
Functional analysis — Exercises
∗

Part 3: (Isometric) isomorphisms; duality; weak convergence;
Riesz–Markov–Kakutani representation theorem; compact operators

In the problems below, all C(K)-spaces consist of real-valued continuous functions and are considered as
Banach spaces over R. Recall that, at this point, we have proved the Riesz Representation Theorem for
(C[a, b])∗ and the Riesz–Markov–Kakutani for (C0(X))∗ only in the real case. We will use the following
common notation: if X is any topological space and x ∈ X, then δx stands for Dirac’s measure concentrated
at x, i.e. for any Borel set E ⊆ X, δ(E) = 1 if x ∈ E and δ(E) = 0 otherwise. It is identified with the
functional 〈f, δx〉 = f(x) acting on continuous functions on X.

Problem 3.1. (a) Show that the Dirac functional δ0 ∈M[0, 1] is not of the form

〈f, δ0〉 =

∫ 1

0

f(t)g(t) dt (f ∈ C[0, 1])

for any g ∈ C[0, 1].

(b) Define ψ : C[0, 1]→ R by

ψ(f) =
f(0) + f(1)

2
+

∫ 1

0

tf(t) dt.

Determine the measure from the Riesz–Markov–Kakutani theorem corresponding to ψ, i.e.
a regular Borel measure µ on [0, 1] such that ψ(f) =

∫
[0,1]

f dµ for f ∈ C[0, 1]. Calculate ‖ψ‖.

Problem 3.2. By the Riesz Representation Theorem, for every R-linear continuous func-
tional ϕ : C[0, 1]→ R there exists a unique function gϕ ∈ NBV([0, 1]) representing ϕ in terms
of the Riemann–Stieltjes integral with respect to gϕ. Determine gϕ in each of the following
cases:

(a) ϕ = δt0 for a fixed t0 ∈ [0, 1],

(b) ϕ(f) =

∫ 1

0

f(t) dt,

(c) ϕ(f) =

∫ 1

0

f(t) cosπt dt,

(d) ϕ(f) = f(0)−
∫ 1/2

0

f(2t) dt.

It is useful to recall the following fact from the theory of Riemann–Stieltjes integral: If g : [0, 1] → R is
absolutely continuous and f ∈ C[0, 1], then we have the following equality between the Riemann–Stieltjes
and Lebesgue integrals: ∫ 1

0

f dg =

∫
[0,1]

f(t)g′(t) dt.

(By the absolute continuity, g′(t) exists a.e. on [0, 1].)

Problem 3.3. Assume µ is a regular Borel measure on [0, 1] such that∫
[0,1]

xn dµ(x) = 0 for n = 0, 1, 2, . . .

Show that µ = 0.
∗
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Problem 3.4. (a) Fix N ∈ N. Show that there exists a regular signed Borel measure µ
on [0, 1] such that for every real polynomial P (x) of degree at most N we have∫

[0,1]

P dµ =
N∑
k=1

P (k)
( k
N

)
.

(b) Decide whether there is a regular signed Borel measure µ on [0, 1] such that the above
formula is valid for any real polynomial P (x) of arbitrary degree N = degP .

In solutions of the next two problems you can use Landau’s theorem (which can be read out from the duality
`∗p
∼= `q): If p ∈ (1,∞) and (xn) is a scalar sequence such that for every (yn) ∈ `p the series

∑
n xnyn

converges, then (xn) ∈ `q, where 1
p + 1

q = 1.

Problem 3.5. For a parameter α ∈ R consider a linear operator T defined on `3 by the
formula

Tx = (nαxn)∞n=1 for x = (xn)∞n=1 ∈ `3.

Decide for which values of α we have T ∈ L (`3, `1) and in such cases calculate ‖T‖.

Problem 3.6. Consider a map T which to every sequence x = (xn)∞n=1 of real numbers
assign the sequence

Tx = (n−1/4xn)∞n=1.

Determine all p > 1 for which T ∈ L (`p, `1). For all such p calculate ‖T‖.

Let (X, ‖·‖) be a normed space. We call X strictly convex if the unit sphere SX does not contain any nontrivial
line segments, i.e. for any distinct points x, y ∈ SX we have ‖(x + y)/2‖ < 1. This can be rephrased as
follows: For any A ⊂ X and x ∈ A we call x an extreme point of A if it is not in the interior of any segment
with endpoints in A, i.e. λy + (1 − λ)z = x for some y, z ∈ A and λ ∈ (0, 1) implies y = z = x. We denote
by ext(A) the set of all extreme points of A. The space X is strictly convex if and only if each point of the
unit sphere of X is extreme, i.e. ext(SX) = SX .

Problem 3.7. Let X and Y be normed spaces. For any 1 ≤ p ≤ ∞ we form the ‘`p-
direct sum’ of X and Y , that is, the algebraic direct sum X ⊕ Y equipped with the norm
‖(x, y)‖ = ‖(‖x‖, ‖y‖)‖p = (‖x‖p + ‖y‖p)1/p. We denote this normed space by X ⊕p Y . Show

that for 1 ≤ p, q ≤ ∞ satisfying 1
p

+ 1
q

= 1 (for p = 1 we take q =∞ and vice versa), we have(
X ⊕p Y

)∗ ∼= X∗ ⊕q Y ∗.

Problem 3.8. Prove the following Taylor–Foguel theorem which characterizes normed
spaces X for which the Hahn–Banach extensions of all functionals defined on subspaces of
X are uniquely determined. Namely, X∗ is strictly convex if and only if for every linear
subspace Y ⊂ X and any functional f ∈ Y ∗ there exists the unique functional F ∈ X∗

satisfying F |Y = f and ‖F‖ = ‖f‖.

Problem 3.9. Determine all n ∈ N for which `n1
∼= `n∞. For all such values of n, describe

an operator which gives the isometric isomorphism.
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We say that a sequence (xn)∞n=1 of elements of a Banach space X is weakly convergent to x ∈ X if
limn→∞〈xn, x∗〉 = 〈x, x∗〉 for every x∗ ∈ X∗. This defines the convergence with respect to a weak topol-
ogy which is defined as the smallest topology τ on X such that all functionals from X∗ are τ -continuous.

We say that X has the Schur property if every weakly convergent sequence in X is norm convergent.
Warning. If X has this property, it does not mean that the norm topology coincides with the weak topology;
it just means that the classes of convergent sequences are the same. In fact, the weak topology never coincides
with the norm topology (i.e. it is strictly smaller) unless dimX <∞.

Problem 3.10. Let 1 < p <∞. Give examples of sequences (xn)∞n=1 ⊂ `p and (fn)∞n=1 ⊂
Lp[0, 1] which are weakly convergent to 0 but not convergent in norm.

Problem 3.11. Let X, Y be Banach spaces. By K (X, Y ) we denote the space of compact
operators between X and Y , that is, those operators T ∈ L (X, Y ) for which T (BX) is
compact. Show that K (X, Y ) is closed in L (X, Y ).

In general, when solving problems on compact sets and compact operators, it is good to keep in mind the
following topological fact: A metric space is compact if and only if it is complete and totally bounded (i.e.
it admits a finite ε-net for each ε > 0). Therefore, a subset of a Banach space is relatively compact (i.e.
has a compact closure) if and only if it is totally bounded. This is a fundamental fact whenever we want to
decide whether a given operator is compact.

Problem 3.12. In the space C(1)[0, 1] of continuously differentiable functions we consider
the norm ‖f‖(1) = ‖f‖∞ + ‖f ′‖∞ (or any equivalent norm, e.g. ‖f‖ = max{‖f‖∞, ‖f ′‖∞}).
Show that the identity operator

ι : (C(1)[0, 1], ‖ · ‖(1)) −→ (C[0, 1], ‖ · ‖∞), ιf = f,

is compact.

Problem 3.13. Define

Tx = (2−n+1xn)∞n=1 for x = (xn)∞n=1 ∈ `∞.

Show that T ∈ K (`∞, `1).

Problem 3.14. (a) Show that the completion of any normed space X (which is unique
up to an isometric isomorphism) can be constructed as follows: Take ι : X → X∗∗ to be
the canonical embedding in the bidual, i.e. 〈x∗, ι(x)〉 = 〈x, x∗〉 (x ∈ X, x∗ ∈ X∗) and let
X = ι(X) be the closure of its range inside X∗∗. Justify that X is the completion of X, i.e.
that it is complete and X is (isometrically isomorphic to) a dense subspace of X.

(b) Of course, we can identify any vector x ∈ X with its image ι(x) in X∗∗. Prove that every
element x̃ ∈ X can be written in the form x̃ =

∑∞
n=1 xn, where xn ∈ X (n ∈ N) and the

series is absolutely convergent, i.e.
∑∞

n=1 ‖xn‖ <∞. Moreover, ‖x̃‖ = inf
∑∞

n=1 ‖xn‖, where
the infimum is taken over all series in X summing up to x̃.

Let F be a field of subsets of some set X. We denote by ba(F) the collection of all bounded, finitely additive
set functions µ : F → R. Exactly as in the standard case of σ-additive measures, we define a variation of µ
by the formula

|µ|(E) = sup

{
n∑
i=1

|µ(Ai)| : n ∈ N, Ai ∈ F , Ai ∩Aj = ∅ for 1 ≤ i 6= j ≤ n and

n⋃
i=1

Ai = E

}
.
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(Warning. The Hahn decomposition theorem may fail if F is not a σ-algebra.) It is not difficult to verify that
ba(F) becomes a normed space when equipped with the total variation norm, i.e. ‖µ‖ = |µ|(X). Imitating
the classical theory of Lebesgue integral over σ-additive measures, one can easily define an integral with
respect to any finitely additive measure µ ∈ ba(F). First, we do it in an obvious way for simple functions:
If f =

∑n
i=1 αi1Ei

, where Ei’s are pairwise disjoint in F , then we set Tµ(f) =
∑n
i=1 αiµ(Ei). Then, Tµ is

a linear functional on the space of F-measurable simple functions, and its norm ‖Tµ‖ = ‖µ‖ provided that on
the domain of Tµ we consider the supremum norm. So, Tµ extends uniquely to the completion of the space of
simple functions which we denote by B(F) and observe that it is exactly the space of all real-valued functions
on X which are uniform limits of F-measurable simple functions. A standard exercise from measure theory
shows that in the case where F is a σ-algebra, B(F) is the space of all bounded F-measurable functions.

Problem 3.15. Show that for every functional Λ ∈ `∗∞ on the real Banach space `∞ there
exists a unique µ ∈ ba(2N) such that

Λx =

∫
N
x dµ for every x ∈ `∞

and, moreover, ‖Λ‖ = |µ|(N). Conclude that we have an isometric isomorphism `∗∞
∼= ba(2N).

Problem 3.16. Imitating the proof given in the lecture, derive the complex version of
Proposition 3.6, that is, if 1 < p, q <∞, 1

p
+ 1

q
= 1 and Lp[0, 1], Lq[0, 1] are over C, then

(Lp[0, 1])∗ ∼= Lq[0, 1].

Problem 3.17. (a) Prove that the `p-norms are decreasing with respect to p. More
precisely, for any s ∈ (0,∞) and any scalar sequence x = (xn)∞n=1 set

‖x‖s =

(
∞∑
n=1

|xn|s
)1/s

.

(We do not assume anything on x, so ‖x‖s may happen to be +∞. Recall that such a function
satisfies the triangle inequality if (and only if) s ≥ 1.) Then, show that

‖x‖q ≤ ‖x‖p for all 0 < p ≤ q <∞.

(b) Prove that for any 1 ≤ p ≤ q ≤ +∞ the Banach space L (`p, `q) is not separable.

Problem 3.18. Let a, b ∈ R, a < b, k ∈ N. We consider the Banach space C(k)[a, b] of
k-times continuously differentiable real-valued functions on [a, b] with the norm

‖f‖(k) =
k∑
i=0

‖f (i)‖∞.

(a) Prove that a functional ϕ : C(k)[a, b]→ R belongs to (C(k)[a, b])∗ if and only if there exist
α0, α1, . . . , αk−1 ∈ R and a regular signed Borel measure µ on [a, b] such that

ϕ(f) =
k−1∑
i=0

αif
(i)(a) +

∫
[a,b]

f (k)(t) dµ(t).

(b) Derive a formula for ‖ϕ‖ in terms of |α0|, |α1|, . . . , |αn−1| and ‖µ‖ = |µ|([a, b]) (the total
variation of µ).
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Problem 3.19. Prove that
C[0, 1] ∼ C(1)([0, 1]).

(On the latter space we consider e.g. the norm ‖·‖(1) defined in Problem 3.18.)

Problem 3.20. Let K be a compact Hausdorff space. Prove that (fn)∞n=1 ⊂ C(K) is
weakly convergent to a function f ∈ C(K) if and only if it satisfies the following two condi-
tions:

• supn ‖fn‖∞ < +∞,

• limn→∞ fn(x) = f(x) for each x ∈ K.

That is, weakly convergent sequences in C(K)-spaces are exactly those which are uniformly
bounded1 and pointwise convergent.

Problem 3.21. Prove that `1 has the Schur property.

Problem 3.22. Prove that the sequence (δ1/n)∞n=1 in M[0, 1] is not weakly convergent.

Hint: If that sequence was weakly convergent, then its potential weak limit could be only δ0 (consider
functionals on M[0, 1] given by continuous functions). To show that δ1/n 6−→ δ0 weakly, you do not need to
know the whole dual space (M[0, 1])∗. Try to exhibit a subspace of this dual which is of the form `1(Γ),
for a certain index set Γ (see Example 1.2(3)). Then, use the Schur property; you are allowed to apply the
assertion of Problem 3.21.

Problem 3.23. Prove that c0 ∼ c, but c0 6∼= c.

Problem 3.24. Prove that c0 6↪→ `1 and `p 6↪→ `1 for p ∈ (1,∞).

Problem 3.25. Let X be a Banach spaces. Prove that all closed hyperplanes of X are
mutually isomorphic.

Problem 3.26. Decide whether an operator T ∈ L (C[0, 1]) is compact, where:

(a) Tf(x) = xf(x),

(b) Tf(x) =

∫ 1

0

etxf(t) dt.

Problem 3.27. Let X = c0 or X = `p with 1 ≤ p <∞. For n ∈ N we define Rn ∈ L (X)
to be the ‘nth tail’ operator, i.e.

Rn(x) = (0, . . . , 0︸ ︷︷ ︸
n−1

, xn, xn+1, . . .) for x = (xn)∞n=1 ∈ X.

Show that a nonempty set A ⊂ X is relatively compact if and only if Rn(x) −→ 0 uniformly
for x ∈ A which means that for each ε > 0 there exists nε ∈ N such that ‖Rn(x)‖ < ε for all
x ∈ A, n ≥ nε.

1It follows immediately from the Banach–Steinhaus theorem, that every weakly convergent sequence in
any Banach space must be bounded. However, you should prove this in the particular case of C(K) without
appealing to that theorem.
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Using the above characterization it is easy to construct, for every 1 ≤ p < ∞, a compact set K ⊂ `p for
which there does not exist any x = (xn)∞n=1 ∈ `p such that |yn| ≤ |xn| for all (yn)∞n=1 ∈ K. Thus, global
majorization by a certain element of `p is not a necessary condition for (relative) compactness, although it
is plainly a sufficient condition. However, it is also easy to observe that this condition is both necessary and
sufficient for relative compactness in the space c0.

Problem 3.28. Define X = R2 to be the plane with a topology given by the condition:
a set U ⊂ X is open if and only if its intersection with every horizontal line is open in the
natural topology. Show that X is a locally compact Hausdorff space. For any f ∈ Cc(X)
there are only finitely many x’s such that f(x, y) 6= 0 for at least one y; denote them by
x1, . . . , xn and define

Λf =
n∑
i=1

∫ +∞

−∞
f(xi, y) dy.

This defines a positive linear functional Λ on Cc(X). Let µ be the measure corresponding
to Λ via the Riesz–Markov–Kakutani theorem. Show that for the real line E ⊂ X we have
µ(E) =∞, however, µ(K) = 0 for each compact set K ⊂ E.

This exercise shows that, in general, the conditions in the Riesz–Markov–Kakutani Theorem 3.16 do not
guarantee that the underlying measure is regular. On the other hand, for measures representing elements of
(C0(X))∗ regularity was obtained because such measures are finite (more precisely, have finite variation), i.e.
signed or complex-valued, without the value ∞.

Problem 3.29. Prove Pitt’s theorem: If 1 ≤ p < q <∞, then L (`q, `p) = K (`q, `p).

Problem 3.30. Define an operator T on the space L2(0,∞) by

(Tf)(x) =
1

x

∫ x

0

f(t) dt.

Prove that T ∈ L (L2(0,∞)), ‖T‖ ≤ 2 and that T is not compact.
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