
Functional analysis

Lecture 7: Proof of the Riesz–Schauder theorem – stabilization of
kernels and ranges; Fredholm operators and the Fredholm alternative

Proof of Proposition 4.15 (cont.) Recall that, with no loss of generality, we assumed that
λ = 1 and denoted S = T−I. We have already proved that N = kerS is finite-dimensional
and, if X1 is a closed subspace of X which is complementary to N , then S1 = S|X1 is
bounded below and thus has a closed range.

Define the iterates Sk for k = 0, 1, 2, . . . by S0 = I and Sk = S ◦ Sk−1 for k ∈ N.
Let Nk = kerSk and observe that since K (X) is a two-sided ideal in L (X), we have
Sk = (T − I)k = Tk ± I, where Tk ∈ K (X). Therefore, by the first part of the proof, we
infer that dimNk <∞. Define Mk = Sk(X) = Sk(X1) and notice that:

• {0} = N0 ⊆ N1 ⊆ N2 ⊆ . . .,

• X = M0 ⊇M1 ⊇M2 ⊇ . . .

Claim 2. There exists n ∈ N such that Mn = Mn+1 and, similarly, there exists m ∈ N
such that Nm = Nm+1.

Suppose that for every n ∈ N we have Mn+1 ( Mn. Then, we can apply Lemma 4.12 to
the operator S|Mn : Mn →Mn and we infer that there is yn ∈ BMn such that

dist(Tyn, T (Mn+1)) ≥
1

2
.

Thus, we get a sequence (yn)∞n=1 ⊂ BX satisfying ‖Tyn − Tym‖ ≥ 1
2

for all m 6= n. This
is plainly impossible, since it would mean that T (BX) is not totally bounded, that is, T
would not be a compact operator.

Similarly, assuming that for every m ∈ N we have Nm ( Nm+1, we can apply
Lemma 4.12 to the operator S|Nm+1 : Nm+1 → Nm+1. There exists zm ∈ BNm+1 such
that

dist(Tzm, T (Nm)) ≥ 1

2
.

Again, we have a bounded sequence (zm)∞m=1 satisfying ‖Tzm − Tzn‖ ≥ 1
2

for all m 6= n,
which contradicts the assumption that T is compact.

Consequently, there are m,n ∈ N such that Mn = Mn′ for all n′ ≥ n and Nm = Nm′

for all m′ ≥ m. Let p = max{m,n}.
Claim 3. X = Mp ⊕Np.

Fix x ∈ X. If x ∈ Mp ∩ Np, then Sp(x) = 0 and x = Sp(y) for some y ∈ X. Hence,
0 = S2p(y), i.e. y ∈ N2p = Np which gives x = 0. Now, observe that Sp(x) ∈ Mp

but Sp(Mp) = Sp(Sp(X)) = S2p(X) = Sp(X) = Mp which imples that there is y ∈ Mp

satisfying Sp(x) = Sp(y). Therefore, x − y ∈ Np and we have the decomposition x =
y + (x− y) which shows that x ∈Mp +Np and proves our Claim.

Now, the result follows because by Claim 3, we have codimMp = dimNp < ∞ and
M1 ⊇Mp, so M1 = S(X) is also of finite codimension.

The above proposition says that compact perturbations of nonzero multiples of the
identity operator are, in a sense, ‘almost inveritble’. This property distinguishes another
important class of operators.
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Definition 4.16. Let X and Y be Banach spaces. An operator T ∈ L (X, Y ) is called
a Fredholm operator if it has a closed range1 and satisfies:

dim kerT <∞ and codimT (X) <∞. (4.1)

The integer number
i(T ) := dim kerT − codimT (X)

is called the index of T .

Corollary 4.17. If X is a Banach space and T ∈ K (X), then for every λ 6= 0 the op-
erator T − λI is Fredholm.

The next assertion is needed in the proof of the Riesz–Schauder theorem, but it is also
very important in its own right.

Theorem 4.18 (Fredholm alternative). Let X be a Banach space, T ∈ K (X) and
let λ 6= 0. Then, the equation Tx − λx = y has a solution for every y ∈ X if and only
if the equation Tx = λx has only the trivial solution x = 0. In other words, T − λI is
one-to-one if and only if it is surjective2.

Proof. With no loss of generality, we assume that λ = 1 and let S = T −I. First, suppose
that kerS = {0}. Then, as we saw in the proof of Proposition 4.15, S is an isomorphism
onto S(X). We shall prove that S(X) = X. As before, for k = 0, 1, 2, . . . we denote Mk =
Sk(X), the range of the kth iterate of S. Referring again to the proof of Proposition 4.15,
we infer that there is n ∈ N such that Mn = Mn′ for each n′ ≥ n. In fact, we have
M1 = M0 = X. If not, pick the smallest k ∈ N for which Mk−1 6= Mk = Mk+1 and take
any u ∈ Mk−1 \Mk. Since S(u) ∈ Mk = Mk+1, there exists v ∈ Mk with S(u) = S(v),
but then we have 0 6= u− v ∈ kerS; a contradiction.

In the second part, we assume that S(X) = X. Define Nk = kerSk and suppose,
towards a contradiction, that there exists 0 6= x0 ∈ N1. By induction, we can construct
a sequence (xk)

∞
k=1 ⊂ X such that for every k ∈ N we have:

• S(xk+1) = xk,

• xk ∈ Nk \Nk−1.

Indeed, if x1, . . . , xk have been already constructed, then we use the assumption that S
is onto and hence we get xk+1 ∈ X with S(xk+1) = xk. Then, we have

Sk(xk+1) = Sk−1(xk) = Sk−2(xk−1) = . . . = x1 6= 0

and hence Sk+1(xk+1) = S(x1) = 0, i.e. xk+1 ∈ Nk+1 \Nk.
Having constructed the sequence (xk)

∞
k=1 ⊂ X, we clearly obtain a contradiction in

view of N0 ( N1 ( N2 ( . . . which, as we have shown in the proof of Proposition 4.15, is
impossible.

1That the range T (X) is closed follows automatically from conditions (4.1) by the Open Mapping
Theorem. Since we have not proved this theorem yet, we include the condition of the closedness of
T (X) in our definition. Also, the Open Mapping Theorem implies that for any Fredholm operator
T ∈ L (X,Y ) there is a decomposition X = kerT ⊕X1 such that T |X1 is an isomorphism onto its range.
Regarding T roughly as an infinite-dimensional matrix, we can thus say that T is invertible up to some
finite-dimensional blocks, which justifies calling Fredholm operators ‘almost isomorphisms’.

2In fact, we have a stronger statement: for every T ∈ K (X) and λ 6= 0, the index i(T −λI) = 0. The
proof, however, requires the machinery of adjoint operators.
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Lemma 4.19. Let X be a Banach space, T ∈ L (X) and assume that λ1, . . . , λn ∈ σp(T )
are pairwise distinct eigenvalues of T . If ei ∈ X is a nonzero eigenvector corresponding
to λi, for 1 ≤ i ≤ n, then the set {e1, . . . , en} is linearly independent.

Proof. Induction on n. Assume e1, . . . , en−1 are linearly independent and en =
∑n−1

j=1 αjej
for some scalars αj. Then

λnen = T (en) =
n−1∑
j=1

αjλjej as well as λnen =
n−1∑
j=1

λnαjej.

Hence,
n−1∑
j=1

αj(λn − λj)ej = 0;

a contradiction.

Proof of Theorem 4.11. (a) That 0 ∈ σ(T ) is clear, as otherwise T would be a compact
and invertible operator which cannot happen on an infinite-dimensional space. (T would
be bounded below and hence T (BX) would contain some ball, but no ball is relatively
compact in view of Corollary 1.8.)

(b) By virtue of the Fredholm alternative, if λ 6= 0 is not an eigenvalue of T , then T − λI
is both one-to-one and surjective. Hence, it is invertible; its inverse is bounded because
T−λI is bounded below, as we have shown in the proof of Proposition 4.15 (it also follows
from the Open Mapping Theorem; see the footnote at the beginning of Section 4). This
means that λ 6∈ σ(T ) which proves that σ(T ) = {0} ∪ σp(T ).

(c) Suppose that ε > 0 and there are infintely many eigenvalues {λi : i ∈ N} of T with
|λi| ≥ ε. For every i ∈ N pick an eigenvector xi 6= 0 corresponding to λi and define
Xn = lin{x1, . . . , xn} for n ∈ N. We have T (Xn) = Xn and Xn−1 ⊆ Xn by Lemma 4.19.
So, the Riesz lemma produces yn ∈ Xn such that ‖yn‖ = 1 and dist(yn, Xn−1) ≥ 1

2
. Let

zn = λ−1n yn; then ‖zn‖ ≤ ε−1 and T (zn) ∈ Xn. Notice also that yn − T (zn) ∈ Xn−1. For,
write yn =

∑n
j=1 cjxj and note that

yn − T (zn) =
n∑
j=1

(
1− λj

λn

)
cjxj =

n−1∑
j=1

(
1− λj

λn

)
cjxj ∈ Xn−1.

Now, if n > m, then T (zm) ∈ Xm ⊆ Xn−1 and yn − T (zn) ∈ Xn−1. Therefore,

‖T (zn)− T (zm)‖ ≥ dist(T (zn), Xn−1)

= dist(T (zn) + yn − T (zn), Xn−1) = dist(yn, Xn−1) ≥
1

2
,

which plainly contradicts the fact that T (ε−1BX) is totally bounded (and as T is compact,
the range of every ball is totally bounded).

(d) That dim ker(T − λI) <∞ for every λ ∈ σ(T ), λ 6= 0 follows from Proposition 4.15.

We finish this section with an instructive example which illustrates how the Riesz–
Schauder theorem works. But, before that, we provide a useful criterion of compactness
of integral operators on spaces of continuous functions.
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Proposition 4.20. Let K : [0, 1] × [0, 1] → R and TK be an endomorphism of C[0, 1]
defined by

TKf(t) =

1∫
0

K(t, s)f(s) ds.

Assume that:

(i) K(t, ·) is integrable on [0, 1], for each t ∈ [0, 1];

(ii) the map [0, 1] 3 t 7→ K(t, ·) ∈ L1[0, 1] is continuous.

Then TK ∈ K (C[0, 1]).

Proof. First, note that TK is bounded because for every t ∈ [0, 1] we have |TKf(t)| ≤
‖K(t, ·)‖L1 and hence

‖TK‖ ≤ max0≤t≤1‖K(t, ·)‖L1

which is finite in view of conditions (i) and (ii).
Fix any bounded sequence (fn)∞n=1 ⊂ C[0, 1], that is, M := supn ‖fn‖∞ <∞. We want

to show that the sequence (TKfn)∞n=1 contains a norm convergent (i.e. uniformly conver-
gent) subsequence. Once we do this, the assertion follows because (fn)∞n=1 was an arbitrary
bounded sequence and that would imply that TK(BC[0,1]) is relatively compact. First, we
have

sup
n
‖TKfn‖∞ ≤M‖TK‖ <∞

which means that the set {TKfn : n ∈ N} is uniformly bounded. Secondly, for any s, t ∈
[0, 1], s 6= t and each n ∈ N we have

|TKfn(s)− TKfn(t)| =
∣∣∣ ∫ 1

0

(
K(s, u)−K(t, u)

)
fn(u) du

∣∣∣
≤ ‖K(s, ·)−K(t, ·)‖L1

· ‖fn‖∞
which, in view of the uniform continuity of the map in condition (ii), converges to zero
when s→ t (uniformly with respect to n ∈ N). This means that the set {TKfn : n ∈ N} is
equicontinuous. Consequently, the Arzela–Ascoli theorem implies that (TKfn)∞n=1 contains
a uniformly convergent subsequences, as desired.

Example 4.21. Define an operator T ∈ L (C[0, 1]) on the real Banach space C[0, 1] by
the formula

Tf(x) =

1∫
0

G(x, y)f(y) dy,

where

G(x, y) =

{
x(1− y) for 0 ≤ x ≤ y ≤ 1
y(1− x) for 0 ≤ y ≤ x ≤ 1.

Claim 1. T ∈ K (C[0, 1]).

It follows directly from Proposition 4.20 (note that G is continuous on [0, 1] × [0, 1], so
both assumptions (i) and (ii) are easily verified).

Claim 2. For every f ∈ C[0, 1] we have Tf(0) = Tf(1) = 0 and

(Tf)′′(x) = −f(x) for each x ∈ [0, 1].
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We use the following classical result on differentiation under the integral sign: Let H(x, y)
be defined on a rectangle [a, b]× [c, d] and assume that:

• for every x ∈ [a, b] there is a measure zero set Zx ⊂ [c, d] such that the partial
derivative of H with respect to x exists at all point (x, y) with y 6∈ Zx;

• there exists an integrable function ψ : [c, d] → R such that for every x ∈ [a, b] we
have ∣∣∣∂H

∂x
(x, y)

∣∣∣ ≤ ψ(y) a.e. on [c, d].

Then, the map

I(x) =

d∫
c

H(x, y) dy

is differentiable and we have

I ′(x) =

d∫
c

∂H

∂x
(x, y) dy for every x ∈ [a, b].

Since
∂G

∂x
(x, y) =

{
1− y for 0 < x < y < 1
−y for 0 < y < x < 1

exists a.e. and is a bounded function, the above mentioned result implies that Tf is
differentiable and for every x ∈ [0, 1] we have

(Tf)′(x) =

1∫
0

∂G

∂x
(x, y)f(y) dy = −

x∫
0

yf(y) dy +

1∫
x

(1− y)f(y) dy

= −
1∫

0

yf(y) dy +

1∫
x

f(y) dy.

The first term is constant and to the second one we apply the Fundamental Theorem of
Calculus which yields (Tf)′′(x) = −f(x).

Claim 3. σp(T ) =
{ 1

π2k2
: k = 1, 2, . . .

}
.

Let λ 6= 0 and λ ∈ σp(T ). Then Tf = λf for some nonzero function f ∈ C[0, 1].
Taking the second derivative we get (Tf)′′ = λf ′′, but Claim 1 yields that (Tf)′′ = −f .
Therefore, every eigenvector f of λ satisfies the differential equation

λf ′′ = f. (4.2)

The characteristic polynomial is λX2 + 1; let ξ1 and ξ2 be the two complex roots of this
polynomial.

Case 1. λ < 0. Then ξ1 =
√
− 1
λ

and ξ2 = −
√
− 1
λ
. The general solution of (4.2) is

f(x) = A exp
(√
−1

λ
x
)

+B exp
(
−
√
−1

λ
x
)
.
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But f(0) = f(1) = 0 (which follows from Tf(0) = Tf(1) = 0 and the fact that f is

an eigenvector of λ 6= 0). From this we have A + B = 0 and, if A 6= 0,
√
− 1
λ

= −
√
− 1
λ

which is impossible. Hence, there are no negative eigenvalues.

Case 2. λ > 0. Then ξ1 = i
√

1
λ

and ξ2 = −i
√

1
λ
. Again, from the general form of solutions

and the initial conditions f(0) = f(1) = 0 we get B = −A and

exp
(

i

√
1

λ

)
= exp

(
− i

√
1

λ

)
⇐⇒ sin

√
1

λ
= − sin

√
1

λ
⇐⇒

√
1

λ
= kπ (k ∈ Z).

This yields λ = π−2k−2 and for each such λ, equation (4.2) has a nonzero solution which
means that λ is an eigenvalue of T and proves Claim 3.

Claim 4. Each eigenvalue λk = π−2k−2 (k ∈ N) has multiplicity one and the eigenspace

ker(T − λkI) = lin{sin(kπx)}.

Putting λ = λk in the formula for the general solution

f(x) = A exp
(

i

√
1

λ
x
)

+B exp
(

i−
√

1

λ
x
)
,

and remembering that B = −A, we infer that one solution f is given by

f(x) = exp(ikπx)− exp(−ikπx) = 2i sin(kπx)

and any other solution is proportional to this one. Hence, the space of (in our case,
real-valued) solutions is lin{sin(kπx)} which proves our Claim.
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