Complex analysis - solutions

I. Topology and geometry of \mathbb{C}

P1. From our hypothesis it follows that

$$
\sum_{k=1}^{n} \frac{\overline{\zeta-z_{k}}}{\left|\zeta-z_{k}\right|}=0
$$

Taking the conjugation and denoting $\sigma_{k}=1 /\left|\zeta-z_{k}\right|$ and $\sigma=\sigma_{1}+\ldots+\sigma_{k}$, we obtain

$$
\zeta=\sum_{k=1}^{n} \frac{\sigma_{k}}{\sigma} z_{k} \in \operatorname{conv}\left\{z_{1}, \ldots, z_{n}\right\} .
$$

P2. Such a sequence does exist. We arrange the sequence of open squares S_{n} with sides of length $2 / n$ in some bigger square \mathcal{Q} (to be fixed later on). Namely, we put them into columns starting from the bottom side of \mathcal{Q}. In the nth column we put, in the upward direction, the squares S_{j} for $n^{2} \leq j \leq(n+1)^{2}-1$. Moreover, we want all the squares to be pairwise disjoint and we want consecutive columns to touch each other, as well as consecutive squares lying in one column. Now, we put z_{n} in the center of S_{n} for each $n \in \mathbb{N}$. The total width of all columns equals $2 \sum_{n=1}^{\infty} n^{-2}=\pi^{2} / 3$ and the height of the nth column is

$$
2 \sum_{j=n^{2}}^{n^{2}+2 n} \frac{1}{j} \leq \frac{2(2 n+1)}{n^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

This shows that \mathcal{Q} may be chosen to be a bounded square such that the sequence $\left(z_{n}\right)$ converges to its right-bottom vertex.
P3. The problem considered is invariant under complex conjugation, hence we may restrict ourselves to complex numbers z satisfying $\Im z>0$. Such a number fulfills the conditions $z^{n} \in \mathbb{R}$ and $(z+1)^{n} \in \mathbb{R}$ if and only if there exist real positive numbers r_{1}, r_{2}, and natural numbers $k, \ell \in\{1, \ldots, n-1\}$ such that

$$
z=r_{1} \mathrm{e}^{k \pi \mathrm{i} / n} \quad \text { and } \quad z+1=r_{2} \mathrm{e}^{\ell \pi \mathrm{i} / n}
$$

Obviously, this is impossible in the case when $\ell \geq k$. On the other hand, for each pair (k, ℓ) with $\ell<k$ there is exactly one pair $\left(r_{1}, r_{2}\right)$ of positive numbers which makes the above equalities valid (to see this observe, e.g., that the function, which to each $t>0$ assigns the distance between the rays $\arg z=k$ and $\arg z=\ell$ at the level t, is strictly increasing from 0 to ∞). Consequently, the final answer is twice (we shall take care of the points lying in the lower half-plane as well) the number of all pairs (k, ℓ) with $k, \ell \in\{1, \ldots, n-1\}, \ell<k$, that is

$$
2\binom{n-1}{2}=(n-1)(n-2)
$$

P4. By a suitable rotation, we may assume that the line considered is $\Re z=0$ and that all points z_{1}, \ldots, z_{n} lie on the right half-plane. Then the real parts of every z_{i} and $1 / z_{i}$ are positive, thus we have also

$$
\Re\left(z_{1}+z_{2}+\ldots+z_{n}\right)>0 \quad \text { and } \quad \Re\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right)>0 .
$$

II. Inequalities on the complex plane

P6. Since

$$
\sum_{k=1}^{n}\left|p-p_{k}\right| \geq\left|n p-\sum_{k=1}^{n} p_{k}\right|=n\left|p-\frac{1}{n} \sum_{k=1}^{n} p_{k}\right|
$$

and the arithmetic mean $\bar{p}=1 / n \sum_{k=1}^{n} p_{k} \in D$, we see that any point $p \in D$ satisfying $|p-\bar{p}| \geq 1$ will do the job.
P7. (a) First, we will show how a simple partition trick may be used to get the desired inequality with the constant $1 / \pi$ replaced by $\sqrt{2} / 8$. Namely, the two diagonal lines split the complex plane into four parts, hence for at least one of them the sum of the absolute values of all points lying there is at least $1 / 4$ of the whole sum of absolute values. By rotating by a suitable angle, we may assume that the part in question is the one bounded by the two rays: $\arg z= \pm \pi / 4$. Let B be the set of these $z \in A$ which lie in that part. Since for each $z \in B$ we have $\Re z \geq \sqrt{2} / 2|z|$, we infer that

$$
\left|\sum_{z \in B} z\right| \geq \sum_{z \in B} \Re z \geq \frac{\sqrt{2}}{2} \sum_{z \in B}|z| \geq \frac{\sqrt{2}}{8} \sum_{z \in A}|z| .
$$

(b) We will use the so-called isoperimetric inequality. Let \mathcal{P} be a convex polygon lying in the plane and denote by $d(\mathcal{P})$ and $p(\mathcal{P})$ the diameter and the perimeter of \mathcal{P}, respectively. The inequality just mentioned asserts that

$$
\begin{equation*}
p(\mathcal{P}) \leq \pi d(\mathcal{P}) \tag{1}
\end{equation*}
$$

Proof of inequality (1). The main idea is to consider the average width of a given polygon \mathcal{P}. To make it precise let us say that for any direction angle $\vartheta \in[0, \pi)$ the width $d(\vartheta, \mathcal{P})$ is the least possible distance between two parallel lines of direction ϑ which define a strip containing the polygon \mathcal{P}. By the average width of \mathcal{P} we mean the integral mean

$$
\overline{d(\mathcal{P})}=\frac{1}{\pi} \int_{0}^{\pi} d(\vartheta, \mathcal{P}) d \vartheta
$$

What we will show is the equality

$$
\begin{equation*}
p(\mathcal{P})=\pi \overline{d(\mathcal{P})} \tag{2}
\end{equation*}
$$

which obviously would imply (1), since $\overline{d(\mathcal{P})} \leq d(\mathcal{P})$.
By the convexity of \mathcal{P}, it is easily seen that $2 d(\vartheta, \mathcal{P})$ is nothing else but the sum of the lengths of the projections in the direction ϑ of all sides of \mathcal{P}. For the i th side such a projection has the length

$$
\delta_{i}(\vartheta)=\delta_{i} \sin \vartheta,
$$

where δ_{i} is the length of that side. Consequently,

$$
\overline{d(\mathcal{P})}=\frac{1}{2 \pi} \sum_{i} \delta_{i} \int_{0}^{\pi} \sin \vartheta d \vartheta=\frac{1}{\pi} p(\mathcal{P})
$$

which completes the proof of (2) and (1).
Now, we proceed to the solution of our problem. Let $A=\left\{z_{1}, \ldots, z_{n}\right\}$; obviously we may assume that $z_{i} \neq 0$ for each i. The right-hand side of the desired inequality suggests to construct a convex polygon with the lengths of its sides equal to $\left|z_{i}\right|$. To this end let
us re-order the sequence $z_{1}, z_{2}, \ldots, z_{n},-\left(z_{1}+\ldots+z_{n}\right)$ in a sequence w_{1}, \ldots, w_{n+1} such that the sequence $\arg w_{1}, \ldots, \arg w_{n+1}$ is increasing (in the case when $z_{1}+\ldots+z_{n}=0$, and its argument is not well-defined, we may consider the shorter sequence z_{1}, \ldots, z_{n} and proceed similarly as below). Then the points

$$
w_{1}, w_{1}+w_{2}, \ldots, w_{1}+\ldots+w_{n+1}
$$

are the vertices of a convex polygon \mathcal{P}. Moreover,

$$
p(\mathcal{P})=\sum_{i=1}^{n+1}\left|w_{i}\right|=\sum_{i=1}^{n}\left|z_{i}\right|+\left|\sum_{i=1}^{n} z_{i}\right|
$$

whereas the diameter $d(\mathcal{P})$, being the distance between some two point w_{i} and w_{j} with $i<j$, satisfies

$$
d(\mathcal{P})=\left|\sum_{z \in B} z\right|
$$

for some set $B \subset A$. Therefore, it remains to apply inequality (1).
P11. Let $\varphi=(-1+\sqrt{5}) / 2$; of course we have $\varphi=1-\varphi^{2}$. After dividing the numerator and the denominator by $|a c|$, and substituting $u=b / a, v=d / c$, our assertion reduces to

$$
\frac{\max (1,|u+v|,|u v|)}{\max (1,|u|) \cdot \max (1,|v|)} \geq \varphi .
$$

If either $|u| \geq 1 \leq|v|$, or $|u|<1>|v|$, the situation is clear, since then the fraction at the left-hand side is at least 1 which is greater than φ. It remains to consider, e.g., the case when $|u| \geq 1$ and $|v|<1$. Dividing the nominator and denominator by $|u|$ we arrive at the expression

$$
\alpha:=\max \left(\frac{1}{|u|},\left|1+\frac{v}{u}\right|,|v|\right) .
$$

Since the geometric mean (or any other mean) never exceeds the maximum of the arguments, we infer that $\alpha \geq \sqrt{|v / u|}$ so in the case when $|v / u| \geq \varphi^{2}$ we are done. Otherwise,

$$
\alpha \geq\left|1+\frac{v}{u}\right| \geq 1-\left|\frac{v}{u}\right|>1-\varphi^{2}=\varphi .
$$

III. Complex polynomials

$\mathbf{P 1 2}$ (Gauss-Lucas theorem). Write $P(z)=a\left(z-a_{1}\right) \cdot \ldots \cdot\left(z-a_{n}\right)$ and

$$
\frac{P^{\prime}(z)}{P(z)}=(\log P(z))^{\prime}=\sum_{k=1}^{n} \frac{1}{z-a_{k}} .
$$

Hence, if $P^{\prime}(z)=0$ for some $z \notin\left\{z_{1}, \ldots, z_{n}\right\}$, it is enough to recall $\mathbf{P} 1$.
P13. Let $P(z)=\left(z-a_{1}\right) \cdot \ldots \cdot\left(z-a_{n}\right)$ (we may assume that the leading coefficient is 1). Then

$$
2 z P^{\prime}(z)-n P(z)=2 z \sum_{k=1}^{n} \frac{P(z)}{z-a_{k}}-n P(z)=P(z) \sum_{k=1}^{n}\left(\frac{2 z}{z-a_{k}}-1\right)=P(z) \sum_{k=1}^{n} \frac{z+a_{k}}{z-a_{k}} .
$$

Now, an application of the formula

$$
\Re \frac{x+y}{x-y}=\frac{|x|^{2}-|y|^{2}}{|x-y|^{2}} \quad \text { for } x, y \in \mathbb{C}, x \neq y
$$

yields

$$
\Re\left(2 z P^{\prime}(z)-n P(z)\right)=\sum_{k=1}^{n} \frac{|z|^{2}-1}{|z-1|^{2}} \quad \text { for } z \neq 1
$$

Hence, the left-hand side may vanish only for $|z|=1$.
P14. Denote $S_{i}=\{z \in \mathbb{C}: P(z)=i\}$ for $i \in\{0,1\}$ and for an arbitrary complex polynomial p and any $z_{0} \in \mathbb{C}$ let $\mu\left(z_{0}, p\right)$ be the multiplicity of z_{0} as a root of p, namely,

$$
\mu\left(z_{0}, p\right)=\max \left\{k \in \mathbb{N} \cup\{0\}:\left(z-z_{0}\right)^{k} \mid p(z)\right\} .
$$

We have

$$
\begin{aligned}
\left|S_{0}\right|+\left|S_{1}\right| & =\sum_{z \in S_{0}}\left(\mu(z, P)-\mu\left(z, P^{\prime}\right)\right)+\sum_{z \in S_{1}}\left(\mu(z, P-1)-\mu\left(z, P^{\prime}\right)\right) \\
& =2 n-\sum_{z \in S_{0} \cup S_{1}} \mu\left(z, P^{\prime}\right) \geq 2 n-\operatorname{deg} P^{\prime}=n+1 .
\end{aligned}
$$

P15. This problem is in fact more algebraic in nature. We may write $P(x)=(x-1)^{k} r(x)$ for some polynomial $r(x) \in \mathbb{Q}[x]$. Denote all non-trivial q th complex roots of unity by ε_{j}, that is

$$
\varepsilon_{j}=\mathrm{e}^{\frac{2 \pi j_{i}}{q}} \quad \text { for } j=1, \ldots, q-1
$$

We wish to prove that $r\left(\varepsilon_{j}\right)=0$ for each j. However, all ε_{j} 's are roots of the polynomial $\Phi_{q}(x)=1+x+\ldots+x^{q-1}$ which is irreducible over $\mathbb{Q}[x]$, by virtue of the Eisenstein criterion ${ }^{1}$. This means that if at least one of ε_{j} 's is a root of the polynomial $r(x)$, then necessarily all of them must be roots of $r(x)$ (if it was not true, the greatest common divisor of the polynomials $\Phi_{q}(x)$ and $r(x)$ would be a non-trivial divisor of $\Phi_{q}(x)$ in $\left.\mathbb{Q}[x]\right)$.

Now, the crucial argument comes into play. If we had $r\left(\varepsilon_{j}\right) \neq 0$ for each $1 \leq j \leq q-1$, then the product $\prod_{j=1}^{q-1} r\left(\varepsilon_{j}\right)$ would be a non-zero integer. Indeed, this product may be represented as a finite sum of some symmetric $(q-1)$-variables polynomials on $\varepsilon_{1}, \ldots, \varepsilon_{q-1}$. However, every such term vanishes, in view of the fact that every symmetric polynomial is a combination of the basic symmetric polynomial which in turn all vanish on $\varepsilon_{1}, \ldots, \varepsilon_{q-1}$, by virtue of Viète's formulas. Consequently,

$$
\begin{aligned}
(n+1)^{q-1} & \geq\left|\prod_{j=1}^{q-1} P\left(\varepsilon_{j}\right)\right|=\left|\prod_{j=1}^{q-1}\left(1-\varepsilon_{j}\right)\right|^{k} \cdot\left|\prod_{j=1}^{q-1} r\left(\varepsilon_{j}\right)\right| \\
& \geq\left|\prod_{j=1}^{q-1}\left(1-\varepsilon_{j}\right)\right|^{k}=\left(1+1^{2}+\ldots+1^{q-1}\right)^{k}=q^{k}
\end{aligned}
$$

[^0]which gives $(q-1) \log (n+1) \geq k \log q$; a contradiction.
P22. Let $m=\operatorname{deg} p, n=\operatorname{deg} q, p(z)=a\left(z-a_{1}\right) \cdot \ldots \cdot\left(z-a_{m}\right)$ and $q(z)=b\left(z-b_{1}\right) \cdot \ldots$. $\left(z-b_{n}\right)$. With no loss of generality we may suppose that the maximum of $|f(z)|$ on the unit circle is attained for $z=1$. We will show that
\[

$$
\begin{equation*}
\left|\frac{f^{\prime}(1)}{f(1)}\right|>\frac{m-n}{2} . \tag{3}
\end{equation*}
$$

\]

The left-hand side of (3) equals

$$
\begin{equation*}
\left|(\log f(z))^{\prime}\right|_{z=1}=\left|\sum_{k=1}^{m} \frac{1}{1-a_{k}}-\sum_{k=1}^{n} \frac{1}{1-b_{k}}\right| \geq \sum_{k=1}^{m} \Re \frac{1}{1-a_{k}}-\sum_{k=1}^{n} \Re \frac{1}{1-b_{k}} \tag{4}
\end{equation*}
$$

For each $1 \leq k \leq m$ we have $\left|a_{k}\right|<1$, thus $1-a_{k}$ lies inside the circle C centered in 1 of radius 1 . The inversion $z \mapsto z^{-1}$ transforms this circle into the straight line $\Re z=1 / 2$, hence the open ball with boundary C is mapped onto the open half-plane $\Re z>1 / 2$. Similarly, since for each $1 \leq k \leq n$ we have $\left|b_{k}\right|>1$, the inverse of $1-b_{k}$ lies in the half-plane $\Re z<1 / 2$. Hence, putting $z=1$ in (4) gives (3).

[^0]: ${ }^{1}$ Eisenstein's criterion. Let $\varphi(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. If there exists a prime number p such that $p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}, p \nmid a_{n}$ and $p^{2} \nmid a_{0}$, then the polynomial $\varphi(x)$ is irreducible in $\mathbb{Q}[x]$.
 To show that $\Phi_{q}(x)$ is irreducible over $\mathbb{Q}[x]$ consider instead the polynomial $\varphi(x)=\Phi_{q}(x+1)$. We have

 $$
 \varphi(x)=\frac{(x+1)^{q}-1}{x}=x^{q-1}+\binom{q}{q-1} x^{q-2}+\ldots+\binom{q}{2} x+q,
 $$

 thus, by Eisenstein's criterion, $\varphi(x)$ is irreducible over $\mathbb{Q}[x]$ and, obviously, neither is $\Phi_{q}(x)$.

