
Functional analysis

Lecture 9: The best approximation property of Fourier coefficients;
Parseval’s identity; the Riesz–Fischer theorem; Variation of complex
measures

Proposition 5.11. Every separable infinite-dimensional Hilbert space H has an orthonor-
mal basis (en)∞n=1. Each x ∈ H can be expressed as a norm convergent series

x =
∞∑
n=1

x̂(n)en, (5.1)

where x̂(n) = (x, en) is the nth Fourier coefficient of x. Moreover, for each N ∈ N the
Fourier coefficients give the best approximation of x by an element of lin{e1, . . . , eN}, that
is, we have

dist
(
x, lin{e1, . . . , eN}

)
=
∥∥∥x− N∑

j=1

x̂(j)ej

∥∥∥. (5.2)

Proof. By Proposition 5.9, H has an orthonormal basis which must be infinite as H is
infinite-dimensional. If {uα : α ∈ A} ⊂ H is an orthonormal set, then ‖uα − uβ‖ =

√
2

for all α 6= β. It follows that every orthonormal set in H must be countable, as otherwise
we would have an uncountable separated subsets which contradicts H being separable.
Hence, every orthonormal basis forms a sequence of elements of H, and we denote one of
them as (en)∞n=1.

Now, we want to find linear combinations which solve the ‘best approximation problem’
in lin{e1, . . . , eN}. Fix an arbitrary scalar sequence (cj)

N
j=1. Notice that for each 1 ≤ j ≤

N we have

|cj − (x, ej)|2 = (cj − (x, ej))(cj − (x, ej)) = |cj|2 − cj(x, ej)− cj(ej, x) + |(x, ej)|2

and hence ∥∥∥x− N∑
j=1

cjej

∥∥∥2 =
(
x−

N∑
j=1

cjej, x−
N∑
j=1

cjej

)
= ‖x‖2 −

N∑
j=1

cj(x, ej)−
N∑
j=1

cj(ej, x) +
N∑
j=1

|cj|2

= ‖x‖2 +
N∑
j=1

|cj − (x, ej)|2 −
N∑
j=1

|(x, ej)|2.

(5.3)

Since the first and last summands are constant, the distance between x and
∑N

j=1 cjej is
minimized exactly when the middle sum of squares vanishes, i.e. cj = (x, ej) = x̂(j) for
every 1 ≤ j ≤ N . This proves formula (5.2).

To see that (5.1) holds true, observe first that

lin{en : n ∈ N} = H,

as otherwise, by Corollary 5.6, the orthogonal complement of the closed linear subspace
at the left-hand side would be nonempty and then (en)∞n=1 would not be a maximal

1



orthonormal set. Fix any ε > 0 and, using the preceding observation, pick n0 ∈ N such
that

dist
(
x, lin{e1, . . . , en0}

)
< ε.

Then, for every n ≥ n0 we have∥∥∥x− n∑
j=1

x̂(j)ej

∥∥∥ = dist
(
x, lin{e1, . . . , en}

)
≤ dist

(
x, lin{e1, . . . , en0}

)
< ε.

Remark 5.12. (a) It is worth pointing out that Fourier coefficients satisfy the following
consistency phenomenon. Namely, if (ej)

N
j=1 is an orthonormal set and n < N , then for

any x ∈ H the Fourier coefficients of x with respect to lin{e1, . . . , eN} coincide with the
first n Fourier coefficients corresponding to lin{e1, . . . , eN}. This is absolutely obvious
from the defintion of x̂(j), but it means that the solution of the best approximation
problem for the subspace lin{e1, . . . , eN} is an ‘extension’ of the linear combination that
gives the solution for any smaller subspace lin{e1, . . . , en}. In other words, the optimal
coefficients for initial indices do not change when passing to a large subspace. From this
point of view, such a phenomenon is not obvious at all.

(b) Suppose {uα : α ∈ A} is any orthonormal set in H and let {α1, . . . , αk} be any finite
subset of A. Define δ = dist

(
x, lin{uα1 , . . . , uαk

}
)

which, as we know from formula (5.2),

equals ‖x−
∑k

j=1 x̂(αj)uαj
‖. Calculation (5.3) shows that

k∑
j=1

|x̂(αj)|2 = ‖x‖2 − δ2.

(c) In view of the above formula, we infer that for every orthonormal set {uα : α ∈ A}
and each x ∈ H we have ∑

α∈A

|x̂(α)|2 ≤ ‖x‖2,

the so-called Bessel inequality. It follows that the sum at the left-hand side is always
finite, thus there are at most countably many nonzero Fourier coefficients of x, no matter
how large the given orthonormal set is.

The following important theorem shows that equality in Bessel’s inequality is one of
criterions for an orthonormal set to be a basis of a Hilbert space.

Theorem 5.13. Let H be a Hilbert space and {uα : α ∈ A} be an orthonormal set. Then,
the following assertions are equivalent:

(i) {uα : α ∈ A} is maximal, i.e. it is an orthonormal basis;

(ii) lin{uα : α ∈ A} = H, i.e. {uα : α ∈ A} is linearly dense;

(iii) for every x ∈ H we have ‖x‖2 =
∑
α∈A

|x̂(α)|2;

(iv) for all x, y ∈ H we have (x, y) =
∑
α∈A

x̂(α)ŷ(α) (the Parseval identity).
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Proof. (i)⇒ (ii): As we already observed, if {uα : α ∈ A} was not linearly dense, then its
orthogonal complement would be nonempty due to Corollary 5.6. But then it could not
be a basis of H.

(ii) ⇒ (iii): In view of Remark 5.12(b), for arbitrarily small δ > 0 we can find a finite set
{α1, . . . , αk} with

0 ≤ ‖x‖2 −
k∑
j=1

|x̂(αj)|2 < δ

which shows that equality in (iii) holds true.

(iii) ⇒ (iv): Note that, by Bessel’s inequality, x̂ ∈ `2(A) for every x ∈ H. Then, equality
in (iii) can be rewritten in the form (x, x) = (x̂, x̂), where at the right-hand side we
have the inner product in `2(A). Fix x, y ∈ H and consider any λ ∈ K. Note that
(x+ λy, x+ λy) = (x̂+ λŷ, x̂+ λŷ), which yields

λ(x, y) + λ(x, y) = λ(x̂, ŷ) + λ(x̂, ŷ).

Putting λ = 1 and λ = i we get that the real and imaginary parts of (x, y) and (x̂, ŷ) are
equal, which proves the Parseval identity.

(iv) ⇒ (i): If (i) fails to hold, we can pick a nonzero vector x ⊥ {uα : α ∈ A}. Taking
y = x in the Parseval identity we obtain (x, x) = 0; a contradiction.

The next theorem is the last step towards a fundamental result on classification of
Hilbert spaces.

Theorem 5.14 (Riesz–Fischer theorem). Let H be a Hilbert space and {uα : α ∈ A}
be an orthonormal set. Then, for every ϕ ∈ `2(A) there exists x ∈ H such that x̂ = ϕ.

Proof. Given any ϕ ∈ `2(A), consider the sets An = {α ∈ A : |ϕ(α)| > 1
n
} (n ∈ N).

Observe that each An is finite, hence it corresponds to a vector

xn =
∑
α∈An

ϕ(α)uα such that x̂n = ϕ · 1An .

Notice that:

• limn→∞ x̂n(α) = ϕ(α) for each α ∈ A;

• ‖x̂n − ϕ‖2 ≤ ‖ϕ‖2 for each n ∈ N.

Therefore, applying the Lebesgue theorem on dominated convergence (to the set A with
the counting measure) we obtain limn→∞ ‖x̂n − ϕ‖2 = 0. Hence, (x̂n)∞n=1 is a Cauchy
sequence in `2(A). Since for all m,n ∈ N we have ‖xm − xn‖ = ‖x̂m − x̂n‖2, the sequence
(xn)∞n=1 is a Cauchy sequence in H. So, let x = limn→∞ xn and note that for every α ∈ A
we have

x̂(α) = (x, uα) = lim
n→∞

(xn, uα) = lim
n→∞

x̂n(α) = ϕ(α),

which shows that x̂ = ϕ.
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Now, we can summarize what follows from Proposition 5.9 and Theorems 5.13, 5.14.
Namely, let H be a Hilbert space and {uα : α ∈ A} be an orthonormal basis, so the
cardinality of A equals the density of H. Consider a map Φ: H → `2(A) defined by
Φ(x) = x̂. It is obviously linear and by Parseval’s identity, Φ is an isometry, so in
particular, it is one-to-one. In view of the Riesz–Fischer theorem, Φ is surjective, and
hence it is an isometric isomorphism. Consequently, we have

H ∼= `2(A).

6 Complex measures and the Radon–Nikodym theorem

Henceforth, by a complex measure we understand a σ-additive set function µ defined on
a σ-algebra and taking values in C. Recall that we defined the variation of µ by the
formula

|µ|(E) = sup
{ n∑

i=1

|µ(Ei)| : (E1, . . . , En) ∈ Π(E)
}
,

where Π(E) stands for the family of all measurable finite partitions of E (see Defini-
tion 3.20). That |µ| is a σ-additive measure is not excessively surprising, however, that
this measure is finite is a much more interesting fact.

Theorem 6.1. Let µ : M→ C be a complex measure defined on a σ-algebra M of subsets
of X. Then:

(a) |µ| is σ-additive;

(b) |µ|(X) <∞.

It means that |µ| is a finite positive measure.

Proof of (a). Fix a sequence (En)∞n=1 of pairwise disjoint sets from M, let E =
⋃∞
n=1En

and let (Ai)
m
i=1 ∈ Π(E). We have

m∑
i=1

|µ(Ai)| =
m∑
i=1

∣∣∣ ∞∑
n=1

µ(Ai ∩ En)
∣∣∣ ≤ m∑

i=1

∞∑
n=1

|µ(Ai ∩ En)|

=
∞∑
n=1

m∑
i=1

|µ(Ai ∩ En)| ≤
∞∑
n=1

|µ|(En),

where the last inequality follows from the fact that (Ai ∩En)mi=1 ∈ Π(En) for each n ∈ N.
Since the partition (Ai)

m
i=1 of E was arbitrary, we infer that

|µ|(E) ≤
∞∑
n=1

|µ|(En).

For the reverse inequality, fix any numbers tn < |µ|(En), so that there exist partitions

(An,i)
mn
i=1 ∈ Π(En) satisfying

mn∑
i=1

|µ(An,i)| > tn for each n ∈ N.
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Since for every N ∈ N the family (An,i : 1 ≤ n ≤ N, 1 ≤ i ≤ mn) is a measurable partition
of a subset of E, we have

∞∑
n=1

tn ≤
∞∑
n=1

mn∑
i=1

|µ(An,i)|

= lim
N→∞

N∑
n=1

mn∑
i=1

|µ(An,i)| ≤ |µ|(E).

Passing to supremum with tn’s, we obtain

|µ|(E) ≥
∞∑
n=1

|µ|(En)

which completes the proof of assertion (a).

In order to prove assertion (b) we need the following geometric lemma.

Lemma 6.2. Let n ∈ N and z1, . . . , zn ∈ C. There exists a subset S ⊆ {1, . . . , n} such
that ∣∣∣∑

j∈S

zj

∣∣∣ ≥ 1

6

n∑
j=1

|zj|.

Proof. Define w =
∑n

j=1 |zj|. The complex plane can be decomposed into four quadrants
bounded by half-lines given by the equation Im z = ±Re z. There exists at least one
quadrant Q such that ∑

{j : zj∈Q}

|zj| ≥
w

4

With no loss of generality, we can assume that Q is the one given by Re z ≥ |Im z| and
let S = {1 ≤ j ≤ n : zj ∈ Q}. Notice that every complex number z ∈ Q satisfies
Re z ≥ |z|/

√
2. Therefore,∣∣∣∑

j∈S

zj

∣∣∣ ≥∑
j∈S

Re zj ≥
1√
2

∑
j∈S

|zj| ≥
w

4
√

2
≥ w

6
.
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