
Complex analysis – solutions

I. Topology and geometry of C
P1. From our hypothesis it follows that

n∑
k=1

ζ − zk
|ζ − zk|

= 0.

Taking the conjugation and denoting σk = 1/|ζ − zk| and σ = σ1 + . . .+ σk, we obtain

ζ =
n∑
k=1

σk
σ
zk ∈ conv{z1, . . . , zn}.

P2. Such a sequence does exist. We arrange the sequence of open squares Sn with sides
of length 2/n in some bigger square Q (to be fixed later on). Namely, we put them into
columns starting from the bottom side of Q. In the nth column we put, in the upward
direction, the squares Sj for n2 ≤ j ≤ (n + 1)2 − 1. Moreover, we want all the squares
to be pairwise disjoint and we want consecutive columns to touch each other, as well as
consecutive squares lying in one column. Now, we put zn in the center of Sn for each
n ∈ N. The total width of all columns equals 2

∑∞
n=1 n

−2 = π2/3 and the height of the
nth column is

2
n2+2n∑
j=n2

1

j
≤ 2(2n+ 1)

n2
−→
n→∞

0.

This shows that Q may be chosen to be a bounded square such that the sequence (zn)
converges to its right-bottom vertex.

P3. The problem considered is invariant under complex conjugation, hence we may re-
strict ourselves to complex numbers z satisfying =z > 0. Such a number fulfills the
conditions zn ∈ R and (z + 1)n ∈ R if and only if there exist real positive numbers r1, r2,
and natural numbers k, ` ∈ {1, . . . , n− 1} such that

z = r1e
kπi/n and z + 1 = r2e

`πi/n.

Obviously, this is impossible in the case when ` ≥ k. On the other hand, for each pair
(k, `) with ` < k there is exactly one pair (r1, r2) of positive numbers which makes the
above equalities valid (to see this observe, e.g., that the function, which to each t > 0
assigns the distance between the rays arg z = k and arg z = ` at the level t, is strictly
increasing from 0 to ∞). Consequently, the final answer is twice (we shall take care
of the points lying in the lower half-plane as well) the number of all pairs (k, `) with
k, ` ∈ {1, . . . , n− 1}, ` < k, that is

2

(
n− 1

2

)
= (n− 1)(n− 2).

P4. By a suitable rotation, we may assume that the line considered is <z = 0 and that
all points z1, . . . , zn lie on the right half-plane. Then the real parts of every zi and 1/zi
are positive, thus we have also

<(z1 + z2 + . . .+ zn) > 0 and <
(

1

z1
+

1

z2
+ . . .+

1

zn

)
> 0.



II. Inequalities on the complex plane
P6. Since

n∑
k=1

|p− pk| ≥

∣∣∣∣∣np−
n∑
k=1

pk

∣∣∣∣∣ = n

∣∣∣∣∣p− 1

n

n∑
k=1

pk

∣∣∣∣∣
and the arithmetic mean p = 1/n

∑n
k=1 pk ∈ D, we see that any point p ∈ D satisfying

|p− p| ≥ 1 will do the job.

P7. (a) First, we will show how a simple partition trick may be used to get the desired
inequality with the constant 1/π replaced by

√
2/8. Namely, the two diagonal lines split

the complex plane into four parts, hence for at least one of them the sum of the absolute
values of all points lying there is at least 1/4 of the whole sum of absolute values. By
rotating by a suitable angle, we may assume that the part in question is the one bounded
by the two rays: arg z = ±π/4. Let B be the set of these z ∈ A which lie in that part.
Since for each z ∈ B we have <z ≥

√
2/2|z|, we infer that∣∣∣∣∣∑

z∈B

z

∣∣∣∣∣ ≥∑
z∈B

<z ≥
√

2

2

∑
z∈B

|z| ≥
√

2

8

∑
z∈A

|z|.

(b) We will use the so-called isoperimetric inequality. Let P be a convex polygon
lying in the plane and denote by d(P) and p(P) the diameter and the perimeter of P ,
respectively. The inequality just mentioned asserts that

p(P) ≤ πd(P). (1)

Proof of inequality (1). The main idea is to consider the average width of a given polygon
P . To make it precise let us say that for any direction angle ϑ ∈ [0, π) the width d(ϑ,P)
is the least possible distance between two parallel lines of direction ϑ which define a strip
containing the polygon P . By the average width of P we mean the integral mean

d(P) =
1

π

∫ π

0

d(ϑ,P)dϑ.

What we will show is the equality

p(P) = πd(P), (2)

which obviously would imply (1), since d(P) ≤ d(P).
By the convexity of P , it is easily seen that 2d(ϑ,P) is nothing else but the sum of

the lengths of the projections in the direction ϑ of all sides of P . For the ith side such a
projection has the length

δi(ϑ) = δi sinϑ,

where δi is the length of that side. Consequently,

d(P) =
1

2π

∑
i

δi

∫ π

0

sinϑdϑ =
1

π
p(P),

which completes the proof of (2) and (1). �
Now, we proceed to the solution of our problem. Let A = {z1, . . . , zn}; obviously we

may assume that zi 6= 0 for each i. The right-hand side of the desired inequality suggests
to construct a convex polygon with the lengths of its sides equal to |zi|. To this end let
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us re-order the sequence z1, z2, . . . , zn,−(z1 + . . . + zn) in a sequence w1, . . . , wn+1 such
that the sequence argw1, . . . , argwn+1 is increasing (in the case when z1 + . . . + zn = 0,
and its argument is not well-defined, we may consider the shorter sequence z1, . . . , zn and
proceed similarly as below). Then the points

w1, w1 + w2, . . . , w1 + . . .+ wn+1

are the vertices of a convex polygon P . Moreover,

p(P) =
n+1∑
i=1

|wi| =
n∑
i=1

|zi|+

∣∣∣∣∣
n∑
i=1

zi

∣∣∣∣∣
whereas the diameter d(P), being the distance between some two point wi and wj with
i < j, satisfies

d(P) =

∣∣∣∣∣∑
z∈B

z

∣∣∣∣∣
for some set B ⊂ A. Therefore, it remains to apply inequality (1).

P11. Let ϕ = (−1 +
√

5)/2; of course we have ϕ = 1−ϕ2. After dividing the numerator
and the denominator by |ac|, and substituting u = b/a, v = d/c, our assertion reduces to

max(1, |u+ v|, |uv|)
max(1, |u|) ·max(1, |v|)

≥ ϕ.

If either |u| ≥ 1 ≤ |v|, or |u| < 1 > |v|, the situation is clear, since then the fraction at
the left-hand side is at least 1 which is greater than ϕ. It remains to consider, e.g., the
case when |u| ≥ 1 and |v| < 1. Dividing the nominator and denominator by |u| we arrive
at the expression

α := max

(
1

|u|
,
∣∣∣1 +

v

u

∣∣∣ , |v|) .
Since the geometric mean (or any other mean) never exceeds the maximum of the argu-
ments, we infer that α ≥

√
|v/u| so in the case when |v/u| ≥ ϕ2 we are done. Otherwise,

α ≥
∣∣∣1 +

v

u

∣∣∣ ≥ 1−
∣∣∣v
u

∣∣∣ > 1− ϕ2 = ϕ.

III. Complex polynomials
P12 (Gauss–Lucas theorem). Write P (z) = a(z − a1) · . . . · (z − an) and

P ′(z)

P (z)
= (logP (z))′ =

n∑
k=1

1

z − ak
.

Hence, if P ′(z) = 0 for some z 6∈ {z1, . . . , zn}, it is enough to recall P1.

P13. Let P (z) = (z − a1) · . . . · (z − an) (we may assume that the leading coefficient is
1). Then

2zP ′(z)− nP (z) = 2z
n∑
k=1

P (z)

z − ak
− nP (z) = P (z)

n∑
k=1

(
2z

z − ak
− 1

)
= P (z)

n∑
k=1

z + ak
z − ak

.
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Now, an application of the formula

<x+ y

x− y
=
|x|2 − |y|2

|x− y|2
for x, y ∈ C, x 6= y,

yields

<(2zP ′(z)− nP (z)) =
n∑
k=1

|z|2 − 1

|z − 1|2
for z 6= 1.

Hence, the left-hand side may vanish only for |z| = 1.

P14. Denote Si = {z ∈ C : P (z) = i} for i ∈ {0, 1} and for an arbitrary complex
polynomial p and any z0 ∈ C let µ(z0, p) be the multiplicity of z0 as a root of p, namely,

µ(z0, p) = max{k ∈ N ∪ {0} : (z − z0)k | p(z)}.

We have

|S0|+ |S1| =
∑
z∈S0

(
µ(z, P )− µ(z, P ′)

)
+
∑
z∈S1

(
µ(z, P − 1)− µ(z, P ′)

)
= 2n−

∑
z∈S0∪S1

µ(z, P ′) ≥ 2n− degP ′ = n+ 1.

P15. This problem is in fact more algebraic in nature. We may write P (x) = (x−1)kr(x)
for some polynomial r(x) ∈ Q[x]. Denote all non-trivial qth complex roots of unity by εj,
that is

εj = e
2πj
q

i for j = 1, . . . , q − 1.

We wish to prove that r(εj) = 0 for each j. However, all εj’s are roots of the polynomial
Φq(x) = 1 + x + . . . + xq−1 which is irreducible over Q[x], by virtue of the Eisenstein
criterion1. This means that if at least one of εj’s is a root of the polynomial r(x), then
necessarily all of them must be roots of r(x) (if it was not true, the greatest common
divisor of the polynomials Φq(x) and r(x) would be a non-trivial divisor of Φq(x) in Q[x]).

Now, the crucial argument comes into play. If we had r(εj) 6= 0 for each 1 ≤ j ≤ q−1,
then the product

∏q−1
j=1 r(εj) would be a non-zero integer. Indeed, this product may be

represented as a finite sum of some symmetric (q−1)-variables polynomials on ε1, . . . , εq−1.
However, every such term vanishes, in view of the fact that every symmetric polynomial is
a combination of the basic symmetric polynomial which in turn all vanish on ε1, . . . , εq−1,
by virtue of Viète’s formulas. Consequently,

(n+ 1)q−1 ≥

∣∣∣∣∣
q−1∏
j=1

P (εj)

∣∣∣∣∣ =

∣∣∣∣∣
q−1∏
j=1

(1− εj)

∣∣∣∣∣
k

·

∣∣∣∣∣
q−1∏
j=1

r(εj)

∣∣∣∣∣
≥

∣∣∣∣∣
q−1∏
j=1

(1− εj)

∣∣∣∣∣
k

= (1 + 12 + . . .+ 1q−1)k = qk,

1Eisenstein’s criterion. Let ϕ(x) = anx
n+. . .+a1x+a0 be a polynomial with integer coefficients. If

there exists a prime number p such that p | a0, p | a1, . . . , p | an−1, p - an and p2 - a0, then the polynomial
ϕ(x) is irreducible in Q[x].

To show that Φq(x) is irreducible over Q[x] consider instead the polynomial ϕ(x) = Φq(x + 1). We
have

ϕ(x) =
(x + 1)q − 1

x
= xq−1 +

(
q

q − 1

)
xq−2 + . . . +

(
q

2

)
x + q,

thus, by Eisenstein’s criterion, ϕ(x) is irreducible over Q[x] and, obviously, neither is Φq(x).
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which gives (q − 1) log(n+ 1) ≥ k log q; a contradiction.

P22. Let m = deg p, n = deg q, p(z) = a(z− a1) · . . . · (z− am) and q(z) = b(z− b1) · . . . ·
(z − bn). With no loss of generality we may suppose that the maximum of |f(z)| on the
unit circle is attained for z = 1. We will show that∣∣∣∣f ′(1)

f(1)

∣∣∣∣ > m− n
2

. (3)

The left-hand side of (3) equals

∣∣(log f(z))′
∣∣
z=1

=

∣∣∣∣∣
m∑
k=1

1

1− ak
−

n∑
k=1

1

1− bk

∣∣∣∣∣ ≥
m∑
k=1

< 1

1− ak
−

n∑
k=1

< 1

1− bk
. (4)

For each 1 ≤ k ≤ m we have |ak| < 1, thus 1 − ak lies inside the circle C centered in 1
of radius 1. The inversion z 7→ z−1 transforms this circle into the straight line <z = 1/2,
hence the open ball with boundary C is mapped onto the open half-plane <z > 1/2.
Similarly, since for each 1 ≤ k ≤ n we have |bk| > 1, the inverse of 1 − bk lies in the
half-plane <z < 1/2. Hence, putting z = 1 in (4) gives (3).
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