Functional analysis

Lecture 7: PROOF OF THE RIESZ—SCHAUDER THEOREM — STABILIZATION OF
KERNELS AND RANGES; FREDHOLM OPERATORS AND THE FREDHOLM ALTERNATIVE

Proof of Proposition 4.15 (cont.) Recall that, with no loss of generality, we assumed that
A = 1 and denoted S = T'—I. We have already proved that N = ker S is finite-dimensional
and, if X; is a closed subspace of X which is complementary to N, then S; = S|y, is
bounded below and thus has a closed range.

Define the iterates S*¥ for k = 0,1,2,... by S® = I and S¥ = S o S*! for k € N.
Let N = ker S* and observe that since .7 (X) is a two-sided ideal in .Z(X), we have
Sk = (T — I)* = Ty, = I, where T}, € 2#(X). Therefore, by the first part of the proof, we
infer that dim Ny, < co. Define M;, = S*(X) = S*(X;) and notice that:

{0} =NyCN,CN,C...,
. X:M();MlQMQQ

Claim 2. There exists n € N such that M,, = M, ., and, similarly, there exists m € N
such that N,, = N;11.

Suppose that for every n € N we have M,,.; C M,,. Then, we can apply Lemma 4.12 to
the operator S|y, : M, — M, and we infer that there is y,, € By, such that

dist(Typ, T(M,11)) >

Thus, we get a sequence (y,)32, C Bx satistying ||Ty, — Tym| > 3 for all m # n. This
is plainly impossible, since it would mean that T'(Bx) is not totally bounded, that is, T’
would not be a compact operator.

Similarly, assuming that for every m € N we have N,, € N1, we can apply
Lemma 4.12 to the operator S|Nm+1: Npms1 — Npyr. There exists z,, € By,,,, such
that

dist(T 2, T(N,)) >

NO| —

Again, we have a bounded sequence (z,,)°_; satisfying ||Tz,, — Tz, > 3 for all m # n,
which contradicts the assumption that T is compact.

Consequently, there are m,n € N such that M,, = M, for all n’ > n and N,, = N,
for all m’ > m. Let p = max{m,n}.

Claim 3. X = M, ® N,.

Fix x € X. If x € M, N N, then S,(x) = 0 and = = SP(y) for some y € X. Hence,
0 = S*(y), i.e. y € Ny, = N, which gives z = 0. Now, observe that SP(z) € M,
but SP(M,) = SP(SP(X)) = S?*(X) = SP(X) = M, which imples that there is y € M,
satisfying SP(x) = SP(y). Therefore, x —y € N, and we have the decomposition =z =
y + (x — y) which shows that z € M, + N,, and proves our Claim.

Now, the result follows because by Claim 3, we have codimM, = dim N, < oo and
M, D M, so M; = S(X) is also of finite codimension. O

The above proposition says that compact perturbations of nonzero multiples of the
identity operator are, in a sense, ‘almost inveritble’. This property distinguishes another
important class of operators.



Definition 4.16. Let X and Y be Banach spaces. An operator T' € .Z(X,Y) is called
a Fredholm operator if it has a closed range! and satisfies:

dimkerT < oo and codimT(X) < oco. (4.1)

The integer number
i(T) .= dimker T" — codim T'(X)

is called the index of T'.

Corollary 4.17. If X is a Banach space and T € # (X), then for every X\ # 0 the op-
erator T'— M s Fredholm.

The next assertion is needed in the proof of the Riesz—Schauder theorem, but it is also
very important in its own right.

Theorem 4.18 (Fredholm alternative). Let X be a Banach space, T € # (X) and
let X # 0. Then, the equation Tx — \x = y has a solution for every y € X if and only
if the equation T'x = Ax has only the trivial solution x = 0. In other words, T"— A\l 1is
one-to-one if and only if it is surjective®.

Proof. With no loss of generality, we assume that A = 1 and let S = T — I. First, suppose
that ker S = {0}. Then, as we saw in the proof of Proposition 4.15, S is an isomorphism
onto S(X). We shall prove that S(X) = X. As before, for k =0, 1,2,... we denote M, =
S*(X), the range of the k' iterate of S. Referring again to the proof of Proposition 4.15,
we infer that there is n € N such that M, = M, for each n’ > n. In fact, we have
M, = My = X. If not, pick the smallest & € N for which M_; # My = M, and take
any u € My_1 \ My. Since S(u) € My = My, there exists v € M with S(u) = S(v),
but then we have 0 # u — v € ker S; a contradiction.

In the second part, we assume that S(X) = X. Define N, = ker S* and suppose,
towards a contradiction, that there exists 0 # xo € N;. By induction, we can construct
a sequence (xy)%2, C X such that for every k € N we have:

. S($k+1) = Tk,
o T € Ny \ Ni_1.

Indeed, if x1,...,x; have been already constructed, then we use the assumption that S
is onto and hence we get xpy1 € X with S(zg,1) = xx. Then, we have
Sk(l’k_H) == Sk_l(l’k> == Sk_z(l‘k_1> =...=T 7é 0

and hence S**!(z), ) = S(x1) =0, i.e. Tp11 € Npy1 \ Ni.

Having constructed the sequence (x)72; C X, we clearly obtain a contradiction in
view of Ng € N7 € Ny C ... which, as we have shown in the proof of Proposition 4.15, is
impossible. 0

!That the range T'(X) is closed follows automatically from conditions (4.1) by the Open Mapping
Theorem. Since we have not proved this theorem yet, we include the condition of the closedness of
T(X) in our definition. Also, the Open Mapping Theorem implies that for any Fredholm operator
T € Z(X,Y) there is a decomposition X = ker T'@® X such that T'|x, is an isomorphism onto its range.
Regarding T roughly as an infinite-dimensional matrix, we can thus say that T is invertible up to some
finite-dimensional blocks, which justifies calling Fredholm operators ‘almost isomorphisms’.

2In fact, we have a stronger statement: for every T € # (X) and A # 0, the index i(T — AI) = 0. The
proof, however, requires the machinery of adjoint operators.



Lemma 4.19. Let X be a Banach space, T € Z(X) and assume that Ay, ..., A\, € 0,(T)
are pairwise distinct eigenvalues of T. If e; € X is a nonzero eigenvector corresponding
to N\, for 1 <i <m, then the set {e1,...,e,} is linearly independent.

. . . n—1
Proof. Induction on n. Assume ey, ..., e, ; are linearly independent and e, = > i1 e
for some scalars «;. Then
n—1 n—1
Anen =T(e,) = E a;Aje; aswellas  Aye, = g AnQij€;.
=1 j=1
Hence,
n—1
> a;(An = A)e; = 0;
j=1
a contradiction. O

Proof of Theorem 4.11. (a) That 0 € o(T) is clear, as otherwise 7" would be a compact
and invertible operator which cannot happen on an infinite-dimensional space. (7" would
be bounded below and hence T(Bx) would contain some ball, but no ball is relatively
compact in view of Corollary 1.8.)

(b) By virtue of the Fredholm alternative, if A # 0 is not an eigenvalue of T', then T'— A\
is both one-to-one and surjective. Hence, it is invertible; its inverse is bounded because
T — A1 is bounded below, as we have shown in the proof of Proposition 4.15 (it also follows
from the Open Mapping Theorem; see the footnote at the beginning of Section 4). This
means that A € o(T") which proves that o(T") = {0} U o,(T).

(c) Suppose that € > 0 and there are infintely many eigenvalues {\;: i € N} of T" with
|Ai] > e. For every i € N pick an eigenvector z; # 0 corresponding to \; and define
X, = lin{zy,...,x,} for n € N. We have T'(X,,) = X,, and X,,_; C X,, by Lemma 4.19.
So, the Riesz lemma produces y, € X, such that ||y,| = 1 and dist(y,,, X,,—1) > 3. Let
Zn = A, Myn; then ||2,|| < e and T'(z,) € X,,. Notice also that y, — T'(2,) € X,,_;. For,
write y, = > 7, ¢;z; and note that

n /\ n—1 )\

Un — T(2,) = Z (1 — )\—]>cjmj = Z <1 — )\_])ijj € X,_1.

j=1 " j=1 "

Now, if n > m, then T'(z,,) € X,,, € X,,1 and y,, — T'(z,,) € X,,_1. Therefore,
1T (2n) = T(zm)|| = dist(T'(2n), Xp-1)

= dist(T'(z) + yn — T(2n), Xn1) = dist(yn, Xn_1) >

Y

N | —

which plainly contradicts the fact that T'(e 71 Bx) is totally bounded (and as T is compact,
the range of every ball is totally bounded).

(d) That dim ker(T' — AI) < oo for every A € o(T'), A # 0 follows from Proposition 4.15.
[

We finish this section with an instructive example which illustrates how the Riesz—
Schauder theorem works. But, before that, we provide a useful criterion of compactness
of integral operators on spaces of continuous functions.
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Proposition 4.20. Let K: [0,1] x [0,1] — R and Tx be an endomorphism of C|0,1]
defined by

1

Tf(t) = [ K5)s(s)ds.
0
Assume that:

(i) K(t,-) is integrable on [0, 1], for each t € [0, 1];
(ii) the map [0,1] 5t +— K(t,-) € L1[0,1] is continuous.

Then Tk € £ (C]0,1]).

Proof. First, note that Tk is bounded because for every ¢ € [0,1] we have |Tk f(t)] <
|K(t,-)||, and hence

1Tk || < maxo<r<t || K (2,01,
which is finite in view of conditions (i) and (ii).

Fix any bounded sequence (f,)>2,; C C[0,1], that is, M = sup,, || f, ||, < co. We want
to show that the sequence (T f,,)5°; contains a norm convergent (i.e. uniformly conver-
gent) subsequence. Once we do this, the assertion follows because (f,,)5% ; was an arbitrary
bounded sequence and that would imply that Tk (Bc,)) is relatively compact. First, we

have
Sup || T folloo < M| Tk || < 00

which means that the set {Tk f,,: n € N} is uniformly bounded. Secondly, for any s,t €
[0,1], s # t and each n € N we have

Tich(s) = Tul®)] = | [ () = K0, 0) o)
< 1RG5, ) - K<whunm

which, in view of the uniform continuity of the map in condition (ii), converges to zero
when s — ¢ (uniformly with respect to n € N). This means that the set {T f,,: n € N} is
equicontinuous. Consequently, the Arzela—Ascoli theorem implies that (T f,,)7, contains
a uniformly convergent subsequences, as desired. O]

Example 4.21. Define an operator T € Z(C|0, 1]) on the real Banach space C|0, 1] by

the formula )

Tﬂ@:/emwﬂww,

where
r(l—y) for0<z<y<1

G(x,y):{y(l_x) for0<y<z<l.

Claim 1. T € 2 (C|0,1]).
It follows directly from Proposition 4.20 (note that G is continuous on [0, 1] x [0, 1], so
both assumptions (i) and (ii) are easily verified).

Claim 2. For every f € C[0,1] we have Tf(0) =T f(1) = 0 and
(TH)"(z) =—f(x) foreach z € [0,1].



We use the following classical result on differentiation under the integral sign: Let H(z,y)
be defined on a rectangle [a, b] X [c, d] and assume that:

. for every x € [a,b] there is a measure zero set Z, C |[c,d]| such that the partial
derivative of H with respect to x exists at all point (z,y) with y &€ Z,;

. there exists an integrable function ¢: [c,d] — R such that for every = € [a,b] we
have

6x (x,y ) < a.e. on [c,d].

Then, the map

is differentiable and we have

_ / %_Z(x,y) dy for every x € [a, b].

Since
8G(x )= l—y forO<z<y<l1
ox Y —y forO<y<z<l1

exists a.e. and is a bounded function, the above mentioned result implies that T'f is
differentiable and for every x € [0, 1] we have

(TF)() = ‘ZG< D) dy = - / u) s+ [ 1) dy

Jae froae

The first term is constant and to the second one we apply the Fundamental Theorem of
Calculus which yields (T'f)"(z) = —f(z).

Claim 3. Up(T):{ ! :k:1,2,...}.

m2k?
Let A # 0 and A € 0,(T). Then Tf = Af for some nonzero function f € CJ0,1].
Taking the second derivative we get (T'f)” = Af”, but Claim 1 yields that (T'f)" = —f.
Therefore, every eigenvector f of A\ satisfies the differential equation
M= f. (4.2)

The characteristic polynomial is AX? + 1; let &, and & be the two complex roots of this
polynomial.

Case 1. A < 0. Then & = 1/—% and & = — —%. The general solution of (4.2) is

f(z) = Aexp (\/—»%x) + Bexp ( — —%x)
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But f(0) = f(1) = 0 (which follows from T'f(0) = Tf(1) = 0 and the fact that f is

an eigenvector of A # 0). From this we have A + B = 0 and, if A # 0, \/—i = — —%

which is impossible. Hence, there are no negative eigenvalues.

Case 2. A > 0. Then &, = i\/; and & = —i\/;. Again, from the general form of solutions
and the initial conditions f(0) = f(1) = 0 we get B = —A and

exp(i ;):exp<—i\/g) = sin\/gz—sin\/§<:> \/g:/m(k:GZ).

This yields A = 772k~2 and for each such A, equation (4.2) has a nonzero solution which
means that A is an eigenvalue of T" and proves Claim 3.

Claim 4. Each eigenvalue A\, = 772k~2 (k € N) has multiplicity one and the eigenspace
ker(T' — A1) = lin{sin(knz)}.

Putting A = \; in the formula for the general solution

1 1
f(x) = Aexp (1\/jx> + Bexp (i — \/jx>,
A A
and remembering that B = —A, we infer that one solution f is given by

f(z) = exp(ikmx) — exp(—ikmx) = 2isin(knx)

and any other solution is proportional to this one. Hence, the space of (in our case,
real-valued) solutions is lin{sin(k7x)} which proves our Claim.



