
Functional analysis — Exercises
∗

Part 4: Spectrum, eigenvalues, adjoint operators; Riesz–Schauder theorem;
Fredholm operators and the Fredholm alternative

Problem 4.1. Let 1 ≤ p <∞ and (an)∞n=1 be a bounded sequence of scalars. Show that
the norm of the diagonal operator T ∈ L (`p) given by Tx = (anxn)∞n=1 (x = (xn)∞n=1 ∈ `p)
equals ‖(an)∞n=1‖∞, and that this operator is compact if and only if limn→∞ an = 0.

Problem 4.2. Decide whether there exists T 6∈ K (`2) with T 2 = 0.

Problem 4.3. Let W ∈ L (`2) be the weighted shift operator on `2 defined by

W (x1, x2, . . .) =
(
0, x1,

x2

2
,
x3

3
, . . .

)
.

Show that W is compact, but σp(W ) = ∅, and hence σ(W ) = {0}. Find a nontrivial closed
invariant subspace for W , i.e. a closed subspace 0 6= M ( `2 satisfying W (M) ⊆M .

Problem 4.4. Let X be a Banach space and P ∈ L (X) be a projection onto a proper
subspace Y ⊆ X, that is, P : X → Y is surjective and P 2 = P . Show that σ(P ) = σp(P ) =
{0, 1} and for λ = 0, 1 we have

(P − λI)−1 =
1

λ(1− λ)
P − 1

λ
I.

Problem 4.5. Let (an)∞n=1 be a bounded scalar sequence and T ∈ L (`2) be the associated
diagonal operator as described in Problem 4.1. Find σ(T ) and σp(T ).

Problem 4.6. Let K be any nonempty compact subset of the scalar field. Show that
there is an operator T ∈ L (`2) with σ(T ) = K.

Problem 4.7. On the complex Banach space `2 consider the right shift operatorR ∈ L (`2)
given by R(x1, x2, . . .) = (0, x1, x2, . . .) and the diagonal operator D ∈ L (`2) associated with
the sequence dn = 2−n (n ∈ N), that is, D(x1, x2, . . .) = (1

2
x1,

1
4
x2, . . .). Define a weighted

shift operator T = R ◦D. Prove that T is compact, one-to-one and satisfies

lim
n→∞

‖T n‖1/n = 0.

The spectral radius of any operator T ∈ L (X) is defined as

ρ(T ) = sup{|λ| : λ ∈ σ(T )}.

According to Proposition 4.6, we have ρ(T ) ≤ ‖T‖. Although the invertibility, spectrum and hence the
spectral radius are all defined in purely algebraic terms, the spectral radius can be defined by topological
means, more precisely, by the norms of iterates of the given operator. This is the Gelfand theorem which
gives a formula for ρ(T ) if T is defined on a complex Banach space:

ρ(T ) = lim
n→∞

‖Tn‖1/n = inf
n∈N
‖Tn‖1/n.

∗
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Problem 4.8. Show that the Volterra operator V ∈ L (L2[0, 1]) defined by

V f(x) =

∫ x

0

f(t) dt

is compact.

It is easily seen that for each α ∈ [0, 1], the subspace Mα consisting of all L2-functions on [0, 1] that vanish
a.e. on [0, α] is an invariant subspace for V . That these are in fact all invariant subspaces for V is a deep
theorem which involves some analytic functions and the Paley–Wiener theorem; see [H. Radjavi, P. Rosenthal,
Invariant subspaces, Dover Publications 2003; Thm. 4.14].

Problem 4.9. For each pair of natural numbers m,n calculate the Fredholm index of
an operator A : Cn → Cm and observe that it depends on m and n, but not on A.

Problem 4.10. For any given function g ∈ C[0, 1], let T : C(1)[0, 1] → C[0, 1] be an
operator defined by

Tf(x) = f ′(x) + g(x)f(x).

Show that T is a Fredholm operator and find its index.

Let X and Y be normed spaces. For every T ∈ L (X,Y ), we define its adjoint operator T ∗ ∈ L (Y ∗, X∗) by

〈x, T ∗y∗〉 = 〈Tx, y∗〉. (1)

In Problem 4.11 we want to show that the above equation determines T ∗ uniquely. Observe that in the case
where X and Y are finite-dimensional, and T is given by a matrix from Mm×n(K), the adjoint T ∗ corresponds
to the transposed matrix. (For complex Hilbert spaces H, the adjoint is defined in a slightly different way,
by identifying H∗ ∼= H, and then the adjoint corresponds to the conjugate transpose.)

Quite obviously, we have:

• (T + S)∗ = T ∗ + S∗,

• (λT )∗ = λT ∗,

• (UT )∗ = T ∗U∗

for all T, S ∈ L (X,Y ), U ∈ L (Y,Z) and λ ∈ K. Hence, taking the adjoint is a linear operation in
L (X,Y ). Some properties of T naturally translate into properties of T ∗. For example, using the Open
Mapping Theorem, one can show that if X and Y are Banach spaces (completeness is here essential), then
T ∈ L (X,Y ) is surjective if and only if T ∗ is one-to-one and has a norm closed range (see [W. Rudin,
Functional analysis; Thm. 4.15]). In Problem 4.13 we want to show some easier, basic properties. For any
subspaces M ⊆ X and N ⊆ X∗, we define their annihilator and preannihilator by

M⊥ = {x∗ ∈ X∗ : 〈x, x∗〉 = 0 for all x ∈M}, ⊥N = {x ∈ X : 〈x, x∗〉 = 0 for all x∗ ∈ N}.

Problem 4.11. Let X, Y be normed spaces and T ∈ L (X, Y ). Show that T ∗ defined
above is the unique bounded linear operator satisfying equation (1) and that ‖T‖ = ‖T ∗‖.

Problem 4.12. Given an operator T ∈ L (X), determine T ∗ in the following cases:

(a) X = C[0, 1], Tf = f ◦ ϕ, where ϕ : [0, 1]→ [0, 1] is a fixed continuous map,

(b) X = L2[0, 1], Tf = fg, where g ∈ L∞[0, 1] is fixed,

(c) X = `2, T (x1, x2, . . .) = (0, x1, x2, . . .).
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Problem 4.13. Let X and Y be normed spaces and T ∈ L (X, Y ). Verify that

kerT ∗ = T (X)⊥ and kerT = ⊥T ∗(Y ∗).

Conclude that if X ∼ Y , then X∗ ∼ Y ∗. Also, notice that an operator S ∈ L (X) is invertible
if and only if S∗ ∈ L (X∗) is invertible and that we have

σ(S) = σ(S∗).

Problem 4.14. Show that for each n ∈ Z there exists a Fredholm operator T ∈ L (`2)
with Fredholm index i(T ) = n.

Problem 4.15. Let 1 ≤ p ≤ ∞ and let L and R stand for the left and right shift
operator on the complex Banach space `p, respectively, i.e. L(x1, x2, . . .) = (x2, x3, . . .) and
R(x1, x2, . . .) = (0, x1, x2, . . .). Show that:

(i) σp(L) = D;

(ii) σp(R) = ∅;

(iii) σ(L) = σ(R) = D.

(D is the open unit disc.)

Problem 4.16. Let X be a Banach space and T, S ∈ L (X).

(a) Give an example which shows that ST = I does not imply that TS = I.

(b) Assume that T ∈ K (X). Show that S(I − T ) = I if and only if (I − T )S = I, and that
each of these equalities implies that the operator I − (I − T )−1 is compact.

Recall that if X and Y are Banach spaces, then an operator from L (X,Y ) is invertible if and only if it
is bounded below and its range is dense in Y . The part of the spectrum of T ∈ L (X,Y ) consisting of
those numbers λ ∈ K for which T − λI is not bounded below is called the approximate spectrum of T , and
denoted by σap(T ). Notice that λ ∈ σap(T ) if and only if there exists a sequence (xn)∞n=1 ⊂ SX such that
Txn − λxn → 0, which justifies calling every element of σap(T ) an approximate eigenvalue of T .

Problem 4.17. Let X be a Banach space and T ∈ L (X). Show that

∂σ(T ) ⊆ σap(T ).

Problem 4.18. Let 1 ≤ p ≤ ∞ and let (an)∞n=1 be an increasing sequence of positive
numbers with r = limn→∞ an < ∞. Define an operator on the complex Banach space `p,
A ∈ L (`p) by

A(x1, x2, . . .) = (0, a1x1, a2x2, . . .).

Show that:

(i) σ(A) = {λ ∈ C : |λ| ≤ r};
(ii) σp(A) = ∅;

(iii) σap(A) = ∂σ(A);

(iv) if |λ| < r, then the range of A− λI is closed and has codimension 1.
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Problem 4.19. Consider the multiplication operator T ∈ L (L2[0, 1]) given by the formula
Tf(t) = tf(t). Show that:

(i) σp(T ) = ∅;

(ii) σ(T ) = σap(T ) = [0, 1].

Problem 4.20. Find an operator T ∈ L (`2) such that σ(T ) = {0, 1} and σp(T ) = ∅.

Problem 4.21. Prove that

c0
1
↪−→ K (`2), `2

1
↪−→ K (`2), `∞ 6↪−→ K (`2).

Problem 4.22. Let X and Y be Banach spaces. Show that an operator T ∈ L (X, Y ) is
Fredholm if and only if there exists S ∈ L (Y,X) such that both (TS − I) and (ST − I) are
compact.

The solution of Problem 4.22 basically shows that every Fredholm operator T ∈ L (X,Y ) admits the following
‘block matrix’ decomposition: there are closed subspaces X0 ⊆ X and Y1 ⊆ Y such that X = kerT ⊕ X0,
Y = T (X)⊕ Y1, T0 := T |X0 is an isomorphisms from X0 onto T (X) and hence T can be written in a matrix
form as

T =

(
T0 0
0 0

)
.

You can use this decomposition, as well as the assertion of Problem 4.9, to obtain the stability effect for
Fredholm operators formulated in Problem 4.23.

For any T ∈ L (X), we define its essential spectrum by

σess(T ) = {λ ∈ K : T − λI is not a Fredholm operator}.

Since K (X) is a closed subspace of L (X), we can consider the quotient space C (X) = L (X)/K (X)
equipped with the distance norm, that is,

‖π(A)‖ = inf{‖A+K‖ : K ∈ K (X)} (A ∈ L (X)),

where π : L (X) → C (X) is the canonical quotient map. In this way, C (X) becomes a Banach space and
since K (X) is a two-sided ideal in L (X), it also has a natural algebra structure (in fact, a Banach algebra
structure, i.e. the norm is submultiplicative) and we call C (X) the Calkin algebra. Now, notice that the
assertion of Problem 4.22 can be restated as follows: an operator T ∈ L (X) is Fredholm if and only if π(T )
is invertible in the Calkin algebra C (X) and, moreover, σess(T ) = σ(π(T )), where at the right-hand side we
have the usual spectrum with respect to the algebra C (X), i.e. the set of those λ ∈ K for which π(T )−λπ(I)
is not invertible in this algebra.

Problem 4.23. Let X, Y be Banach spaces and T ∈ L (X, Y ). Show that there is ε > 0
such that every operator S ∈ L (X, Y ) satisfying ‖S − T‖ < ε is Fredholm and i(S) = i(T ).

Problem 4.24. Show that the formula

Tf(x) = f(x) +

∫ x

0

f(t) dt

defines an isomorphism of C[0, 1] onto itself.
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Problem 4.25. Let µ be a σ-finite positive measure on a measure space Ω and let µ⊗ µ
be the product measure on Ω× Ω. Assume that K ∈ L2(µ⊗ µ), λ ∈ C, λ 6= 0 and consider
the equation

(∗) λf(t)−
∫
Ω

K(t, s)f(s) dµ(s) = g(t).

Prove that either for every g ∈ L2(µ) equation (∗) has a unique solution f ∈ L2(µ), or for
some g ∈ L2(µ) it has infinitely many solutions in L2(µ), while for some other g it has no
solution in L2(µ).

Problem 4.26. Let a ∈ R, a 6= 0 and τ > 0. Prove that for any fixed real-valued function
u ∈ C[0, τ ] the integral equation

x(t) = u(t) +

∫ t

0

x(s) ds (0 ≤ t ≤ τ)

has a unique continuous solution x : [0, τ ]→ R. Determine that solution.

Problem 4.27. Let X be a complex Banach space and {Tj : 1 ≤ j ≤ m} ⊂ L (X) be
a finite family of commuting operators, that is, TiTj = TjTi for all 1 ≤ i, j ≤ m. Show that
there exist complex numbers λ1, . . . , λm and a sequence (xn)∞n=1 ⊂ SX such that

lim
n→∞

‖Tjxn − λjxn‖ = 0 for every 1 ≤ j ≤ m.
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