Functional analysis - Exam (problem-solving part)

- Duration: 120 minutes.
- Solutions can be written either in English or Polish.
- You do not have to write different solutions on separate sheets.
- Each sheet should be signed.

Problem 1. Let $C^{(1)}[0,1]$ be the space of real-valued continuously differentiable functions on $[0,1]$ equipped with the standard norm

$$
\|f\|_{1}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ is the usual the supremum norm. Let $T:\left(C^{(1)}[0,1],\|\cdot\|_{1}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be an operator defined by

$$
T f(x)=f^{\prime}(x)+x^{2} f(x)
$$

Prove that T is a Fredholm operator and find its Fredholm index.
Hint. The corresponding differential equation can be solved explicitly by considering first its homogeneous form and then treating the constant of integration as a variable.

Problem 2. In the Hilbert space $L_{2}[0,1]$ consider the subspace

$$
V=\left\{f \in L_{2}[0,1]: \int_{0}^{1} f(t) \mathrm{d} t=0 \text { and } \int_{0}^{1} t f(t) \mathrm{d} t=0\right\} .
$$

Let $P: L_{2}[0,1] \rightarrow V$ be the orthogonal projection onto V. Calculate $P(g)$ for the function $g(t)=t^{2}$.
[10 points]

Problem 3. Suppose X is a closed subspace of the real Banach space $C[0,1]$ such that every function in X is continuously differentiable. Prove that X is finite-dimensional. [15 points] Hint. Apply the closed graph theorem to a suitable operator.

Problem 4. It is known that every function $f \in C(\mathbb{T})$ (which can be identified with a continuous 2π-periodic function on \mathbb{R}), differentiable at a given point $x \in \mathbb{R}$ can be expressed as the sum of its Fourier series at that point x. In other words, if f is differentiable at x, then

$$
\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \widehat{f}(n) e^{\mathrm{i} n x}=f(x)
$$

Using this fact prove the formula

$$
\sum_{n=1}^{\infty} \frac{\cos 2 \pi n x}{n^{2}}=\pi^{2}\left(x^{2}-x+\frac{1}{6}\right)
$$

for every $x \in[0,1]$.

