## Solutions

1. (a) Using the dualities: $c_{0}^{*} \cong \ell_{1}, \ell_{1}^{*} \cong \ell_{\infty}, L_{1}(\mathbb{R})^{*} \cong L_{\infty}(\mathbb{R})$ we show that $c_{0}, \ell_{1}$ and $L_{1}(\mathbb{R})$ are not smooth. For example, for $x=\mathrm{e}_{1}+\mathrm{e}_{2} \in S_{c_{0}}$ we have two functionals $f_{1}=\mathrm{e}_{1}$ and $f=\mathrm{e}_{2}$ in $S_{\ell_{1}}$ with $f_{1}(x)=f_{2}(x)=1$. For $y=\mathrm{e}_{1} \in S_{\ell_{1}}$ consider e.g. $g_{1}=\mathrm{e}_{1}$ and $g_{2}=(1,1,1, \ldots)$ in $S_{\ell_{\infty}}$ which satisfy $g_{1}(y)=g_{2}(y)=1$. In the unit sphere of $L_{1}(\mathbb{R})$ take $z=\mathbb{1}_{[0,1]}$ and functionals $h_{1}=\mathbb{1}_{[0,1]}$ and $h_{2}=\mathbb{1}_{\mathbb{R}}$ from the unit sphere of $L_{\infty}(\mathbb{R})$. Again, $h_{1}(z)=h_{2}(z)=1$.

To see that $L_{2}[0,1]$ is smooth, recall that the duality $\left(L_{2}[0,1]\right)^{*} \cong L_{2}[0,1]$ identifies any $g \in L_{2}[0,1]$ with the functional $\varphi_{g}(f)=\int_{[0,1]} f(x) g(x) \mathrm{d} x$. If $\|f\|_{2}=\|g\|_{2}=1$, then the Cauchy-Schwarz inequality yields $\varphi_{g}(f) \leqslant 1$ and in order to have equality $f$ and $g$ must be proportional a.e. on $[0,1]$. However, since $\|f\|_{2}=\|g\|_{2}=1$, we have $f(x)=g(x)$ a.e. Therefore, for a fixed $f \in S_{L_{2}[0,1]}$ there exists only one $g \in S_{L_{2}[0,1]}$ (namely $g=f$ ) satisfying $\varphi_{g}(f)=1$.
(b) First, notice that for all $x, z \in X \backslash\{0\}$ we have $f_{z}(z)=\|z\|^{2} f_{z /\|z\|}(z /\|z\|)=\|z\|^{2}$ and $f_{z}(x)=\|z\| f_{z /\|z\|}(x) \leqslant\|z\|\|x\|$. Hence,

$$
\begin{aligned}
& \frac{f_{x}(y)}{\|x\|}= \frac{f_{x}(\lambda y)}{\lambda}=\frac{f_{x}(x+\lambda y)-f_{x}(x)}{\lambda} \leqslant \frac{\left\|f_{x}\right\|\|x+\lambda y\|-1}{\lambda} \\
&=\frac{\|x+\lambda y\|-\|x\|}{\lambda} \\
&=\frac{\|x+\lambda y\|^{2}-\|x\|\|x+\lambda y\|}{\lambda\|x+\lambda y\|} \leqslant \frac{\|x+\lambda y\|^{2}-f_{x+\lambda y}(x)}{\lambda\|x+\lambda y\|} \\
&=\frac{f_{x+\lambda y}(x+\lambda y)-f_{x+\lambda y}(x)}{\lambda\|x+\lambda y\|}=\frac{f_{x+\lambda y}(y)}{\|x+\lambda y\|} .
\end{aligned}
$$

2. The subspace $Y$ is given by the equation $x=y$ and hence we have

$$
\|f\|=\max \left\{|2 x-z|: 2 x^{2}+z^{2} \leqslant 1\right\} .
$$

By the Cauchy-Schwarz inequality, $|2 x-z|=|\sqrt{2} \cdot \sqrt{2} x+(-1) \cdot z| \leqslant \sqrt{3} \sqrt{2 x^{2}+z^{2}}$ which implies $\|f\| \leqslant \sqrt{3}$. In fact, we have equality for any vector $(x, y, z)$ parallel to $(1,1,-1)$, thus $\|f\|=\sqrt{3}$. Any extension $F$ must be of the form $F(x, y, z)=A x+B y+C z$ and satisfies $F(x, y, z)=2 x-z$ provided that $x=y$. Hence, $B=2-A$ and $C=-1$, thus $F(x, y, z)=A x+(2-A) y-z$. By the duality $\left(\ell_{2}^{3}\right)^{*} \cong \ell_{2}^{3}$, we have $\|F\|=\|(A, 2-A,-1)\|_{2}$, so $\|F\| \leqslant \sqrt{3}$ if and only if $A^{2}+(2-A)^{2}+1 \leqslant 3$, which happens only if $A=1$. Consequently, the Hahn-Banach extension is unique and is given by the formula $F(x, y, z)=x+y-z$.
3. As we know, the Riesz lemma implies that there is a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset B_{X}$ such that $\left\|x_{n}-x_{m}\right\| \geqslant \frac{1}{2}$ for all $m \neq n$. Hence, $B_{X}$ contains infinitely many mutually disjoint balls of positive radius. By a suitable translation, we infer that any ball in $X$ has the same property. Assuming that there is a measure $\mu$ satisfying the required assumptions, we obtain that the measure of every open ball is infinite; a contradiction.
4. (a) Let $n=2 m$. For any $f \in C[0,1]$ we have

$$
\begin{aligned}
\Lambda_{n} f & =\sum_{0 \leqslant j<m} \int_{0}^{1 / n} f\left(t+\frac{2 j}{n}\right) \mathrm{d} t-\sum_{0 \leqslant j<m} \int_{0}^{1 / n} f\left(t+\frac{2 j+1}{n}\right) \mathrm{d} t \\
& =\sum_{0 \leqslant k<n} \int_{k / n}^{(k+1) / n}(-1)^{k} f(t) \mathrm{d} t=\int_{0}^{1} f \mathrm{~d} g
\end{aligned}
$$

where the last integral is the Riemann-Stieltjes integral with respect to an absolutely continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $g^{\prime}(t)=(-1)^{k}$ for $t \in\left(\frac{k}{n}, \frac{k+1}{n}\right)$. We can define $g$ to be piecewise linear and such that $g\left(\frac{k}{n}\right)=0$ for even $0 \leqslant k \leqslant n$ and $g\left(\frac{k+1}{n}\right)=\frac{1}{n}$ for odd $1 \leqslant k<n$. Then $g \in \operatorname{NBV}([0,1])$ represents $\Lambda_{n}$ by means of the Riesz Representation Theorem. Hence, $\Lambda_{n} \in(C[0,1])^{*}$ and $\left\|\Lambda_{n}\right\|=V_{0}^{1}(g)=n \cdot \frac{1}{n}=1$.
(b) Consider any even indices $n<N$ and let $\varrho_{n, N}=g_{n}-g_{N}$, where $g_{n} \in \operatorname{NBV}([0,1])$ represents the functional $\Lambda_{n}$ as in the first part. For every $0 \leqslant j<\frac{n}{2}$ we have

$$
\varrho_{n, N}\left(\frac{2 j}{n}\right) \leqslant g_{n}\left(\frac{2 j}{n}\right)-0=0 \quad \text { and } \quad \varrho_{n, N}\left(\frac{2 j+1}{n}\right) \geqslant g_{n}\left(\frac{2 j+1}{n}\right)-\frac{1}{N}=\frac{1}{n}-\frac{1}{N} .
$$

Hence,

$$
\left\|\Lambda_{n}-\Lambda_{N}\right\|=V_{0}^{1}\left(\varrho_{n, N}\right) \geqslant n\left(\frac{1}{n}-\frac{1}{N}\right)=1-\frac{n}{N} \underset{N \rightarrow \infty}{ } 1
$$

and it shows that no subsequence of $\left(\Lambda_{2 m}\right)_{m=1}^{\infty}$ satisfies the Cauchy condition.
5. (a) For every $x=\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{2}$ we have $\|T x\|^{2} \leqslant \sum_{n=1}^{\infty} n^{-2}\left|x_{n}\right|^{2} \leqslant\|x\|^{2}$, hence $\|T\| \leqslant 1$. Taking $x=\mathrm{e}_{1}$ we see that $T \mathrm{e}_{1}=\mathrm{e}_{2}$ has norm one, so $\|T\|=1$. Obviously, every $x \in B_{\ell_{2}}$ satisfies $\left|x_{n}\right| \leqslant 1$ for each $n \in \mathbb{N}$, thus $T\left(B_{X}\right) \subseteq\left\{\left(y_{n}\right)_{n=1}^{\infty}:\left|y_{n}\right| \leqslant \frac{1}{n}\right.$ for $\left.n \in \mathbb{N}\right\}$ which, as we know, is a compact set. It follows that $T\left(B_{X}\right)$ is totally bounded, whence $T$ is compact.

By the Riesz-Schauder theorem, $0 \in \sigma(T)$ and every nonzero $\lambda \in \sigma(T)$ must be an eigenvalue of $T$, i.e. $T x=\lambda x$ for some $x \in \ell_{2}, x \neq 0$. But this means that $x_{1}=0$ and $\frac{1}{k} x_{k}=\lambda x_{k+1}$ for each $k \in \mathbb{N}$ which implies that $x=0$. Therefore, $T$ has no eigenvalues, thus $\sigma(T)=\{0\}$.
(b) Of course, $U$ is compact for the same reason as $T$ is compact. Assume that $\lambda \neq 0$ is an eigenvalue of $U$, that is, there exists a nonzero $x \in \ell_{2}$ such that $T x=\lambda x$. Then, $\frac{1}{k} x_{k}=\lambda x_{k}$, i.e. $\left(\lambda-\frac{1}{k}\right) x_{k}=0$ for every $k \in \mathbb{N}$. If $\lambda \neq \frac{1}{k}$ for all $k \in \mathbb{N}$, then the last condition implies $x=0$, so such a $\lambda$ is not an eigenvalue. However, if $\lambda=\frac{1}{k}$ for some $k \in \mathbb{N}$, then the condition $T x=\lambda x$ is equivalent to $x$ being proportional to the $k^{\text {th }}$ canonical vector $\mathrm{e}_{k}$. We have thus proved that $\sigma_{\mathrm{p}}(U)=\left\{\frac{1}{k}: k \in \mathbb{N}\right\}$ (it is easily seen that $0 \notin \sigma_{\mathrm{p}}(U)$ ), where each eigenvalue has multiplicity one: $\operatorname{ker}\left(U-\frac{1}{k} I\right)=\operatorname{lin}\left(\mathrm{e}_{k}\right)$. Finally, $\sigma(U)=\{0\} \cup\left\{\frac{1}{k}: k \in \mathbb{N}\right\}$.

Since i $\notin \sigma(U)$, the operator $U-\mathrm{i} I$ is invertible. Notice that $(U-\mathrm{i} I)(x)=\left(\left(\frac{1}{k}-\mathrm{i}\right) x_{k}\right)_{k=1}^{\infty}$ and an easy estimate (see part (a)) shows that

$$
\|U-\mathrm{i} I\|=\sup _{k \in \mathbb{N}}\left|\frac{1}{k}-\mathrm{i}\right|=\sqrt{2} .
$$

In view of the 'invertibility result' (Corollary 4.2), if $V \in \mathscr{L}\left(\ell_{2}\right)$ has norm smaller that $\|U-\mathrm{i} I\|^{-1}$, then $U+V-\mathrm{i} I$ is invertible.

