
Functional analysis — Exercises
∗

Part 5: Inner product spaces and Hilbert spaces; the projection theorem;
Gram–Schmidt orthogonalization; adjoint operators

When dealing with Hilbert spaces, by an adjoint operator we mean the adjoint operator in the Hilbert space
theoretical setting. This is slightly different from the notion of adjoint operator between Banach spaces which
we have already introduced in Part 4 (see the remarks before Problem 4.11). It is not difficult to show (see
Problem 5.16) that given any operator T ∈ L (H,K) between Hilbert spaces H and K, there exists a unique
operator T ∗ ∈ L (K,H) such that

(Tx, y)K = (x, T ∗y)H

(at the left-hand side we have the inner product in K, at the right-hand side the inner product in H), and this
operator we call the adjoint of T . This definition looks like exactly the same as the one given for operators on
Banach spaces. Note, however, that in this case T ∗ acts formally between K and H, not K∗ and H∗. Recall
that by the Riesz representation theorem, the dual of any Hilbert space can be isometrically identified with
the space itself. Hence, we applied the earlier definition of adjoint with suitably identifying H ∼= H∗ and
K ∼= K∗.

In particular, for any T ∈ L (H), we have T ∗ ∈ L (H), so it makes sense to speak about self-adjoint
operators between Hilbert spaces, that is, operators for which T = T ∗. In the finite-dimensional case H = Kn,
K = Km, every operator T ∈ L (Kn,Km) can be represented by an m×n matrix from Mm,n(K) with respect
to arbitrarily chosen orthonormal bases. Then, taking the adjoint T ∗ corresponds to taking the transposed
matrix if K = R, whereas in the case K = C it corresponds to the conjugate transpose (or Hermitian
transpose): (ai,j)

∗ = (aj,i)
For any operators T, S ∈ L (H) we have:

• T ∗∗ = T , where the second adjoint is defined as T ∗∗ = (T ∗)∗,

• (T + S)∗ = T ∗ + S∗,

• (λT )∗ = λT ∗,

• (UT )∗ = T ∗U∗.

Notice that the operation T 7→ T ∗, in the Hilbert space theoretic setting, is conjugate linear, while in the
Banach space theoretic setting it was simply linear. It should be clear from the context that whenever
speaking about operators between Hilbert spaces, any adjoint in understood in the way described above.

Problem 5.1. Let H be a Hilbert space and T ∈ L (H). Show that

ker T = T ∗(H)⊥ and ker T ∗ = T (H)⊥.

(The objects at the righ-hand sides can be equivalently understood as annihilators, as well
as orthogonal complements.)

Problem 5.2. Let X be an inner product space over K. Show that the following polar-
ization formulas hold true:

• (x, y) = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
if K = R,

• (x, y) = 1
4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
if K = C.

Problem 5.3. Using the polarization identities prove the following Jordan–von Neumann
theorem: If (X, ‖ · ‖) is a real or complex normed space which satisfies the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (x, y ∈ X),

then X is an inner product space, that is, there exists an inner product (· , ·) on X such that
(x, x) = ‖x‖2 for every x ∈ X.

∗
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Problem 5.4. Prove that in any inner product space, the following generalized parallelo-
gram law holds true: ∑

εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥2 = 2n
n∑
i=1

‖xi‖2.

Problem 5.5. Apply the Gram–Schmidt orthogonalization process to the three vectors
{1, x, x2} in the Hilbert space L2([−1, 1]). Use it to find the distance from x3 to lin{1, x, x2},
that is, compute

min
a,b,c∈C

∫ 1

−1

∣∣x3 − a− bx− cx2∣∣2 dx.

The Gram–Schmidt process applied to the sequence of monomials {1, x, x2, x3, . . .} yields the so-called Leg-
endre polynomials (Pn)∞n=0. The usual convention is that they are normalized by the condition Pn(1) = 1
and then we have P0(x) = 1, P1(x) = x and the recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (n ≥ 1).

Problem 5.6. In the Hilbert space L2[0, 1] we consider the subspace

V =
{
f ∈ L2[0, 1] :

∫ 1

0

tf(t) dt = 0 and

∫ 1

0

t3f(t) dt = 0
}
.

Determine PV (g) and dist(g, V ), where g(t) = t2 and PV : L2[0, 1] → V is the orthogonal
projection onto V .

Problem 5.7. In the two-dimensional Hilbert space R2 we define subspaces

M = {(x, 0) ∈ R2 : x ∈ R}, N = {(x, x tan θ) : x ∈ R},

where θ ∈ (0, π
2
) is a fixed angle. Find a formula for a projection Eθ : R2 → R2 satisfying

Eθ(R2) = M and ker(Eθ) = N . Show that ‖Eθ‖ = 1/ sin θ.

Problem 5.8. Let H be a Hilbert, T ∈ L (H) and suppose that the range of T is one-
dimensional. Show that there are vectors x, y ∈ H such that

Tz = (z, x)y (z ∈ H).

We denote such an operator by y ⊗ x. Determine T ∗.

Problem 5.9. Let H be a Hilbert space and P ∈ L (H). Show that P is an orthogonal
projection onto a closed subspace of H if and only if P is a self-adjoint idempotent, i.e.
P 2 = P = P ∗.

Problem 5.10. Show that the sequence of functions (fn)∞n=1 given by fn(t) = n2te−nt is
pointwise convergent on [0, 1] but it is not convergent in the space L2[0, 1].

Let H be a Hilbert space. An operator U ∈ L (H) is called a unitary operator provided that U is invertible
and U−1 = U∗, in other words, UU∗ = I = U∗U . Two operators S, T ∈ L (H) are called unitarily equivalent
if there exists a unitary operator U ∈ L (H) such that USU∗ = T . Unitary operators are exactly Hilbert
space automorphisms, or equivalently: surjective isometries, as it is stated in the next problem. Of course,
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one can also consider unitary operators between two different Hilbert spaces as bounded linear isomorphisms
which preserve inner products.

One of the most important example of a unitary operator is the one given by Fourier coefficients with
respect to the trigonometric system. Namely, on the Hilbert space L2([0, 2π], (2π)−1dt) (the normalized
Lebesgue measure) we define an operator Φ into the Hilbert space

`2(Z) =
{

(an)+∞n=−∞ ⊂ C :

+∞∑
n=−∞

|an|2 <∞
}

by the formula

Φ(f) =
(
f̂(n)

)∞
n=−∞, where f̂(n) = (f, eint) =

1

2π

∫ 2π

0

f(t)e−int dt.

However, in order to show that Φ is unitary, we need to know that the trigonometric system (eint)∞n=−∞ is
complete, i.e. it forms an orthonormal basis of L2([0, 2π],dt/2π).

Problem 5.11. Let H be a Hilbert space and U ∈ L (H). Show that the following
assertions are equivalent:

(i) U is unitary,

(ii) U is surjective and (Ux, Uy) = (x, y) for all x, y ∈ H,

(iii) U is surjective and ‖Ux‖ = ‖x‖ for every x ∈ H.

Problem 5.12. Let R ∈ L (`2) be the forward shift on the Hilbert space `2. Verify that
R∗R = I although R is not unitary as it is not surjective.

Problem 5.13. Let (X,M, µ) be a measure space and Mϕ ∈ L (L2(µ)) be a multiplication
operator defined by Mϕ(f) = ϕ · f , where ϕ ∈ L∞(µ). Determine the spectrum σ(Mϕ) and
all functions ϕ for which Mϕ is unitary.

Problem 5.14. Let (X,M, ν) be a σ-finite measure space and (En)∞n=1 be a collection of
pairwise disjoint measurable sets with ν(En) <∞ for each n ∈ N. Define µ on M by

µ(A) =
∞∑
n=1

ν(A ∩ En)

2n(ν(En) + 1)
.

Show that for any A ∈ M, µ(A) = 0 if and only if ν(A) = 0, which means that µ� ν and
ν �µ. Find the Radon–Nikodym derivatives dµ/dν and dν/dµ. Notice that the latter one is
not µ-integrable but only ‘locally’ integrable, i.e. integrable on every set of finite µ-measure.

Problem 5.15. The Rademacher sequence (rk)
∞
k=0 of functions on [0, 1] is defined by the

formula
rk(t) = sgn (sin 2kπt),

that is,

rk(t) =


1 for t ∈

2k−1⋃
s=1

[2s−2
2k
, 2s−1

2k
)

−1 for t ∈
2k−1⋃
s=1

[2s−1
2k
, 2s
2k

).

Verify that (rk)
∞
k=0 is an orthonormal set in L2[0, 1] but it does not form an orthonormal

basis.
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Problem 5.16. Let H and K be Hilbert spaces over K and suppose that ψ : H×K → K is
a bounded sesquilinear form, i.e. ψ is linear in the first variable, conjugate linear in the second
variable and there is a constant C <∞ such that |ψ(x, y)| ≤ C‖x‖‖y‖ for all (x, y) ∈ H×K.
Prove that there exists a unique operator T ∈ L (H,K) such that

ψ(x, y) = (Tx, y)K (x ∈ H, y ∈ K).

Problem 5.17. Suppose H is a Hilbert space and T ∈ L (H) satisfies (Tx, x) ≥ ‖x‖2 for
each x ∈ H. Prove that T is an isomorphism of H onto itself.

Problem 5.18. Define

Wn =
{
z0 + z1t+ . . .+ znt

n : zi ∈ C for 0 ≤ i ≤ n
}

as the vector space of complex polynomials of real variable t, with degree not greater than
n ∈ N. We equip Wn with an inner product defined by

(P,Q) =

∫ ∞
0

P (t)Q(t)e−t dt.

(a) Find an orthonormal basis of W2.

(b) Determine P (g), where g(t) = t2 and P is the orthogonal projection from W2 onto W1.

Problem 5.19. Let H be an infinite-dimensional Hilbert space. Show that there exists
a continuous one-to-one mapping γ : [0, 1]→ H such that

(γ(b)− γ(a)) ⊥ (γ(d)− γ(c)) for all 0 ≤ a ≤ b ≤ c ≤ d ≤ 1.

(We call γ a curve with orthogonal increments.)

Problem 5.20. Let M be a dense subspace of a Hilbert space H and T ∈ L (M,H) be
a self-adjoint, positive semidefinite operator, i.e. (Tx, x) ≥ 0 for every x ∈ M . Prove that
the following assertions are equivalent:

(a) T (M) = H;

(b) kerT = {0};
(c) (Tx, x) > 0 for every x ∈M , x 6= 0.

Problem 5.21. Let X be an inner product space, ∅ 6= M ⊆ X and let x0 ∈ X.

(a) Prove that if y ∈ M satisfies (x0 − y, z − y) ≤ 0 for every z ∈ M , then y is smallest
distance projection of x0, that is, dist(x0,M) = ‖x0 − y‖.
(b) Assuming that M is a linear subspace of X, prove that

‖x0 − y‖ = dist(x0,M) ⇐⇒ (x0 − y, z − y) = 0 for every z ∈M.

(c) For any w ∈ X, w 6= 0 and α ∈ K consider the hyperplane Hw,α = {x ∈ X : (w, x) = α}.
Show that the orthogonal projection Πw,α of X onto Hw,α is given by

Πw,α(x) = x+
α− (w, x)

‖w‖2
w (x ∈ X).
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Problem 5.22. Let (xn)∞n=1 be an orthonormal basis of a Hilbert space H and assume
that (yn)∞n=1 ⊂ H is an orthonormal sequence satisfying

∞∑
n=1

‖xn − yn‖2 <∞.

Show that (yn)∞n=1 is a basis of H.

Problem 5.23. Prove that the duality Lp(µ)∗ ∼= Lq(µ) described in Theorem 6.6 holds
true for 1 < p, q <∞ satisfying 1

p
+ 1

q
= 1, and for an arbitrary positive measure µ. To this

end, show first that every Λ ∈ Lp(µ)∗ ‘lives on’ a σ-finite set in the following sense: there
exists a sequence (En)∞n=1 of sets of finite measure such that for every f ∈ Lp(µ) vanishing
on
⋃∞
n=1En we have Λf = 0.

Problem 5.24. Let M be a σ-algebra of subsets of X and µ, ν be probability mea-
sures on M. Using the Radon–Nikodym theorem prove that if for some α ∈ (0, 1) we have
|αµ− (1− α)ν|(X) = 1, then µ ⊥ ν.

The next three problems concern the so-called Bergman space defined as follows. Let D = {z ∈ C : |z| < 1}
be the open unit disc and let L2

a(D) be the set of all complex analytic functions f on D satisfying∫
D
|f(z)|2 dA

π
<∞,

where dA is the two-dimensional Lebesgue measure, so dA/π is the normalized area measure on the disc D.
We equip L2

a(D) with usual pointwise operations and the standard L2-norm, as every element of L2
a(D) is

a representatie of an element of the Hilbert space L2(D,dA/π). Hence, L2
a(D) also inherits the inner product

(f, g) =

∫
D
f(z)g(z)

dA

π
.

Problem 5.25. Using the Cauchy integral formula show that every analytic function on
a closed disc D(a,R) satisfies the formula

f(a) =
1

πR2

∫
B(a,R)

f dA.

Conclude that for every f ∈ L2
a(D) and any z ∈ D we have

|f(z)| ≤ 1

1− |z|
‖f‖L2

a(D)
.

Problem 5.26. Using the estimate in Problem 5.25 prove that L2
a(D) is a Hilbert space.

Problem 5.27. In the Bergman space consider the functions defined by en =
√
n+ 1zn

for n = 0, 1, 2, . . . Show that (en)∞n=0 is an orthonormal basis of L2
a(D).
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Problem 5.28. Let M be a finite-dimensional subspace of L2[0, 1] and assume that there
exists a constant c > 0 such that ‖f‖2 ≥ c‖f‖∞ for every f ∈ M , where at the right-hand
side we have the norm in L∞[0, 1]. Prove that

dimM ≤ 1

c2
.

Problem 5.29. Determine whether it is true that in any inner product space (not neces-
sarily complete) every maximal orthonormal set must be linearly dense.

We know from Theorem 5.13 that if {eα} is an orthonormal set in a Hilbert space H, then {eα} is total (i.e.
linearly dense, lin{eα} = H) if and only if it is maximal. It is easily seen that one implication holds true
in every inner product space. Namely, if {eα} is total, then it must be maximal, in other words, it forms
an orthonormal basis. However, when proving the converse we build a certain series and use the completeness
of H to conclude that its sum actually lives in H. So, the question asked above is whether one can avoid
assuming completeness.

Problem 5.30. Prove that the Hilbert matrix (aij)0≤i,j<∞ given by

aij =
1

i+ j + 1
(0 ≤ i, j <∞)

defines a bounded linear operator on `2 of norm not exceeding π. In other words, there exists
T ∈ L (`2) such that

T (x0, x1, x2, . . .) =
( ∞∑
j=0

a0jxj,
∞∑
j=0

a1jxj, . . .
)

for every (xn)∞n=0 ∈ `2

and ‖T‖ ≤ π.

In fact, one can show that ‖T‖ = π. When solving this problem one should first derive the following Schur
criterion: Let (αij)0≤i,j<∞ be an infinite matrix of nonnegative numbers and assume that there exist positive
sequences (pi)

∞
i=0, (qj)

∞
j=0 and β, γ > 0 such that

∑
i αijpi ≤ βqj for each j = 0, 1, 2, . . . and

∑
j αijqj ≤ γpi

for each i = 0, 1, 2, . . . Then, the matrix (αij)0≤i,j<∞ corresponds to an operator A ∈ L (`2) satisfying
‖A‖ ≤

√
βγ.
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