Complex analysis

I. Topology and geometry of \mathbb{C}

Problem 1. Let $\zeta, z_{1}, z_{2}, \ldots, z_{n}$ be complex numbers satisfying

$$
\sum_{k=1}^{n} \frac{1}{\zeta-z_{k}}=0
$$

Show that ζ belongs to the convex hull of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$.
Problem 2. Denote by $B(z, r)$ the open disk on the complex plane of centre z and radius r. Decide whether there exists a convergent sequence $\left(z_{n}\right)_{n=1}^{\infty}$ of points in \mathbb{C} such that the disks $B\left(z_{n}, 1 / n\right)$ are pairwise disjoint.
Problem 3. Let $n \in \mathbb{N}$. Find the number of these $z \in \mathbb{C} \backslash \mathbb{R}$ for which both z^{n} and $(z+1)^{n}$ are real numbers.
Problem 4. Suppose that $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C}$ (considered as points in the complex plane) lie on the same side of some straight line passing through the origin. Prove that

$$
z_{1}+z_{2}+\ldots+z_{n} \neq 0 \quad \text { and } \quad \frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}} \neq 0
$$

II. Inequalities on the complex plane

Problem 5. Let A be a subset of $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ with k elements, where $n>6^{k}$. For each $r \in \mathbb{Z}_{n}$ define

$$
f(r)=\sum_{a \in A} \exp \left(\frac{2 \pi i}{n} r a\right)
$$

(which may be called the r th Fourier coefficient of A). Show that for at least one $r \neq 0$ we have $|f(r)| \geq k / 2$.
Problem 6. Let D be the closed unit disc on the plane and let $p_{1}, p_{2}, \ldots, p_{n}$ be fixed points in D. Show that there exists a point $p \in D$ such that the sum of the distances of p to each of $p_{1}, p_{2}, \ldots, p_{n}$ is greater than or equal to n.
Problem 7. Let A be a finite set of complex numbers. Show that there exists a set $B \subset A$ such that

$$
\left|\sum_{z \in B} z\right| \geq \frac{1}{\pi} \sum_{z \in A}|z| .
$$

Problem 8. Consider n distinct complex numbers z_{1}, \ldots, z_{n} satisfying

$$
\min _{i \neq j}\left|z_{i}-z_{j}\right| \geq \max _{1 \leq i \leq n}\left|z_{i}\right| .
$$

What is the greatest possible value of n ?
Problem 9. Let $z \in \mathbb{C}$. Show that $|z|-\Re z \leq 1 / 2$ if and only if $z=a c$ for some $a, c \in \mathbb{C}$ satisfying $|\bar{c}-a| \leq 1$.
Problem 10. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of non-zero complex numbers with the property that $\left|a_{k}-a_{\ell}\right|>1$ for all $k, \ell \in \mathbb{N}, k \neq \ell$. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}^{3}}
$$

converges.

Problem 11. Let $a, b, c, d \in \mathbb{C}, a c \neq 0$. Show that

$$
\frac{\max (|a c|,|a d+b c|,|b d|)}{\max (|a|,|b|) \cdot \max (|c|,|d|)} \geq \frac{-1+\sqrt{5}}{2}
$$

III. COMPLEX POLYNOMIALS

Problem 12 (Gauss-Lucas theorem). Prove that all complex roots of the derivative of a complex polynomial P belong to the convex hull of the set of all complex roots of P.
Problem 13. Let all roots of an nth degree polynomial P with complex coefficients lie on the unit circle of the complex plane. Prove that all roots of the polynomial

$$
2 z P^{\prime}(z)-n P(z)
$$

also lie on the unit circle.
Problem 14. Let P be a non-constant complex polynomial of degree n. Prove that there exist at least $n+1$ complex numbers z such that $P(z) \in\{0,1\}$.
Problem 15. Let k, n be positive integers and P a polynomial of degree n each of whose coefficients equals $-1,1$, or 0 , and which is divisible by $(x-1)^{k}$. Let q be a prime number such that

$$
\frac{q}{\log q}<\frac{k}{\log (n+1)} .
$$

Prove that the complex q th roots of unity are roots of the polynomial P.
Problem 16. Let $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial with real coefficients. Prove that if all roots of f lie in the left half-plane $\{z \in \mathbb{C}: \Re z<0\}$, then

$$
a_{k} a_{k+3}<a_{k+1} a_{k+2}
$$

holds true for every $k \in\{0,1, \ldots, n-3\}$.
Problem 17. How many non-zero coefficients can a polynomial P have, if all its coefficients are integers and $|P(z)| \leq 2$ for all $z \in \mathbb{C}$ such that $|z|=1$?
Problem 18. Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2} \ldots+a_{n} z^{n}$ be a complex polynomial. Suppose that $1=c_{0} \geq c_{1} \geq \ldots \geq c_{n} \geq 0$ is a sequence of real numbers which is convex (i.e. $2 c_{k} \leq c_{k-1}+c_{k+1}$ for each $\left.k=1,2, \ldots, n-1\right)$. Consider the polynomial

$$
q(z)=c_{0} a_{0}+c_{1} a_{1} z+c_{2} a_{2} z^{2}+\ldots+c_{n} a_{n} z^{n} .
$$

Prove that

$$
\max _{|z| \leq 1}|q(z)| \leq \max _{|z| \leq 1}|p(z)| .
$$

Problem 19. Show that all complex roots of the polynomial $P(z)=a_{0} z^{n}+a_{1} z^{n-1}+$ $\ldots+a_{n-1} z+a_{n}$, where $0<a_{0}<a_{1}<\ldots<a_{n}$, satisfy $|z|>1$.
Problem 20. Let S_{n} denote the set of polynomials $p(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ with $a_{i} \in \mathbb{C}$. Evaluate

$$
\min _{p \in S_{n}} \max _{|z|=1}|p(z)| .
$$

Problem 21. Let $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$, where $a_{i} \in \mathbb{C}$. Prove that if $|P(z)|=1$ for all $z \in \mathbb{C}$ satisfying $|z|=1$, then $a_{1}=\ldots=a_{n}=0$.

Problem 22. Let $f(z)=p(z) / q(z)$, where p and q are complex polynomials such that $\operatorname{deg} p>\operatorname{deg} q$ and all roots of p lie inside the unit circle, whereas all roots of q lie outside the unit circle. Prove that

$$
\max _{|z|=1}\left|f^{\prime}(z)\right|>\frac{\operatorname{deg} p-\operatorname{deg} q}{2} \max _{|z|=1}|f(z)| .
$$

Problem 23. Let $m, n \in \mathbb{N}, m<n$ and

$$
P(z)=z^{m} \prod_{k=1}^{n-m}\left(z-z_{k}\right)
$$

where $\left|z_{k}\right| \geq 1$ for $1 \leq k \leq n-m$. Show that $P^{\prime}(z) \neq 0$ for $z \in \mathbb{C}$ with $0<|z|<m / n$.
Problem 24. Consider a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}
$$

with complex coefficients.
(a) Show that if $a_{i} \leq 0$ for each $1 \leq i \leq n$ and $a_{1}+a_{2}+\ldots+a_{n}<0$, then P has exactly one positive root.
(b) Show that for an arbitrary complex root ξ of the polynomial P the absolute value $|\xi|$ is not larger than the only positive zero of the polynomial

$$
z^{n}-\left|a_{1}\right| z^{n-1}-\left|a_{2}\right| z^{n-2}-\ldots-\left|a_{n}\right| .
$$

(c) Let $c_{1}, c_{2}, \ldots, c_{n}$ be arbitrary positive numbers satisfying

$$
c_{1}+c_{2}+\ldots+c_{n} \leq 1
$$

Prove that the absolute value of every complex root of the polynomial P does not exceed the number

$$
M=\max \left(\frac{\left|a_{1}\right|}{c_{1}}, \sqrt{\frac{\left|a_{2}\right|}{c_{2}}}, \ldots, \sqrt[n]{\frac{\left|a_{n}\right|}{c_{n}}}\right)
$$

(d) Prove that the absolute values of the roots of P
(i) are not larger than the largest among the numbers

$$
\sqrt[k]{n\left|a_{k}\right|}, \quad k=1,2, \ldots, n
$$

(ii) are not larger than the largest of the numbers

$$
\sqrt[k]{\frac{2^{n}-1}{\binom{n}{k}}\left|a_{k}\right|}, \quad k=1,2, \ldots, n
$$

(iii) are smaller than the largest of the numbers

$$
2 \sqrt[k]{\left|a_{k}\right|}, \quad k=1,2, \ldots, n
$$

IV. Holomorphic functions

Problem 25. For every complex number $z \notin\{0,1\}$ define

$$
f(z)=\sum(\log z)^{-4},
$$

where the sum is over all branches of the complex logarithm.
(a) Show that there are two polynomials P and Q such that $f(z)=P(z) / Q(z)$ for all $z \in \mathbb{C} \backslash\{0,1\}$.
(b) Show that for all $z \in \mathbb{C} \backslash\{0,1\}$ we have

$$
f(z)=z \cdot \frac{z^{2}+4 z+1}{6(z-1)^{4}} .
$$

Problem 26. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with the property that $|f(z)|=1$ for all $z \in \mathbb{C}$ with $|z|=1$. Prove that there are $\vartheta \in \mathbb{R}$ and $k \in\{0,1,2, \ldots\}$ such that

$$
f(z)=\mathrm{e}^{i \vartheta} z^{k} \quad \text { for } z \in \mathbb{C} .
$$

Problem 27. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that for some $k \in \mathbb{N}$ and some positive numbers $a, b \in \mathbb{R}$ we have $|f(z)| \leq a+b|z|^{k}$. Show that f is a complex polynomial. Problem 28. Suppose γ is a closed path on the complex plane and $a, b \in \mathbb{C} \backslash \gamma^{*}$ satisfy $\operatorname{Ind}_{\gamma}(a)=\operatorname{Ind}_{\gamma}(b)$. Prove that for all $m, n \in \mathbb{N}$ we have

$$
\int_{\gamma}(z-a)^{-m}(z-b)^{-n} d z=0 .
$$

Problem 29. Let $n \in \mathbb{N}, r>0$ and let $C(r)$ stand for the circle centered in the origin and with radius r. Show that if P is a complex polynomial with $\operatorname{deg} P \leq n$ and $a \in \mathbb{C}$ lies inside $C(r)$, then

$$
\int_{C(r)} \frac{P(z) d z}{z^{n+1}(z-a)}=0 .
$$

Problem 30. Determine all holomorphic functions $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that $|f(z)|$ is constant on every circle given by the equation $x^{2}+y^{2}-a x=0$, where $a \in \mathbb{R}$.

