Functional analysis - Exercises*

Part 1: General properties of norms; distances between subspaces;
HYPERPLANES; LINEAR FUNCTIONALS

- Problem 1.1. Show that the normed spaces: c_{0}, c and ℓ_{p} for $1 \leqslant p<\infty$ are all separable, while ℓ_{∞} is not separable.
- Problem 1.2. Let Y be a finite-dimensional subspace of a normed space X. Show that for every $x \in X$ there exists $y \in Y$ such that

$$
\|x-y\|=\operatorname{dist}(x, Y) .
$$

- Problem 1.3. Define

$$
M=\left\{f \in L_{1}([0,1]): \int_{0}^{1} f(t) \mathrm{d} t=1\right\} .
$$

Show that M is a closed and convex subset of $L_{1}([0,1])$ which contains infinitely many elements of minimal norm, i.e. there are infinitely many $f \in M$ satisfying $\|f\|_{1}=\min _{g \in M}\|g\|_{1}$.

Note that $L_{1}([0,1])$ stands for the normed space $L_{1}(\mu)$ as defined in the lecture, where μ is the Lebesgue measure on $[0,1]$. In other words, the elements of $L_{1}([0,1])$ are the (classes of abstraction of) integrable scalar-valued functions on $[0,1]$ with the norm $\|f\|_{1}=\int_{0}^{1}|f(t)| \mathrm{d} t$.

- Problem 1.4. Define

$$
M=\left\{f \in C[0,1]: \int_{0}^{1 / 2} f(t) \mathrm{d} t-\int_{1 / 2}^{1} f(t) \mathrm{d} t=1\right\} .
$$

Prove that M is a closed and convex subset of $C[0,1]$ which does not contain any element of minimal norm, i.e. for each $f \in M$ we have $\|f\|_{\infty}>\inf _{g \in M}\|g\|_{\infty}$.

- Problem 1.5. Consider the following two subspaces of c_{0} :

$$
\begin{gathered}
Y=\left\{\left(\alpha_{n}\right)_{n=1}^{\infty} \in c_{0}: \alpha_{2 n-1}=0 \text { for each } n \in \mathbb{N}\right\} \\
Z=\left\{\left(\alpha_{n}\right)_{n=1}^{\infty} \in c_{0}: \alpha_{2 n}=n \alpha_{2 n-1} \text { for each } n \in \mathbb{N}\right\} .
\end{gathered}
$$

Show that Y and Z are closed subspaces of c_{0}, whereas $Y+Z \subsetneq c_{0}$ is a proper dense subspace of c_{0} (and therefore fails to be closed).

- Problem 1.6. Let X be a normed space and $M \subset X$ be any nonempty set. Show that the function

$$
f(x)=\operatorname{dist}(x, M)=\inf \{\|x-y\|: y \in M\}
$$

is 1-Lipschitz, that is, $|f(x)-f(y)| \leqslant\|x-y\|$ for all $x, y \in X$.

- Problem 1.7. Prove that any two vectors x, y of a normed space satisfying $\|x+y\|=$ $\|x\|+\|y\|$ also satisfy

$$
\|\alpha x+\beta y\|=\alpha\|x\|+\beta\|y\| \quad \text { for any } \alpha, \beta \geqslant 0
$$

[^0]- Problem 1.8. Prove that any nonzero vectors x, y in a normed space satisfy the inequality

$$
\|x+y\| \leqslant\|x\|+\|y\|-\left(2-\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\|\right) \cdot \min \{\|x\|,\|y\|\} .
$$

- Problem 1.9. Let X be a normed space over \mathbb{C} and let $X_{\mathbb{R}}$ be the same space treated as a normed space over \mathbb{R}. Show that for every \mathbb{R}-linear functional $\varphi: X_{\mathbb{R}} \rightarrow \mathbb{R}$ there exists a unique \mathbb{C}-linear functional $\widetilde{\varphi}: X \rightarrow \mathbb{C}$ satisfying $\varphi(x)=\operatorname{Re} \widetilde{\varphi}(x)$ for each $x \in X$ and it is given by the formula

$$
\widetilde{\varphi}(x)=\varphi(x)-\mathrm{i} \varphi(\mathrm{i} x) \quad(x \in X)
$$

- Problem 1.10. Let E be a linear space over a field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$; we denote by E^{\prime} its (algebraic) conjugate space, i.e. the space of all linear functionals acting on E. Suppose $e_{1}, \ldots, e_{n} \in E$ are linearly independent and $e_{1}^{*}, \ldots, e_{n}^{*} \in E^{\prime}$ satisfy

$$
e_{i}^{*}\left(e_{j}\right)= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j .\end{cases}
$$

Show that

$$
E=\operatorname{lin}\left\{e_{1}, \ldots, e_{n}\right\} \oplus \bigcap_{i=1}^{n} \operatorname{ker}\left(e_{i}^{*}\right) .
$$

Problem 1.11. Let X be a normed space and let $x, y \in X$ be nonzero vectors such that $\|x\|,\|y\| \leqslant 1$ and $\|x-y\| \geqslant 1$. Prove that

$$
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \geqslant\|x-y\| .
$$

Problem 1.12. Let E be a linear space over a field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. By a hyperplane in E we mean any linear subspace $M \subset E$ of codimension 1, i.e. a subspace such that $E=M \oplus \operatorname{lin}\{u\}$ for some $0 \neq u \in E$.
(a) Prove that for every nonzero linear functional x^{*} on E, the kernel $\operatorname{ker}\left(x^{*}\right)$ forms a hyperplane, and $E=\operatorname{ker}\left(x^{*}\right)+\operatorname{lin}\{u\}$ for any $u \in E$ with $x^{*}(u) \neq 0$.
(b) Show that every hyperplane in E is the kernel of some linear functional on E.
(c) Prove that for each hyperplane $M \subset E$ the linear functional x^{*} satisfying $\operatorname{ker}\left(x^{*}\right)=M$ is determined uniquely up to a scalar constant. More precisely, if linear functionals x^{*}, y^{*} satisfy $\operatorname{ker}\left(x^{*}\right)=\operatorname{ker}\left(y^{*}\right)=M$, then there exists $\alpha \in \mathbb{K}$ such that $x^{*}=\alpha y^{*}$.

Problem 1.13. (a) Prove that on every infinite-dimensional normed space one can define a discontinuous linear functional.
(b) Show that for any discontinuous linear functional x^{*} defined on a normed space X we have

$$
\overline{\operatorname{ker}\left(x^{*}\right)}=X,
$$

that is, the kernel of x^{*} is a dense subspace of X.
Problem 1.14. The Hilbert cube \mathcal{Q} is a subset of ℓ_{2} defined as

$$
\mathcal{Q}=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{2}:\left|x_{n}\right|<2^{-n} \text { for each } n \in \mathbb{N}\right\} .
$$

Show that \mathcal{Q} is a compact subset of ℓ_{2}.

Problem 1.15. Consider the space $C[0,1]$ over \mathbb{R} and its closed subspace X consisting of those functions x for which $x(0)=0$. Next, define $Y \subset X$ by $Y=\left\{y \in X: \int_{0}^{1} y(t) \mathrm{d} t=0\right\}$. Show that Y is a closed subspace of X, yet there is no $x \in S_{X}$ satisfying $\operatorname{dist}(x, Y)=1$.
This assertion means that in general we cannot avoid the $\varepsilon>0$ in Riesz' lemma (although we can do it if the subspace in question is finite-dimensional - why?).

Problem 1.16. Let $a, b \in \mathbb{R}, a<b, k \in \mathbb{N}$ and let \mathbb{K} be either \mathbb{R} or \mathbb{C}. We denote by $C^{(k)}([a, b])$ the space of all k-times continuously differentiable \mathbb{K}-valued functions on $[a, b]$ (at the endpoints we consider one-sided derivatives). Prove that $C^{(k)}([a, b])$ is a Banach space when equipped with each of the following two norms:

$$
\begin{gathered}
\|f\|_{(k)}=\sum_{i=0}^{k}\left\|f^{(i)}\right\|_{\infty}, \\
\|f\|_{(k)}^{\prime}=|f(a)|+\max _{1 \leqslant i \leqslant k}\left\|f^{(i)}\right\|_{\infty},
\end{gathered}
$$

where $\|\cdot\|_{\infty}$, as usual, stands for the supremum norm. Are the two norms $\|\cdot\|_{(k)}$ and $\|\cdot\|_{(k)}^{\prime}$ equivalent?

Problem 1.17. Prove the following Riesz' theorem which characterizes Banach spaces among normed spaces: A normed space X is complete if and only if every absolutely convergent series in X is convergent, that is, for every sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset X$ the condition

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty
$$

implies that the series $\sum_{n=1}^{\infty} x_{n}$ is convergent (with respect to the norm topology) in X.
Problem 1.18. Let (M, ρ) be a metric space and $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. For a Lipschitz function $f: M \rightarrow \mathbb{K}$ we denote by $L(f)$ its Lipschitz constant, i.e.

$$
L(f)=\sup \left\{\frac{|f(x)-f(y)|}{\rho(x, y)}: x, y \in M, x \neq y\right\} .
$$

Define $\operatorname{Lip}(M)$ to be the set of all bounded \mathbb{K}-valued Lipschitz functions on M. Also, for any distinguished point $0 \in M$, we define $\operatorname{Lip}_{0}(M)$ to be the set of all Lipschitz functions $f: M \rightarrow \mathbb{K}$ with $f(0)=0$. With the standard algebraic operations on functions these sets form vector spaces over \mathbb{K}. Show that the formula

$$
\|f\|_{L}=\max \left\{\|f\|_{\infty}, L(f)\right\}
$$

defines a norm on $\operatorname{Lip}(M)$, and that $L(\cdot)$ is a norm on $\operatorname{Lip}_{0}(M)$. Next, prove that both $\left(\operatorname{Lip}(M),\|\cdot\|_{L}\right)$ and $\left(\operatorname{Lip}_{0}(M), L(\cdot)\right)$ are Banach spaces.

Hint. You are allowed to use the assertion of Problem 1.17.

- Problem 1.19. Let X be a normed space and $M \subset X$. For $\varepsilon>0$, we say that a set $A \subseteq M$ is an ε-net in M provided that for every $x \in M$ there is $y \in A$ such that $\|x-y\|<\varepsilon$. We say that A is ε-separated if $\|x-y\| \geqslant \varepsilon$ for all $x, y \in A, x \neq y$. Suppose that $\operatorname{dim} X=n<\infty$. Show that every ε-net in the unit ball B_{X} must contain at least ε^{-n} elements. On the other hand, show that there exists an ε-net in B_{X} with at most $\left(1+\frac{2}{\varepsilon}\right)^{n}$ elements.

Problem 1.20. Prove that for every infinite dimensional normed space X there exists an infinite sequence $\left(x_{n}\right)_{n=1}^{\infty}$ on the unit sphere S_{X} such that $\left\|x_{m}-x_{n}\right\|>1$ for all $m, n \in \mathbb{N}$, $m \neq n$.

- Problem 1.21. Prove that for every compact subset K of a normed space X there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset X$ such that $\lim _{n}\left\|x_{n}\right\|=0$ and $K \subseteq \overline{\operatorname{co}}\left\{x_{n}: n \in \mathbb{N}\right\}$.
Here, $\overline{\mathrm{co}}(A)$ denotes the closed convex hull of A, that is, the closure of the smallest convex set containing A, that is, the closure of $\left\{\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}: n \in \mathbb{N}, x_{i} \in A, \lambda_{i} \in[0,1], \lambda_{1}+\ldots+\lambda_{n}=1\right\}$.

[^0]: ${ }^{*}$ Evaluation: $\bigcirc=2 \mathrm{pt}, \bigcirc=3 \mathrm{pt}, \bigcirc=4 \mathrm{pt}$

