
Functional analysis — Exercises
∗

Part 6: The Banach–Steinhaus, open mapping and closed graph theorems;
Completeness of the trigonometric system in L2[0, 2π]; Fourier series;
Fourier transform

Recall that a subset A of a topological space X is called nowhere dense if its closure has empty interior, i.e.
intA = ∅. A set B ⊂ X is called a set of first category (or meager), provided that B =

⋃∞
n=1An, where

each An is nowhere dense. If B is not of first category, we call it a set of second category. Therefore, any
topological space X can be either of first category in itself, which means that we can express it as a countable
union of nowhere dense sets, or of second category in itself. The Baire category theorem says that every
complete metric space, in particular, every Banach space, is of second category in itself.

It is easy to show that the collection of first category subsets of X forms a σ-ideal, that is, it is closed
under taking subsets and countable unions. Note also the following useful characterization which can be
proved easily by de Morgan’s laws: A set A ⊂ X is of first category if and only if its complement is the
intersection of countable many sets with dense interiors.

Problem 6.1. Let 1 ≤ p < q <∞. Show that for each r > 0 the set

{f ∈ Lq[0, 1] : ‖f‖q ≤ r},

as a subset of the space (Lp[0, 1], ‖ · ‖p), is closed and has empty interior. Conclude that
Lq[0, 1] is a first category subset of (Lp[0, 1], ‖ · ‖p).

Problem 6.2. Using the Baire category theorem show that Q is not a Gδ subset of R.
More generally, if X is a complete metric space without isolated points, then there are no
countable dense Gδ subsets of X.

Problem 6.3. Show that an infinite-dimensional Banach space cannot have a countable
Hamel basis.

Problem 6.4. Let X be a normed space, Y be a Banach space and Λn ∈ L (X, Y ) for
n ∈ N. Suppose that there exists a dense subset D ⊆ X such that the sequence (Λnx)∞n=1

is norm convergent in Y for each x ∈ D. Prove that (Λn)∞n=1 is pointwise convergent on the
whole of X.

Problem 6.5. Let (X, ‖ · ‖) be an infinite-dimensional normed space.

(a) Construct an unbounded injective linear operator from (X, ‖ · ‖) onto itself.

(b) Define a new norm on X by ‖x‖T = ‖Tx‖ and show that (X, ‖ · ‖) and (X, ‖ · ‖T ) are
isometrically isomorphic, even though the topologies induced by ‖ · ‖ and ‖ · ‖T are different.

Problem 6.6. Prove that on every infinite-dimensional (real or complex) vector space one
can define an incomplete norm.

Problem 6.7. Let X and Y be Banach spaces and T : X → Y be a linear operator. Show
that T is bounded if and only if y∗ ◦ T ∈ X∗ for every y∗ ∈ Y ∗.

∗
Evaluation: =2pt, =3pt, =4pt



Problem 6.8. Let Y and Z be closed linear subspaces of a Banach space X such that
Y ∩ Z = {0} and Y + Z = X. Show that

inf
{
‖y − z‖ : y ∈ SY , z ∈ SZ

}
> 0.

Problem 6.9. Let
∑∞

n=1 xn be a series in a Banach space X whose every subseries is
weakly convergent. Prove that

sup
x∗∈BX∗

∞∑
n=1

|〈xn, x∗〉| <∞.

We denote by T the unit circle. Any function F : T → C is identified with a 2π-periodic function on the
real line R given by f(t) = F (eit). In particular, any f ∈ C(T) can be regarded naturally as a continuous
2π-periodic function on R. Similarly, we identify Lp(T) with Lp[−π, π] or Lp[0, 2π], but keep in mind that our
convention is to consider normalized Lebesgue measures. For example, Lp[−π, π] stands here for the space
Lp(µ), where the measure µ on [−π, π] is given by dµ = (2π)−1 dx.

For any f ∈ L1(T) we define its Fourier coefficients with respect to the trigonometric orthonormal system
(einx : n ∈ Z) (which happens to be complete in the Hilbert space L2[0, 2π] due to Fejér’s theorem):

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inx dx (n ∈ Z).

Recall that the partial Fourier sum sN (f ;x) =
∑N
n=−N f̂(n)einx can be expressed as the integral

sN (f ;x) =
1

2π

∫ 2π

0

f(t)DN (x− t) dt =
1

2π

∫ 2π

0

f(x− t)DN (t) dt,

where (DN (t))∞N=1 if the Dirichlet kernel, that is, a sequence of real-valued functions on R defined as

DN (t) =

N∑
n=−N

eint =
sin
(
N + 1

2

)
t

sin t
2

.

For any f ∈ L1(R) we define its Fourier transform by the formula

f̂(ξ) =
1√
2π

∫
R
f(t)e−iξt dt

and then f 7→ f̂ maps L1(R) into the Banach space C0(R) of continuous functions vanishing at infinity.
Recall also that if f, g ∈ L1(R), then the formula

f ∗ g(x) =
1√
2π

∫
R
f(x− y)g(y) dy =

1√
2π

∫
R
f(y)g(x− y) dy

defines the convolution of f and g which is again a function from L1(R) satisfying ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Problem 6.10. Show that a function f ∈ L1(T) is real-valued if and only if

f̂(n) = f̂(−n) for every n ∈ Z.

Problem 6.11. Let f : R→ R be a continuous function of period 1. Show that for every
α ∈ R \Q we have

lim
N→∞

N∑
n=1

f(nα) =

∫ 1

0

f(t) dt.
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Problem 6.12. Give an example of a Banach space which contains two dense (obviously
not closed) linear subspaces Y and Z such that Y ∩ Z = {0}.

Problem 6.13. Let f ∈ C(T).

(a) Suppose that f(0) = 0 and f is differentiable at 0. Show that

g(x) :=
f(x)

e−ix − 1
∈ C(T)

and
N∑

n=−N

f̂(n) = ĝ(N + 1)− ĝ(−N) for every N ∈ N.

Conclude that sN(f ; 0)→ f(0).

(b) Show that if f is differentiable at a point x, then

lim
N→∞

N∑
n=−N

f̂(n)einx = f(x).

Problem 6.14. Show that the L1-norms (under the normalized Lebesgue measure on
[−π, π]) of the Dirichlet kernel (Dn(t))∞n=1 satisfy

‖Dn‖1 < 3 +
4

π2

n∑
k=1

1

k
.

Recall that we have shown (Lemma 8.7) that the L1-norms of the Dirichlet kernel satisfy the lower estimate

4

π2

n∑
k=1

1

k
< ‖Dn‖1

which, of course, implies that ‖Dn‖1 → ∞. This was a crucial property for answering negatively the two
important questions: (a) Is the Fourier series of any function f ∈ C(T) convergent pointwise at each point?

(b) Is the map L1(T) 3 f 7→ (f̂(n))n∈Z onto c0(Z)?

Problem 6.15. By considering the Fourier series of a suitable continuous periodic func-
tion, prove the following formula:

∞∑
n=1

cos 2πnx

n2
= π2

(
x2 − x+

1

6

)
for every x ∈ [0, 1].

You are allowed to use the criterion of pointwise convergence of (sn(f ;x))∞n=1 given in Problem 6.13, namely,
that the Fourier series converges to the value of a given function f at every point of differentiability of f .

Problem 6.16. Calculate the Fourier transform f̂ for the following functions:

(a) f(x) = e−a|x| (a > 0),

(b) f(x) = 1[−L,L](x) (L > 0),

(c) f(x) =

{
L− |x| for |x| ≤ L

0 for |x| > L.
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Problem 6.17. For any f ∈ L1(R) consider a function g(x) = −ixf(x). Show that if

g ∈ L1(R), then the Fourier transform f̂ is differentiable and satisfies

f̂ ′ = ĝ.

Problem 6.18. Let f(x) = e−1/x
2

for x ∈ R. Show that both f and f̂ satisfy the same

differential equation f ′ + xf = 0 and conclude that f̂ = f .

Problem 6.19. Let X and Y be Banach spaces and T ∈ L (X, Y ) be a surjective operator.
Show that there exists ε > 0 such that for every S ∈ L (X, Y ) satisfying ‖T − S‖ < ε the
range S(X) is dense in Y .

Problem 6.20. Let n1 < n2 < . . . be a strictly increasing sequence of natural numbers
and define E to be the set of all x ∈ [0, 2π] for which the sequence (sinnkx)∞k=1 is convergent.
Using the Riemann–Lebesgue lemma show that E is of Lebesgue measure zero.

Problem 6.21. Mimicking the original proof of the Banach–Steinhaus theorem prove the
following version of the uniform boundedness principle on compact convex sets: Let X and
Y be normed spaces, K ⊂ X be a compact convex set and {Tα : α ∈ A} ⊂ L (X, Y ) be
a family of operators such that

sup
α∈A
‖Tαx‖ <∞ for every x ∈ K.

Then there exists a bounded set B ⊂ Y such that Tα(K) ⊆ B for every α ∈ A.

According to Theorem 8.6, for every x0 ∈ R there exists a dense Gδ subset E of the Banach space C(T)
such that for every f ∈ E the Fourier series of f is divergent at x0. More precisely, for every f ∈ E we
have supn |sn(f ;x0)| = ∞. Using the Baire category theory one can strengthen this result in the way that
for a large set of continuous functions the Fourier series diverges in uncountably many points. This is the
content of the next problem.

Problem 6.22. Show that there exists a dense Gδ set E ⊂ C(T) such that for every f ∈ E
the set {

x ∈ R : sup
n
|sn(f ;x)| =∞

}
is a dense Gδ subset of R.

Problem 6.23. Define D to be the set of all functions in C[0, 1] for which there is at least
one point x ∈ [0, 1) such that the right derivative f ′+(x) exists and is finite. Show that D is
a set of first category in C[0, 1]. Hence, by the Baire category theorem, the set of nowhere
differentiable continuous functions on [0, 1] is of second category.

Problem 6.24. For any f ∈ L2(T) and n ∈ N define

Λnf =
n∑

k=−n

f̂(k).

Show that the set of those f ∈ L2(T) for which the sequence (Λnf)∞n=1 is convergent is a dense
subset of first category in L2(T). Therefore, the set of functions in L2(T) for which the series
of Fourier coefficients is divergent is of second category.
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Problem 6.25. Let X be a closed subspace of C[0, 1] such that every function in X is
continuously differentiable on [0, 1]. Show that dimX <∞.

Problem 6.26. Let 1 ≤ p < ∞ and let X be a closed subspace of Lp[0, 1] which is
contained in L∞[0, 1]. Show that dimX <∞ (cf. Problem 5.28).

Problem 6.27. Let X be a Banach space and (xn)∞n=1 ⊂ X. Suppose that for some
1 ≤ p < ∞ we have T (x∗) := (〈xn, x∗〉)∞n=1 ∈ `q for every x∗ ∈ X∗, where 1

p
+ 1

q
= 1. Prove

the following assertions:

(i) T ∈ L (X∗, `q);

(ii) the series
∑∞

n=1 cnxn converges unconditionally (i.e.
∑∞

n=1 cσ(n)xσ(n) converges in norm
for every permutation σ of N) for each (cn)∞n=1;

(iii) U ∈ L (`p, X), where U((cn)∞n=1) =
∑∞

n=1 cnxn;

(iv) T = U∗.

Problem 6.28. Let X be an infinite-dimensional Banach space and {xi : i ∈ I} be a Hamel
basis of X, so that every x ∈ X can be written uniquely as a finite linear combination
x =

∑
i∈I αi(x)xi (that is, αi(x) 6= 0 for finitely many i’s). Each map x 7→ αi(x) is a linear

funtional X and {αi : i ∈ I} is the family of coordinate functionals associated with the Hamel
basis {xi : i ∈ I}.
(a) Show by example that it is possible that αi ∈ X∗ (i.e. αi is continuous) for some particular
index i ∈ I.

(b) Define I ′ = {i ∈ I : αi ∈ X∗}; show that supi∈I′ ‖αi‖ <∞.

(c) Show that the set I ′ is finite.

Problem 6.29. Give an example of an infinite-dimensional normed space which possesses
a Hamel basis for which all the coordinate functionals are continuous. (In view of the previous
problem, such a space cannot be complete.)

Problem 6.30. For each n ∈ N calculate the convolution 1[−n,n] ∗ 1[−1,1]. Prove that it is
the Fourier transform of a certain function fn ∈ L1(R) which can be expressed as

fn(x) = cn ·
sinx · sinnx

x2

with some constant cn. Show that ‖fn‖1 →∞.

It follows that the Fourier transform f 7→ f̂ maps L1(R) onto a proper subspace of C0(R) (i.e. it is not

surjective likewise the map L1(T) 3 f → (f̂(n))n∈Z ∈ c0(Z)).

Problem 6.31. Let f ∈ C(T) and (sn(f ;x))∞n=1 be the sequence of partial sums of the
Fourier series of f at a point x ∈ R. Prove that sn(f ;x)/ log n converges uniformly to zero,
that is,

lim
n→∞

‖sn(f)‖∞
log n

= 0.

On the other hand, show that for every sequence (λn)∞n=1 ⊂ R with λn/ log n→ 0 there exists
f ∈ C(T) such that the sequence (sn(f ; 0)/λn)∞n=1 is unbounded.
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Problem 6.32. We say that a sequence (γn)n∈Z of complex numbers has a multiplier
property, provided that for every function f ∈ C(T) there exists Λf ∈ C(T) satisfying

Λ̂f(n) = γnf̂(n) for each n ∈ Z.

Prove that (γn)∞n=1 has the multiplier property if and only if there exists a complex Borel
measure µ on T such that

γn =

∫
T

zn dµ(z).

(The last integral can be also written as
∫
[0,2π)

einθ dµ(θ) provided we identify every complex

number z = eiϕ ∈ T with the angle ϕ ∈ [0, 2π) and redefine µ correspondingly.)

Problem 6.33. Let f ∈ L1(R) ∩ L2(R). Prove the following inequality which can be
interpreted as a quantitative version of Heisenberg’s uncertainity principle:

‖f‖2L2(R) ≤ 4π · inf
y∈R

(∫
R
|x− y|2|f(x)|2 dx

)1/2
· inf
z∈R

(∫
R
|ξ − z|2

∣∣∣f̂(ξ)
∣∣∣2 dξ

)1/2
.
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