Functional analysis — $\operatorname{Exercises}^*$

Part 1: GENERAL PROPERTIES OF NORMS; DISTANCES BETWEEN SUBSPACES; HYPERPLANES; LINEAR FUNCTIONALS

• Problem 1.1. Show that the normed spaces: c_0 , c and ℓ_p for $1 \leq p < \infty$ are all separable, while ℓ_{∞} is not separable.

• Problem 1.2. Let Y be a finite-dimensional subspace of a normed space X. Show that for every $x \in X$ there exists $y \in Y$ such that

$$||x - y|| = \operatorname{dist}(x, Y).$$

• Problem 1.3. Define

$$M = \left\{ f \in L_1([0,1]) \colon \int_0^1 f(t) \, \mathrm{d}t = 1 \right\}.$$

Show that M is a closed and convex subset of $L_1([0,1])$ which contains infinitely many elements of minimal norm, i.e. there are infinitely many $f \in M$ satisfying $||f||_1 = \min_{g \in M} ||g||_1$.

Note that $L_1([0,1])$ stands for the normed space $L_1(\mu)$ as defined in the lecture, where μ is the Lebesgue measure on [0,1]. In other words, the elements of $L_1([0,1])$ are the (classes of abstraction of) integrable scalar-valued functions on [0,1] with the norm $||f||_1 = \int_0^1 |f(t)| dt$.

• Problem 1.4. Define

$$M = \bigg\{ f \in C[0,1] \colon \int_0^{1/2} f(t) \, \mathrm{d}t - \int_{1/2}^1 f(t) \, \mathrm{d}t = 1 \bigg\}.$$

Prove that M is a closed and convex subset of C[0,1] which does not contain any element of minimal norm, i.e. for each $f \in M$ we have $||f||_{\infty} > \inf_{g \in M} ||g||_{\infty}$.

• **Problem 1.5.** Consider the following two subspaces of c_0 :

$$Y = \left\{ (\alpha_n)_{n=1}^{\infty} \in c_0 \colon \alpha_{2n-1} = 0 \text{ for each } n \in \mathbb{N} \right\},$$
$$Z = \left\{ (\alpha_n)_{n=1}^{\infty} \in c_0 \colon \alpha_{2n} = n\alpha_{2n-1} \text{ for each } n \in \mathbb{N} \right\}.$$

Show that Y and Z are closed subspaces of c_0 , whereas $Y + Z \subsetneq c_0$ is a proper dense subspace of c_0 (and therefore fails to be closed).

• Problem 1.6. Let X be a normed space and $M \subset X$ be any nonempty set. Show that the function

$$f(x) = dist(x, M) = inf\{ ||x - y|| \colon y \in M \}$$

is 1-Lipschitz, that is, $|f(x) - f(y)| \leq ||x - y||$ for all $x, y \in X$.

• Problem 1.7. Prove that any two vectors x, y of a normed space satisfying ||x + y|| = ||x|| + ||y|| also satisfy

 $\|\alpha x+\beta y\|=\alpha\|x\|+\beta\|y\|\quad\text{for any }\alpha,\beta\geqslant 0.$

*Evaluation: $\bigcirc =2pt$, $\bigcirc =3pt$, $\bigcirc =4pt$

• Problem 1.8. Prove that any nonzero vectors x, y in a normed space satisfy the inequality

$$||x+y|| \le ||x|| + ||y|| - \left(2 - \left\|\frac{x}{||x||} + \frac{y}{||y||}\right\|\right) \cdot \min\{||x||, ||y||\}.$$

• **Problem 1.9.** Let X be a normed space over \mathbb{C} and let $X_{\mathbb{R}}$ be the same space treated as a normed space over \mathbb{R} . Show that for every \mathbb{R} -linear functional $\varphi \colon X_{\mathbb{R}} \to \mathbb{R}$ there exists a unique \mathbb{C} -linear functional $\tilde{\varphi} \colon X \to \mathbb{C}$ satisfying $\varphi(x) = \operatorname{Re} \tilde{\varphi}(x)$ for each $x \in X$ and it is given by the formula

$$\widetilde{\varphi}(x) = \varphi(x) - i\varphi(ix) \quad (x \in X)$$

• Problem 1.10. Let E be a linear space over a field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$; we denote by E' its (algebraic) conjugate space, i.e. the space of all linear functionals acting on E. Suppose $e_1, \ldots, e_n \in E$ are linearly independent and $e_1^*, \ldots, e_n^* \in E'$ satisfy

$$e_i^*(e_j) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j. \end{cases}$$

Show that

$$E = \ln\{e_1, \dots, e_n\} \oplus \bigcap_{i=1}^n \ker(e_i^*).$$

• Problem 1.11. Let X be a normed space and let $x, y \in X$ be nonzero vectors such that $||x||, ||y|| \leq 1$ and $||x - y|| \ge 1$. Prove that

$$\left\|\frac{x}{\|x\|} - \frac{y}{\|y\|}\right\| \ge \|x - y\|.$$

• **Problem 1.12.** Let *E* be a linear space over a field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. By a *hyperplane* in *E* we mean any linear subspace $M \subset E$ of codimension 1, i.e. a subspace such that $E = M \oplus \lim\{u\}$ for some $0 \neq u \in E$.

(a) Prove that for every nonzero linear functional x^* on E, the kernel ker (x^*) forms a hyperplane, and $E = \ker(x^*) + \ln\{u\}$ for any $u \in E$ with $x^*(u) \neq 0$.

(b) Show that every hyperplane in E is the kernel of some linear functional on E.

(c) Prove that for each hyperplane $M \subset E$ the linear functional x^* satisfying ker $(x^*) = M$ is determined uniquely up to a scalar constant. More precisely, if linear functionals x^*, y^* satisfy ker $(x^*) = \text{ker}(y^*) = M$, then there exists $\alpha \in \mathbb{K}$ such that $x^* = \alpha y^*$.

• **Problem 1.13.** (a) Prove that on every infinite-dimensional normed space one can define a discontinuous linear functional.

(b) Show that for any discontinuous linear functional x^* defined on a normed space X we have

$$\ker(x^*) = X_{\cdot}$$

that is, the kernel of x^* is a dense subspace of X.

• **Problem 1.14.** The *Hilbert cube* Q is a subset of ℓ_2 defined as

$$\mathcal{Q} = \left\{ (x_n)_{n=1}^{\infty} \in \ell_2 \colon |x_n| < 2^{-n} \text{ for each } n \in \mathbb{N} \right\}.$$

Show that \mathcal{Q} is a compact subset of ℓ_2 .

• Problem 1.15. Consider the space C[0, 1] over \mathbb{R} and its closed subspace X consisting of those functions x for which x(0) = 0. Next, define $Y \subset X$ by $Y = \{y \in X : \int_0^1 y(t) dt = 0\}$. Show that Y is a closed subspace of X, yet there is no $x \in S_X$ satisfying dist(x, Y) = 1.

This assertion means that in general we cannot avoid the $\varepsilon > 0$ in Riesz' lemma (although we can do it if the subspace in question is finite-dimensional — why?).

• Problem 1.16. Let $a, b \in \mathbb{R}$, $a < b, k \in \mathbb{N}$ and let \mathbb{K} be either \mathbb{R} or \mathbb{C} . We denote by $C^{(k)}([a, b])$ the space of all k-times continuously differentiable \mathbb{K} -valued functions on [a, b] (at the endpoints we consider one-sided derivatives). Prove that $C^{(k)}([a, b])$ is a Banach space when equipped with each of the following two norms:

$$\|f\|_{(k)} = \sum_{i=0}^{k} \|f^{(i)}\|_{\infty},$$
$$\|f\|'_{(k)} = |f(a)| + \max_{1 \le i \le k} \|f^{(i)}\|_{\infty}$$

where $\|\cdot\|_{\infty}$, as usual, stands for the supremum norm. Are the two norms $\|\cdot\|_{(k)}$ and $\|\cdot\|'_{(k)}$ equivalent?

• Problem 1.17. Prove the following Riesz' theorem which characterizes Banach spaces among normed spaces: A normed space X is complete if and only if every absolutely convergent series in X is convergent, that is, for every sequence $(x_n)_{n=1}^{\infty} \subset X$ the condition

$$\sum_{n=1}^{\infty} \|x_n\| < \infty$$

implies that the series $\sum_{n=1}^{\infty} x_n$ is convergent (with respect to the norm topology) in X.

• **Problem 1.18.** Let (M, ρ) be a metric space and $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. For a Lipschitz function $f: M \to \mathbb{K}$ we denote by L(f) its Lipschitz constant, i.e.

$$L(f) = \sup\left\{\frac{|f(x) - f(y)|}{\rho(x, y)} \colon x, y \in M, \ x \neq y\right\}.$$

Define $\operatorname{Lip}(M)$ to be the set of all bounded K-valued Lipschitz functions on M. Also, for any distinguished point $0 \in M$, we define $\operatorname{Lip}_0(M)$ to be the set of all Lipschitz functions $f: M \to \mathbb{K}$ with f(0) = 0. With the standard algebraic operations on functions these sets form vector spaces over K. Show that the formula

$$||f||_L = \max\{||f||_{\infty}, L(f)\}$$

defines a norm on $\operatorname{Lip}(M)$, and that $L(\cdot)$ is a norm on $\operatorname{Lip}_0(M)$. Next, prove that both $(\operatorname{Lip}(M), \|\cdot\|_L)$ and $(\operatorname{Lip}_0(M), L(\cdot))$ are Banach spaces.

Hint. You are allowed to use the assertion of Problem 1.17.

• Problem 1.19. Let X be a normed space and $M \subset X$. For $\varepsilon > 0$, we say that a set $A \subseteq M$ is an ε -net in M provided that for every $x \in M$ there is $y \in A$ such that $||x - y|| < \varepsilon$. We say that A is ε -separated if $||x - y|| \ge \varepsilon$ for all $x, y \in A, x \ne y$. Suppose that dim $X = n < \infty$. Show that every ε -net in the unit ball B_X must contain at least ε^{-n} elements. On the other hand, show that there exists an ε -net in B_X with at most $(1 + \frac{2}{\varepsilon})^n$ elements. • Problem 1.20. Prove that for every infinite dimensional normed space X there exists an infinite sequence $(x_n)_{n=1}^{\infty}$ on the unit sphere S_X such that $||x_m - x_n|| > 1$ for all $m, n \in \mathbb{N}$, $m \neq n$.

• Problem 1.21. Prove that for every compact subset K of a normed space X there exists a sequence $(x_n)_{n=1}^{\infty} \subset X$ such that $\lim_n ||x_n|| = 0$ and $K \subseteq \overline{\operatorname{co}}\{x_n : n \in \mathbb{N}\}$.

Here, $\overline{co}(A)$ denotes the closed convex hull of A, that is, the closure of the smallest convex set containing A, that is, the closure of $\{\lambda_1 x_1 + \ldots + \lambda_n x_n : n \in \mathbb{N}, x_i \in A, \lambda_i \in [0, 1], \lambda_1 + \ldots + \lambda_n = 1\}$.