. . . *
Functional analysis — Exercises

Part 1: GENERAL PROPERTIES OF NORMS; DISTANCES BETWEEN SUBSPACES;
HYPERPLANES; LINEAR FUNCTIONALS

® Problem 1.1. Show that the normed spaces: cy, ¢ and £, for 1 < p < oo are all separable,
while /., is not separable.

® Problem 1.2. Let Y be a finite-dimensional subspace of a normed space X. Show that
for every x € X there exists y € Y such that

o — gl = dist(z, Y).
® Problem 1.3. Define
M:{fehmmbaffwwzl}
Show that M is a closed and convex subset of L;([0, 1]) which contains infinitely many ele-

ments of minimal norm, i.e. there are infinitely many f € M satisfying || f||1 = mingen | g||:-

Note that L;([0, 1]) stands for the normed space L;(u) as defined in the lecture, where p is the Lebesgue
measure on [0,1]. In other words, the elements of Ly([0,1]) are the (classes of abstraction of) integrable

scalar-valued functions on [0, 1] with the norm || f|j; = fol [f(t)|dt.

® Problem 1.4. Define
/2 1
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Prove that M is a closed and convex subset of C'[0, 1] which does not contain any element of
minimal norm, i.e. for each f € M we have || f||o > inf enr || 9] -

® Problem 1.5. Consider the following two subspaces of ¢y:

Y = {(an)"o € cy: agp_1 = 0 for each n € N},

n=1

7 = {(an)oo € ¢y gy = NQlg,_1 for each n € N}.

n=1
Show that Y and Z are closed subspaces of ¢y, whereas Y + 27 C ¢ is a proper dense subspace
of ¢y (and therefore fails to be closed).

® Problem 1.6. Let X be a normed space and M C X be any nonempty set. Show that

the function
F(z) = dist(x, M) = inf{||z — y||: y € M}

is 1-Lipschitz, that is, |f(x) — f(y)| < ||z — y|| for all z,y € X.

® Problem 1.7. Prove that any two vectors x, y of a normed space satisfying ||z + y|| =
l|lz]| + [ly|| also satisfy

loz + Byll = allz]| + Bllyll  for any o, 3 > 0.
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® Problem 1.8. Prove that any nonzero vectors x, y in a normed space satisfy the inequality
x
ERNE

2] " 1l |>-min{||a:||, lyll}-

® Problem 1.9. Let X be a normed space over C and let X be the same space treated
as a normed space over R. Show that for every R-linear functional ¢: Xg — R there exists
a unique C-linear functional ¢: X — C satisfying p(z) = Re@(x) for each x € X and it is
given by the formula

&+ oll < Jlall + - (2 _

p(x) = plz) —ip(iz) (ze X).

® Problem 1.10. Let E be a linear space over a field K € {R,C}; we denote by E’ its
(algebraic) conjugate space, i.e. the space of all linear functionals acting on E. Suppose
e, ...,e, € E are linearly independent and €3, ..., e: € E’ satisfy

. )1 fori=y
ei(ei)_{ 0 fori+j.
Show that N

E =linfey,...,e,} @ () ker(e).

i=1

Problem 1.11. Let X be a normed space and let x,y € X be nonzero vectors such that
llz|l, lly|| <1 and ||z — y|| > 1. Prove that

Problem 1.12. Let FE be a linear space over a field K € {R, C}. By a hyperplane in E we
mean any linear subspace M C E of codimension 1, i.e. a subspace such that £ = M ®lin{u}
for some 0 # u € E.
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> [l =yl
E e

(a) Prove that for every nonzero linear functional z* on F, the kernel ker(z*) forms a hyper-
plane, and E = ker(z*) + lin{u} for any u € E with z*(u) # 0.

(b) Show that every hyperplane in E is the kernel of some linear functional on F.

(c) Prove that for each hyperplane M C FE the linear functional z* satisfying ker(z*) = M is
determined uniquely up to a scalar constant. More precisely, if linear functionals x*, y* satisfy
ker(z*) = ker(y*) = M, then there exists o € K such that z* = ay*.

Problem 1.13. (a) Prove that on every infinite-dimensional normed space one can define
a discontinuous linear functional.

(b) Show that for any discontinuous linear functional z* defined on a normed space X we
have

ker(z*) = X,
that is, the kernel of z* is a dense subspace of X.
Problem 1.14. The Hilbert cube Q is a subset of ¢, defined as
Q= {(xn)zozl € ly: |x,| < 27" for each n € N}.
Show that Q is a compact subset of /5.



Problem 1.15. Consider the space C|0, 1] over R and its closed subspace X consisting of
those functions z for which x(0) = 0. Next, define Y ¢ X by Y = {y € X: [ y(¢)dt = 0}.
Show that Y is a closed subspace of X, yet there is no € Sx satisfying dist(x,Y) = 1.

This assertion means that in general we cannot avoid the € > 0 in Riesz’ lemma (although we can do it if
the subspace in question is finite-dimensional — why?).

Problem 1.16. Let a,b € R, a < b, £ € N and let K be either R or C. We denote by
C®)([a,b]) the space of all k-times continuously differentiable K-valued functions on [a, b] (at
the endpoints we consider one-sided derivatives). Prove that C'*)([a,b]) is a Banach space
when equipped with each of the following two norms:

k
1l = D207
1=0

1wy = 1£(a)] + max |||,

1<k

where ||-[|c, as usual, stands for the supremum norm. Are the two norms |[|-[|) and [|-[|,
equivalent?

Problem 1.17. Prove the following Riesz’ theorem which characterizes Banach spaces
among normed spaces: A normed space X is complete if and only if every absolutely conver-
gent series in X is convergent, that is, for every sequence (z,)5; C X the condition

(o9
> llzall < oo
n=1

implies that the series >0° | z,, is convergent (with respect to the norm topology) in X.

Problem 1.18. Let (M, p) be a metric space and K € {R,C}. For a Lipschitz function
f: M — K we denote by L(f) its Lipschitz constant, i.e.

|f(x) = f(y)l

LU)Zﬂm{ 1)

:x,yGM,x#y}.

Define Lip(M) to be the set of all bounded K-valued Lipschitz functions on M. Also, for
any distinguished point 0 € M, we define Lip,(M) to be the set of all Lipschitz functions
f: M — K with f(0) = 0. With the standard algebraic operations on functions these sets
form vector spaces over K. Show that the formula

£l = max{]| fllo, L(f)}

defines a norm on Lip(M), and that L(-) is a norm on Lip,(M). Next, prove that both
(Lip(M), ||-]|z) and (Lipy(M), L(-)) are Banach spaces.

Hint. You are allowed to use the assertion of Problem 1.17.

® Problem 1.19. Let X be a normed space and M C X. For ¢ > 0, we say that aset A C M
is an e-net in M provided that for every = € M there is y € A such that ||z —y|| < e. We say
that A is e-separated if ||z — y|| > € for all x,y € A, © # y. Suppose that dim X = n < oc.
Show that every e-net in the unit ball Bx must contain at least €™ elements. On the other
hand, show that there exists an e-net in Bx with at most (1 + %)” elements.
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® Problem 1.20. Prove that for every infinite dimensional normed space X there exists
an infinite sequence (z,)%°; on the unit sphere Sx such that ||z, — x| > 1 for all m,n € N,
m # n.

® Problem 1.21. Prove that for every compact subset K of a normed space X there exists
a sequence (z,)s2; C X such that lim, ||z,|| = 0 and K C co{z,: n € N}.

Here, ©o(A) denotes the closed convex hull of A, that is, the closure of the smallest convex set containing A,
that is, the closure of {\z1 + ...+ Apzn:n €N z; € A, N €[0,1], i+ ...+ A =11}



