
Functional analysis

Lecture 8: Hilbert spaces and the projection theorem;
Riesz representation theorem for functionals on Hilbert spaces

5 Hilbert spaces

In this section, we deal with normed spaces whose norm is given by an inner product,
that is, a sesquilinear form. We start with some basic definitions.

Definition 5.1. Let X be a vector space over K ∈ {R,C}. By an inner product (or scalar
product) we mean any function of two variables (· , ·) : X×X → K satisfying the following
axioms:

(i) for every y ∈ X, the map X 3 x 7→ (x, y) is linear;

(ii) (x, y) = (y, x) for all x, y ∈ X;

(iii) (x, x) ≥ 0 for every x ∈ X;

(iv) (x, x) = 0 if and only if x = 0.

Proposition 5.2 (Cauchy–Schwarz inequality). Let (· , ·) be an inner product on
a linear space X. Then:

(a) |(x, y)| ≤
√

(x, x)
√

(y, y) for all x, y ∈ X;

(b) the formula ‖x‖ =
√

(x, x) defines a norm on X.

Proof. (a) Observe that for every λ ∈ K we have

0 ≤ (x+ λy, x+ λy) = (x, x) + λ(y, x) + λ(x, y) + |λ|2(y, y)

= (x, x) + λ(x, y) + λ(x, y) + |λ|2(y, y).

Hence, taking

λ = −(x, y)

(y, y)

we obtain the desired inequality.

(b) The first two axioms of norm are obvious. To see that the triangle inequality is
satisfied, note that for all x, y ∈ X we have

‖x+ y‖2 = (x, x) + (x, y) + (x, y) + (y, y)

= ‖x‖2 + 2Re (x, y) + ‖y‖2

≤ ‖x‖2 + 2|(x, y)|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Remark. Notice that in view of the Cauchy–Schwarz inequality, the map (· , ·) is jointly
continuous. Indeed, for any x, x′, y, y′ ∈ X we have

|(x, y)− (x′, y′)| ≤ |(x, y)− (x′, y)|+ |(x′, y)− (x′, y′)|
= |(x− x′, y)|+ |x′, y − y′)| ≤ ‖x− x′‖‖y‖+ ‖x′‖‖y − y′‖.

In particular, for any y ∈ X the map x 7→ (x, y) is a continuous linear functional on X.
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Definition 5.3. A normed space (X, ‖·‖) equipped with an inner product (· , ·) which
generates the norm ‖·‖, i.e. ‖x‖ =

√
(x, x) for x ∈ X, is called an inner product space. If

X is a complete inner product space, then it is called a Hilbert space.

We will use the following notation (x, y are elements of an inner product space X and
F ⊆ X is any set):

• H, K will typically stand for Hilbert spaces,

• x ⊥ y if (x, y) = 0, and such elements are called orthogonal,

• x ⊥ F if x ⊥ y for every y ∈ F ,

• F⊥ is the set of all elements that are orthogonal to F , i.e. {x ∈ X : x ⊥ F};
in particular, if M ⊆ X is a subspace, then M⊥ is called an orthogonal
complement of M .

Observe that since
F⊥ =

⋂
y∈F

{x ∈ X : x ⊥ y} =
⋂
y∈F

ker (· , y),

the set F⊥ is always closed. Plainly, we have F ∩ F⊥ = {0} hence, in particular, every
closed subspace M of an inner product space X is complemented and M ⊕M⊥ = X (the
orthogonal complement M⊥ is always a closed subspace).

Let X be an inner product space over K and x, y ∈ X. The following elementary
identities are quite useful:

• ‖x‖2 + ‖y‖2 = ‖x+ y‖2 provided that x ⊥ y (the Pythagorean theorem),

• ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (the parallelogram law),

• (x, y) =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
if K = R,

• (x, y) =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
if K = C.

In fact, there is a Jordan–von Neumann theorem which says that the parallelogram law
characterizes norms which come from an inner product; see Problem 5.3). Consequently,
in order to verify that a given norm comes from an inner product, it is enough to consider
only 2-dimensional subspaces. The last two identities are called polarization formulas and,
as we see, they express the inner product in terms of its symmetrization; see Problem 5.2.

Example. Finite-dimensional spaces equipped with the Euclidean norm, that is `n2 , are
canonical examples of Hilbert spaces, where the inner product is given by

(ξ, η) =
n∑
j=1

ξjηj for ξ = (ξj)
n
j=1, η = (ηj)

n
j=1 ∈ Kn.

More generally, for any measure space (X,M, µ), the Banach space L2(µ) is a Hilbert
space and its norm comes from the inner product

(f, g) =

∫
X

f(x)g(x) dµ(x) for f, g ∈ L2(µ).

In particular, `2 and `2(Γ) for any index set Γ are Hilbert spaces. In fact, as we will see,
it follows from the Riesz–Fischer theorem that every Hilbert space can be canonically
identified with one of such spaces.
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Proposition 5.4. Let H be a Hilbert space. Every nonempty closed convex set E ⊆ H
has a unique element of minimal norm.

Proof. Define δ = inf{‖x‖ : x ∈ E}. Note that the parallelogram law can be rewritten in
the form

1

4
‖x− y‖2 =

1

2
‖x‖2 +

1

2
‖y‖2 −

∥∥∥x+ y

2

∥∥∥2.
For any x, y ∈ E, the convexity of E implies that 1

2
(x+ y) ∈ E, thus the above equation

yields
‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 − 4δ2 for all x, y ∈ E. (5.1)

If we had two points x, y ∈ E with ‖x‖ = ‖y‖ = δ, then (5.1) would imply ‖x− y‖ ≤ 0,
i.e. x = y which proves the uniqueness part of our assertion.

For the existence, pick any sequence (yn)∞n=1 ⊂ E with ‖yn‖ → δ. Using (5.1) we
obtain

‖ym − yn‖2 ≤ 2‖ym‖2 + 2‖yn‖2 − 4δ2 −−−−−→
m,n→∞

0

which shows that (yn)∞n=1 is a Cauchy sequence. Hence, since E is closed, there exists
y0 = limn→∞ yn ∈ E and since the norm is continuous, we have ‖y0‖ = δ.

Theorem 5.5 (Projection theorem). Let H be a Hilbert space andM⊆ H be a closed
subspace. There exists a uniquely determined pair of bounded linear operators P : H →M
and Q : H →M⊥ with the following properties:

(a) x = Px+Qx for every x ∈ H;

(b) if x ∈M, then Px = x and Qx = 0;

(c) if x ∈M⊥, then Px = 0 and Qx = x;

(d) ‖x− Px‖ = dist(x,M).

Proof. For any x ∈ H the coset x+M is a closed convex subset ofH, so we use Proposition
5.4 to define Qx ∈ x +M to be the unique element of this coset having minimal norm.
Let also Px = x−Qx so that property (a) is satisfied.

Claim. Qx ∈M⊥

Fix any y ∈M with ‖y‖ = 1 and notice that for any α ∈ K we have

(Qx,Qx) = ‖Qx‖2 ≤ ‖Qx− αy‖2 = (Qx− αy,Qx− αy),

thus 0 ≤ −α(y,Qx) − α(Qx, y) + |α|2. Taking α = (Qx, y) we see that 0 ≤ −|(Qx, y)|2
which means that Qx ⊥ y and proves our Claim.

From the very definition it follows that Px ∈ M for every x ∈ H, so P takes values
in M and Q takes values in M⊥. Hence, assertions (b) and (c) follow from (a), whereas
assertion (d) follows from the definition of Q. It remains to show that P and Q are
uniquely determined and linear.

Suppose we have another decomposition x = x0 + x1, where x0 ∈ M and x1 ∈ M⊥.
Then x0 − Px = x1 −Qx and the left-hand side belongs to M, while the right-hand one
belongs toM⊥. SinceM∩M⊥ = {0}, we thus have x0 = Px and x1 = Qx. Linearity is
proved in a similar fashion. For any x, y ∈ H and α, β ∈ K we have

P (αx+ βy)− αPx− βPy = αQx+ βQy −Qαx+ βy),

and the same reasoning as above shows that both of the above differences are zero.
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The maps P and Q are called orthogonal projections onto M and M⊥, respectively.
Note that these linear operators are indeed projections, i.e. idempotent maps: P 2 = P
and Q2 = Q. This can be seen from assertions (b) and (c) and it plainly follows that
‖P‖ ≥ 1 and ‖Q‖ ≥ 1 unless M = {0} or M = H. Note also that by the Pythagorean
theorem, we have

‖x‖2 = ‖Px‖2 + ‖Qx‖2 for every x ∈ H.
Hence, ‖P‖ = ‖Q‖ = 1 wheneverM is a proper subspace. In particular, P is a norm one
projection onto M. This is the first assertion of the following corollary. The second one
follows directly from Theorem 5.5.

Corollary 5.6. Every closed subspace M of a Hilbert space H is 1-complemented. More-
over, if M ( H, then M⊥ 6= {0}.

Continuous linear functionals on Hilbert spaces have particularly simple form and they
are all given by the inner product, as in the remark after Proposition 5.2.

Theorem 5.7 (Riesz representation theorem). Let H be a Hilbert space. For every
ϕ ∈ H∗ there exists a unique vector y ∈ H such that ϕ(x) = (x, y) for every x ∈ H.

Proof. Uniqueness is trivial in view of axiom (iv) from Definition 5.1. Also, if ϕ = 0, then
take y = 0. From now on, assume ϕ 6= 0 and defineM = kerϕ. In view of Corollary 5.6,
we have M⊥ 6= {0}.

Pick any z ∈ M⊥ with ‖z‖ = 1. Since M is of codimension one and y must be
orthogonal to the kernel of ϕ, we want to find α ∈ K for which y := αz does the job. Let
x ∈ H and define

x1 = x− ϕ(x)

ϕ(y)
y and x2 =

ϕ(x)

ϕ(y)
y.

Plainly, x = x1 + x2, x1 ∈M and

(x, y) = (x2, y) =
ϕ(x)

ϕ(y)
‖y‖2.

In order to have ϕ(x) = (x, y), we must have ϕ(y) = ‖y‖2 which means αϕ(z) = |α|2,
equivalently: α = ϕ(z).

From the Cauchy–Schwarz inequality it follows easily that ‖ϕ‖ = ‖y‖. Hence, for every
Hilbert space H we have the isometric isomorphism

H ∼= H∗

which associates any vector y ∈ H with a functional ϕ ∈ H∗ via Theorem 5.7.

Definition 5.8. Let X be an inner product space. A set {uα : α ∈ A} ⊂ X is called
orthogonal if xα ⊥ xβ for all α, β ∈ A, α 6= β. It is called orthonormal if it is orthogonal
and consists of unit vectors, i.e. ‖xα‖ = 1 for each α ∈ A. It is called a maximal
orthonormal set if it is orthonormal and maximal among orthonormal subsets of X with
respect to inclusion. Any maximal orthonormal subset of X is called an orthonormal basis
of X.

Finally, for any x ∈ X we define scalars

x̂(α) = (x, uα) (α ∈ A)

and we call them Fourier coefficients of x with respect to the orthonormal set {uα : α ∈ A}.
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Remark. Observe that if (uj)
n
j=1 is an orthonormal set and x ∈ lin{uj : 1 ≤ j ≤ n}, then

necessarily

x =
n∑
j=1

x̂(j)uj and ‖x‖2 =
n∑
j=1

|x̂(j)|2.

For the first formula, assume that x =
∑n

i=1 αiui and observe that by orthonormality we
get x̂(j) = (

∑n
i=1 αiui, uj) = αj. The second formula follows trivially by induction from

the Pythagorean theorem.

Proposition 5.9. Every Hilbert space has an orthonormal basis.

Proof. Consider the collection O of all orthonormal sets in a given Hilbert space H,
partially ordered by inclusion. Obviously, every chain has an upper bound in O which is
the union of the chain. By the Kuratowski–Zorn lemma, O contains a maximal element
which is thus an orthonormal basis of H.

The following procedure in finite dimension is well-known from linear algebra.

Theorem 5.10 (Gram–Schmidt orthogonalization). Let X be an inner product space
and (v1, v2, . . .) be a finite or countably infinite sequence of linearly independent vectors
in X. There exists an orthonormal sequence (u1, u2, . . .) such that for every k ∈ N not
exceeding the length of the sequence, lin{v1, . . . , vk} = lin{u1, . . . , uk}.
Proof. For any nonzero vector u ∈ X and any v ∈ X we define an orthogonal projection
of v onto the subspace spanned by u by the formula

proju(v) =
(v, u)

‖u‖2
u.

(It is not difficult to see that this definition coincides with Pv given by Theorem 5.5 for
M = lin{u}.)

Define (u1, u2, . . .) recursively by

ũ1 = v1, u1 =
ũ1
‖ũ1‖

ũ2 = v2 − proju1(v2), u2 =
ũ2
‖ũ2‖

...
...

ũn = vn −
n−1∑
k=1

projuk(vn), un =
ũn
‖ũn‖

...
...

Assuming that {u1, . . . , un−1} is orthonormal, we have projuk(ũn) = 0 for all k < n,
which means that uk ⊥ un. Hence, by induction, all the vectors u1, u2, . . . are pairwise
orthogonal. That lin{v1, . . . , vk} = lin{u1, . . . , uk} follows from the fact that (u1, . . . , uk)
is the image of (v1, . . . , vk) under a linear map given by an upper triangular matrix with
nonzero entries at the diagonal.
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