
Functional analysis — Exercises
∗

Part 1: General properties of norms; distances between subspaces;
hyperplanes; linear functionals

Problem 1.1. Show that the normed spaces: c0, c and `p for 1 ¬ p <∞ are all separable,
while `∞ is not separable.

Problem 1.2. Let Y be a finite-dimensional subspace of a normed space X. Show that
for every x ∈ X there exists y ∈ Y such that

‖x− y‖ = dist(x, Y ).

Problem 1.3. Define

M =
{
f ∈ L1([0, 1]) :

∫ 1
0
f(t) dt = 1

}
.

Show that M is a closed and convex subset of L1([0, 1]) which contains infinitely many ele-
ments of minimal norm, i.e. there are infinitely many f ∈M satisfying ‖f‖1 = ming∈M ‖g‖1.
Note that L1([0, 1]) stands for the normed space L1(µ) as defined in the lecture, where µ is the Lebesgue
measure on [0, 1]. In other words, the elements of L1([0, 1]) are the (classes of abstraction of) integrable
scalar-valued functions on [0, 1] with the norm ‖f‖1 =

∫ 1
0 |f(t)|dt.

Problem 1.4. Define

M =
{
f ∈ C[0, 1] :

∫ 1/2
0

f(t) dt−
∫ 1
1/2
f(t) dt = 1

}
.

Prove that M is a closed and convex subset of C[0, 1] which does not contain any element of
minimal norm, i.e. for each f ∈M we have ‖f‖∞ > infg∈M ‖g‖∞.

Problem 1.5. Consider the following two subspaces of c0:

Y =
{

(αn)∞n=1 ∈ c0 : α2n−1 = 0 for each n ∈ N
}
,

Z =
{

(αn)∞n=1 ∈ c0 : α2n = nα2n−1 for each n ∈ N
}
.

Show that Y and Z are closed subspaces of c0, whereas Y +Z ( c0 is a proper dense subspace
of c0 (and therefore fails to be closed).

Problem 1.6. Let X be a normed space and M ⊂ X be any nonempty set. Show that
the function

f(x) = dist(x,M) = inf{‖x− y‖ : y ∈M}
is 1-Lipschitz, that is, |f(x)− f(y)| ¬ ‖x− y‖ for all x, y ∈ X.

Problem 1.7. Prove that any two vectors x, y of a normed space satisfying ‖x + y‖ =
‖x‖+ ‖y‖ also satisfy

‖αx+ βy‖ = α‖x‖+ β‖y‖ for any α, β ­ 0.
∗
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Problem 1.8. Prove that any nonzero vectors x, y in a normed space satisfy the inequality

‖x+ y‖ ¬ ‖x‖+ ‖y‖ −
(

2−
∥∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥∥
)
·min{‖x‖, ‖y‖}.

Problem 1.9. Let X be a normed space over C and let XR be the same space treated
as a normed space over R. Show that for every R-linear functional ϕ : XR → R there exists
a unique C-linear functional ϕ̃ : X → C satisfying ϕ(x) = Re ϕ̃(x) for each x ∈ X and it is
given by the formula

ϕ̃(x) = ϕ(x)− iϕ(ix) (x ∈ X).

Problem 1.10. Let E be a linear space over a field K ∈ {R,C}; we denote by E ′ its
(algebraic) conjugate space, i.e. the space of all linear functionals acting on E. Suppose
e1, . . . , en ∈ E are linearly independent and e∗1, . . . , e

∗
n ∈ E ′ satisfy

e∗i (ej) =
{

1 for i = j
0 for i 6= j.

Show that

E = lin{e1, . . . , en} ⊕
n⋂
i=1

ker(e∗i ).

Problem 1.11. Let X be a normed space and let x, y ∈ X be nonzero vectors such that
‖x‖, ‖y‖ ¬ 1 and ‖x− y‖ ­ 1. Prove that∥∥∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥∥∥ ­ ‖x− y‖.
Problem 1.12. Let E be a linear space over a field K ∈ {R,C}. By a hyperplane in E we

mean any linear subspace M ⊂ E of codimension 1, i.e. a subspace such that E = M⊕ lin{u}
for some 0 6= u ∈ E.

(a) Prove that for every nonzero linear functional x∗ on E, the kernel ker(x∗) forms a hyper-
plane, and E = ker(x∗) + lin{u} for any u ∈ E with x∗(u) 6= 0.

(b) Show that every hyperplane in E is the kernel of some linear functional on E.

(c) Prove that for each hyperplane M ⊂ E the linear functional x∗ satisfying ker(x∗) = M is
determined uniquely up to a scalar constant. More precisely, if linear functionals x∗, y∗ satisfy
ker(x∗) = ker(y∗) = M , then there exists α ∈ K such that x∗ = αy∗.

Problem 1.13. (a) Prove that on every infinite-dimensional normed space one can define
a discontinuous linear functional.

(b) Show that for any discontinuous linear functional x∗ defined on a normed space X we
have

ker(x∗) = X,

that is, the kernel of x∗ is a dense subspace of X.

Problem 1.14. The Hilbert cube Q is a subset of `2 defined as

Q =
{

(xn)∞n=1 ∈ `2 : |xn| < 2−n for each n ∈ N
}
.

Show that Q is a compact subset of `2.
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Problem 1.15. Consider the space C[0, 1] over R and its closed subspace X consisting of
those functions x for which x(0) = 0. Next, define Y ⊂ X by Y = {y ∈ X :

∫ 1
0 y(t) dt = 0}.

Show that Y is a closed subspace of X, yet there is no x ∈ SX satisfying dist(x, Y ) = 1.

This assertion means that in general we cannot avoid the ε > 0 in Riesz’ lemma (although we can do it if
the subspace in question is finite-dimensional — why?).

Problem 1.16. Let a, b ∈ R, a < b, k ∈ N and let K be either R or C. We denote by
C(k)([a, b]) the space of all k-times continuously differentiable K-valued functions on [a, b] (at
the endpoints we consider one-sided derivatives). Prove that C(k)([a, b]) is a Banach space
when equipped with each of the following two norms:

‖f‖(k) =
k∑
i=0

‖f (i)‖∞,

‖f‖′(k) = |f(a)|+ max
1¬i¬k

‖f (i)‖∞,

where ‖·‖∞, as usual, stands for the supremum norm. Are the two norms ‖·‖(k) and ‖·‖′(k)
equivalent?

Problem 1.17. Prove the following Riesz’ theorem which characterizes Banach spaces
among normed spaces: A normed space X is complete if and only if every absolutely conver-
gent series in X is convergent, that is, for every sequence (xn)∞n=1 ⊂ X the condition

∞∑
n=1

‖xn‖ <∞

implies that the series
∑∞
n=1 xn is convergent (with respect to the norm topology) in X.

Problem 1.18. Let (M,ρ) be a metric space and K ∈ {R,C}. For a Lipschitz function
f : M → K we denote by L(f) its Lipschitz constant, i.e.

L(f) = sup

 |f(x)− f(y)|
ρ(x, y)

: x, y ∈M, x 6= y

.
Define Lip(M) to be the set of all bounded K-valued Lipschitz functions on M . Also, for
any distinguished point 0 ∈ M , we define Lip0(M) to be the set of all Lipschitz functions
f : M → K with f(0) = 0. With the standard algebraic operations on functions these sets
form vector spaces over K. Show that the formula

‖f‖L = max{‖f‖∞, L(f)}

defines a norm on Lip(M), and that L(·) is a norm on Lip0(M). Next, prove that both
(Lip(M), ‖·‖L) and (Lip0(M), L(·)) are Banach spaces.

Hint. You are allowed to use the assertion of Problem 1.17.

Problem 1.19. Let X be a normed space and M ⊂ X. For ε > 0, we say that a set A ⊆M
is an ε-net in M provided that for every x ∈M there is y ∈ A such that ‖x− y‖ < ε. We say
that A is ε-separated if ‖x − y‖ ­ ε for all x, y ∈ A, x 6= y. Suppose that dimX = n < ∞.
Show that every ε-net in the unit ball BX must contain at least ε−n elements. On the other
hand, show that there exists an ε-net in BX with at most (1 + 2

ε
)n elements.
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Problem 1.20. Prove that for every infinite dimensional normed space X there exists
an infinite sequence (xn)∞n=1 on the unit sphere SX such that ‖xm−xn‖ > 1 for all m,n ∈ N,
m 6= n.

Problem 1.21. Prove that for every compact subset K of a normed space X there exists
a sequence (xn)∞n=1 ⊂ X such that limn ‖xn‖ = 0 and K ⊆ co{xn : n ∈ N}.
Here, co(A) denotes the closed convex hull of A, that is, the closure of the smallest convex set containing A,
that is, the closure of {λ1x1 + . . .+ λnxn : n ∈ N, xi ∈ A, λi ∈ [0, 1], λ1 + . . .+ λn = 1}.
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