuous, whence σ(T )
is closed as the preimage of a closed set by a continuous map.

2Again, we silently use the Open Mapping Theorem.
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In the next two results, we assume X to be a complex Banach space. Recall that
a function f : Ω → C defined on an open set Ω ⊆ C is holomorphic provided that it has
a complex derivative at every point, that is, for every z ∈ Ω there exists a complex limit

f ′(z) := lim
w→z

f(w)− f(z)

w − z
.

Proposition 4.7. Let X be a Banach space over C, T ∈ L (X) and let Φ ∈ L (X)∗.
Then, the function

f(λ) = Φ
[
(T − λI)−1

]
(λ ∈ ρ(T )) (4.6)

is holomorphic on ρ(T ) and f(λ)→ 0 as |λ| → ∞.

Proof. Fix λ ∈ ρ(T ). We apply Corollary 4.2 to the invertible operator T − λI instead of
T and to S being of the form S = (λ − µ)I for µ ∈ C sufficiently close to λ. We obtain
that for suitable µ’s, the operator T − µI ∈ G (X) and inequality (4.3) yields∥∥(T − µI)−1 − (T − λI)−1 + (λ− µ)(T − λI)−2

∥∥ ≤ C|µ− λ|2

for some positive constant C = C(T, λ) which is independent of µ if |µ− λ| is sufficiently
small. Hence,

lim
µ→λ

(T − µI)−1 − (T − λI)−1

µ− λ
= (T − λI)−2

and since Φ is continuous, we also get

lim
µ→λ

f(µ)− f(λ)

µ− λ
= Φ

[
(T − λI)−2

]
,

which proves that f is holomorphic on ρ(T ).
Now, if |λ| → ∞, then

λf(λ) = Φ
[
λ(T − λI)−1

]
= Φ

[(T
λ
− I
)−1]

−−→ −Φ(I).

Since λf(λ) has a finite limit in infinity, we must have f(λ)→ 0.

Theorem 4.8. If X is a Banach space over C and T ∈ L (X), then σ(T ) 6= ∅.

Proof. By Proposition 4.6, σ(T ) is compact. Take any λ0 ∈ C \σ(T ). We have T −λ0I ∈
G (X), so obviously (T − λ0I)−1 6= 0. An appeal to the Hahn–Banach theorem produces
a functional Φ ∈ L (X)∗ such that Φ[(T −λ0I)−1] 6= 0. Hence, the function f : ρ(T )→ C
defined by (4.6) satisfies f(λ0) 6= 0 and is holomorphic according to Proposition 4.7.

Suppose σ(T ) = ∅. Then f is an entire function (i.e. holomorphic on the whole
complex plane C) and, moreover, it is bounded in view of the fact that f(λ) → 0 as
|λ| → ∞. But then Liouville’s theorem would imply that f is the constant zero function
which is not the case; a contradiciton.

Example 4.9. The assumption that K = C in Theorem 4.8 is, of course, essential as we
can see from the first of the following examples:
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(1) Let T ∈ L (R2) be the rotation of angle π/2 on the real plane, i.e. T is given by the
matrix

T ∼
(

0 −1
1 0

)
.

Plainly, σ(T ) = ∅. The reason is that the only potential elements of the spectrum
are eigenvalues of T and there are none such, because the characteristic polynomial
P (λ) = det (T − λI) = λ2 + 1 has no real roots.

(2) Let K ∈ {R,C}, n ∈ N and let X = Kn be equipped with any norm3. Every
operator T ∈ L (X) can be described by an n × n matrix of T in any fixed basis
of Kn. Hence, in this finite-dimensional case, we can write L (Kn) = Mn(K). By
a classical fact from linear algebra, an operator T ∈ L (Kn) is one-to-one if and only
if it is an isomorphism of Kn; in other words, injectivity is equivalent to surjectivity.
Therefore, the only elements of the spectrum of T are its eigenvalues: σ(T ) = σp(T ).

(3) In infinite-dimensional case the point spectrum can be far away from the whole
spectrum which can be seen from the following example. Let T ∈ L (C[0, 1]) be
a multiplication operator on the real Banach space C[0, 1] given by Tf(t) = tf(t).
Then σ(T ) = [0, 1] although σp(T ) = ∅, i.e. T has no eigenvalues at all (classes).

As it is mentioned in Example 4.9 (2), an operator on a finite-dimensional space is in-
vertible if and only if it is injective, which considerably simplifies calculating the spectrum.
Now, we introduce compact operators which somehow resemble finite-rank operators, i.e.
those with a finite-dimensional range. In particular, their perturbations by any nonzero
multiple of identity are injective if and only if they are surjective and hence invertible.
This is the so-called Fredholm alternative which is a part of a more general Riesz–Schauder
theorem (Theorem 4.11 below). Compact operators constitute an extremely important
class of operators which appear naturally in applications, e.g. differential and integral
equations

Definition 4.10. Let X and Y be Banach spaces. An operator T ∈ L (X, Y ) is called
compact if the range of the unit ball by T is a relatively compact subset of Y , that is,
T (BX) is compact in the norm topology of Y .

We will use the following notation:

• K (X, Y ) = {T ∈ L (X, Y ) : T is compact},
• K (X) = K (X,X).

It is well-known that a metric space (M,d) is compact if and only if it is complete and
totally bounded, the latter means that for each ε > 0 there is a finite ε-net in M , i.e. a finite
set F ⊂ M such that for every p ∈ M there exists q ∈ F with d(p, q) < ε. Consequently,
in order to check whether an operator T ∈ L (X, Y ) between Banach spaces is compact, it
is enough to verify whether T (BX) is totally bounded. Using this topological tool one can
show that K (X, Y ) is a closed subspace of L (X, Y ) (see Problem 3.11). In the case
X = Y the subspace K (X) forms in fact a closed two-sided ideal of L (X) which means
that it is a closed linear subspace and TS ∈ K (X) whenever at least one of the operators

3We know from Proposition 2.3 that every linear operator on Kn is bounded, and since the spectrum
is defined by purely algebraic means, it is not affected by which norm we consider.
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T and S is in K (X). Note also that for dimY < ∞ we have K (X, Y ) = L (X, Y ),
because every bounded subset of a finite-dimensional space is relatively compact.

Now, our main goal is to prove the following.

Theorem 4.11 (Riesz–Schauder theorem). Let X be a Banach space over K ∈ {R,C}
with dimX =∞ and let T ∈ K (X). Then:

(a) 0 ∈ σ(T );

(b) σ(T ) = {0} ∪ σp(T ), i.e. each nonzero element of σ(T ) is an eigenvalue of T ;

(c) for every ε > 0 there are only finitely many λ ∈ σ(T ) with |λ| ≥ ε;

(d) every λ ∈ σ(T ), λ 6= 0 has a finite-dimensional eigenspace, i.e. dim ker(T−λI) <∞.

We start with some auxiliary lemmas.

Lemma 4.12. Let T ∈ L (X), denote S = T − I and Y = S(X). If Y is a proper closed
subspace of X, then for every ε > 0 there is x0 ∈ BX such that

dist(Tx0, T (Y )) > 1− ε.

Proof. By Riesz’ lemma (Lemma 1.3), there exists x0 ∈ SX such that dist(x0, Y ) > 1− ε.
Since Sx0 ∈ Y and T (Y ) = (S + I)(Y ) ⊆ Y , we have

dist(Tx0, T (Y )) ≥ dist(Tx0 + Sx0, Y ) = dist(x0, Y ) > 1− ε.

Definition 4.13. Let M be a closed subspace of a normed space X. We say that M is
complemented in X if there exists another closed subspace N ⊆ X such that M ∩N = {0}
and M +N = X in which case we write X = M ⊕N .4

Lemma 4.14. Let M be a closed subspace of a normde space X.

(a) If dimM <∞, then M is complemented.

(b) If dimX/M <∞, then M is complemented.

Proof. We show only assertion (a) which is needed for the proof of the Riesz–Schauder
theorem; assertion (b) is left for classes.

Let n = dimM and (e1, . . . , en) be a Hamel basis of M . Every x ∈M can be uniquely
written as x =

∑n
i=1 αi(x)ei and α1, . . . , αn defined in this way are continuous linear

functionals on M (see Proposition 2.3). By the Hahn–Banach theorem, we can extend
each αi to a functional Λi ∈ X∗ with the same norm. Define N =

⋂n
i=1 ker(Λi); it is

obviously a closed subspace of X and we have X = M ⊕N (see Problem 1.10).

Proposition 4.15. Let X be a Banach space, T ∈ K (X) and let λ 6= 0. Then:

(a) dim ker(T − λI) <∞;

(b) (T − λI)(X) is closed and finite-codimensional, i.e. dimX/(T − λI)(X) <∞.

4This is an important and quite subtle concept. Although, as we shall see later, in Hilbert spaces all
subspaces are complemented, the situation is much more difficult for general Banach spaces. Perhaps the
most classical result on noncomplementability is the Phillips–Sobczyk theorem which says that c0 is not
complemented in `∞.
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Proof. Without loss of generality we may assume that λ = 1. Denote N = ker(T − I)
and S = T − I. Notice that x ∈ N if and only if Tx = x which means that T |N is
an isomorphism onto its range. But since T is also compact, we infer that dimN < ∞
(otherwise the range of the unit ball would contain an infinite-dimensional ball which, as
we know from Corollary 1.8, is not relatively compact). Hence, we have proved (a).

Now, by Lemma 4.14, there exists a closed subspace X1 ⊆ X with X = N ⊕ X1.
Define S1 = S|X1 ; of course, S(X) = S(X1) = S1(X1) and kerS1 = N ∩X1 = {0}, thus
S1 is one-to-one.

Claim 1. S1 is bounded below (see Definition 3.2) and hence S1(X1) = S(X) is closed.

If S1 was not bounded below, there would exist a sequence (xn)∞n=1 ⊂ SX1 such that
‖S1xn‖ → 0. Since T is compact, by passing to a subsequence, we may assume that
Txn → y for some y ∈ X. As we have xn = (T − S)(xn)→ y, we infer that ‖y‖ = 1 (all
xn’s are on the unit sphere). On the other hand, S1xn → S1y which yields S1y = 0 and
this is impossible as S1 is one-to-one.

Since S1 is bounded below, it has a closed range. Indeed, let (zn)∞n=1 ⊂ X1 be any
sequence with (S1zn)∞n=1 convergent to some y ∈ X. Then, (S1zn)∞n=1 is a Cauchy sequence
and since S1 is bounded below, we have ‖S1z‖ ≥ δ‖z‖ for every z ∈ X1, with some δ > 0.
In particular, ‖zm − zn‖ ≤ δ−1‖S1zm − S1zn‖ for all m,n ∈ N which shows that (zn)∞n=1

is also a Cauchy sequence. As X1 is complete, there is z0 ∈ X such that zn → z0. Hence,
S1zn → S1z0, thus y = S1z0 ∈ S1(X1) which proves that the range S1(X1) is closed.

TBC
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