Functional analysis — Midterm test

Solutions

1. (a) Using the dualities: $c_0^* \cong \ell_1$, $\ell_1^* \cong \ell_\infty$, $L_1(\mathbb{R})^* \cong L_\infty(\mathbb{R})$ we show that c_0 , ℓ_1 and $L_1(\mathbb{R})$ are not smooth. For example, for $x = e_1 + e_2 \in S_{c_0}$ we have two functionals $f_1 = e_1$ and $f = e_2$ in S_{ℓ_1} with $f_1(x) = f_2(x) = 1$. For $y = e_1 \in S_{\ell_1}$ consider e.g. $g_1 = e_1$ and $g_2 = (1, 1, 1, \ldots)$ in S_{ℓ_∞} which satisfy $g_1(y) = g_2(y) = 1$. In the unit sphere of $L_1(\mathbb{R})$ take $z = \mathbb{1}_{[0,1]}$ and functionals $h_1 = \mathbb{1}_{[0,1]}$ and $h_2 = \mathbb{1}_{\mathbb{R}}$ from the unit sphere of $L_\infty(\mathbb{R})$. Again, $h_1(z) = h_2(z) = 1$.

To see that $L_2[0,1]$ is smooth, recall that the duality $(L_2[0,1])^* \cong L_2[0,1]$ identifies any $g \in L_2[0,1]$ with the functional $\varphi_g(f) = \int_{[0,1]} f(x)g(x) \, dx$. If $||f||_2 = ||g||_2 = 1$, then the Cauchy–Schwarz inequality yields $\varphi_g(f) \leq 1$ and in order to have equality f and g must be proportional a.e. on [0,1]. However, since $||f||_2 = ||g||_2 = 1$, we have f(x) = g(x) a.e. Therefore, for a fixed $f \in S_{L_2[0,1]}$ there exists only one $g \in S_{L_2[0,1]}$ (namely g = f) satisfying $\varphi_g(f) = 1$.

(b) First, notice that for all $x, z \in X \setminus \{0\}$ we have $f_z(z) = ||z||^2 f_{z/||z||}(z/||z||) = ||z||^2$ and $f_z(x) = ||z|| f_{z/||z||}(x) \leq ||z|| ||x||$. Hence,

$$\frac{f_x(y)}{\|x\|} = \frac{f_x(\lambda y)}{\lambda} = \frac{f_x(x+\lambda y) - f_x(x)}{\lambda} \leqslant \frac{\|f_x\| \|x+\lambda y\| - 1}{\lambda}$$
$$= \frac{\|x+\lambda y\| - \|x\|}{\lambda}$$
$$= \frac{\|x+\lambda y\|^2 - \|x\| \|x+\lambda y\|}{\lambda \|x+\lambda y\|} \leqslant \frac{\|x+\lambda y\|^2 - f_{x+\lambda y}(x)}{\lambda \|x+\lambda y\|}$$
$$= \frac{f_{x+\lambda y}(x+\lambda y) - f_{x+\lambda y}(x)}{\lambda \|x+\lambda y\|} = \frac{f_{x+\lambda y}(y)}{\|x+\lambda y\|}.$$

2. The subspace Y is given by the equation x = y and hence we have

 $||f|| = \max\{|2x - z| \colon 2x^2 + z^2 \le 1\}.$

By the Cauchy–Schwarz inequality, $|2x - z| = |\sqrt{2} \cdot \sqrt{2}x + (-1) \cdot z| \leq \sqrt{3}\sqrt{2x^2 + z^2}$ which implies $||f|| \leq \sqrt{3}$. In fact, we have equality for any vector (x, y, z) parallel to (1, 1, -1), thus $||f|| = \sqrt{3}$. Any extension F must be of the form F(x, y, z) = Ax + By + Cz and satisfies F(x, y, z) = 2x - z provided that x = y. Hence, B = 2 - A and C = -1, thus F(x, y, z) = Ax + (2 - A)y - z. By the duality $(\ell_2^3)^* \cong \ell_2^3$, we have $||F|| = ||(A, 2 - A, -1)||_2$, so $||F|| \leq \sqrt{3}$ if and only if $A^2 + (2 - A)^2 + 1 \leq 3$, which happens only if A = 1. Consequently, the Hahn–Banach extension is unique and is given by the formula F(x, y, z) = x + y - z.

3. As we know, the Riesz lemma implies that there is a sequence $(x_n)_{n=1}^{\infty} \subset B_X$ such that $||x_n - x_m|| \ge \frac{1}{2}$ for all $m \ne n$. Hence, B_X contains infinitely many mutually disjoint balls of positive radius. By a suitable translation, we infer that any ball in X has the same property. Assuming that there is a measure μ satisfying the required assumptions, we obtain that the measure of every open ball is infinite; a contradiction.

4. (a) Let n = 2m. For any $f \in C[0, 1]$ we have

$$\Lambda_n f = \sum_{0 \le j < m} \int_0^{1/n} f\left(t + \frac{2j}{n}\right) dt - \sum_{0 \le j < m} \int_0^{1/n} f\left(t + \frac{2j+1}{n}\right) dt$$
$$= \sum_{0 \le k < n} \int_{k/n}^{(k+1)/n} (-1)^k f(t) dt = \int_0^1 f dg,$$

where the last integral is the Riemann–Stieltjes integral with respect to an absolutely continuous function $g: [0,1] \to \mathbb{R}$ such that $g'(t) = (-1)^k$ for $t \in (\frac{k}{n}, \frac{k+1}{n})$. We can define g to be piecewise linear and such that $g(\frac{k}{n}) = 0$ for even $0 \leq k \leq n$ and $g(\frac{k+1}{n}) = \frac{1}{n}$ for odd $1 \leq k < n$. Then $g \in \text{NBV}([0,1])$ represents Λ_n by means of the Riesz Representation Theorem. Hence, $\Lambda_n \in (C[0,1])^*$ and $\|\Lambda_n\| = V_0^1(g) = n \cdot \frac{1}{n} = 1$.

(b) Consider any even indices n < N and let $\rho_{n,N} = g_n - g_N$, where $g_n \in \text{NBV}([0,1])$ represents the functional Λ_n as in the first part. For every $0 \leq j < \frac{n}{2}$ we have

$$\varrho_{n,N}\left(\frac{2j}{n}\right) \leqslant g_n\left(\frac{2j}{n}\right) - 0 = 0 \quad \text{and} \quad \varrho_{n,N}\left(\frac{2j+1}{n}\right) \geqslant g_n\left(\frac{2j+1}{n}\right) - \frac{1}{N} = \frac{1}{n} - \frac{1}{N}$$

Hence,

$$\|\Lambda_n - \Lambda_N\| = V_0^1(\varrho_{n,N}) \ge n\left(\frac{1}{n} - \frac{1}{N}\right) = 1 - \frac{n}{N} \xrightarrow[N \to \infty]{} 1$$

and it shows that no subsequence of $(\Lambda_{2m})_{m=1}^{\infty}$ satisfies the Cauchy condition.

5. (a) For every $x = (x_n)_{n=1}^{\infty} \in \ell_2$ we have $||Tx||^2 \leq \sum_{n=1}^{\infty} n^{-2} |x_n|^2 \leq ||x||^2$, hence $||T|| \leq 1$. Taking $x = e_1$ we see that $Te_1 = e_2$ has norm one, so ||T|| = 1. Obviously, every $x \in B_{\ell_2}$ satisfies $|x_n| \leq 1$ for each $n \in \mathbb{N}$, thus $T(B_X) \subseteq \{(y_n)_{n=1}^{\infty} : |y_n| \leq \frac{1}{n} \text{ for } n \in \mathbb{N}\}$ which, as we know, is a compact set. It follows that $T(B_X)$ is totally bounded, whence T is compact.

By the Riesz-Schauder theorem, $0 \in \sigma(T)$ and every nonzero $\lambda \in \sigma(T)$ must be an eigenvalue of T, i.e. $Tx = \lambda x$ for some $x \in \ell_2, x \neq 0$. But this means that $x_1 = 0$ and $\frac{1}{k}x_k = \lambda x_{k+1}$ for each $k \in \mathbb{N}$ which implies that x = 0. Therefore, T has no eigenvalues, thus $\sigma(T) = \{0\}$.

(b) Of course, U is compact for the same reason as T is compact. Assume that $\lambda \neq 0$ is an eigenvalue of U, that is, there exists a nonzero $x \in \ell_2$ such that $Tx = \lambda x$. Then, $\frac{1}{k}x_k = \lambda x_k$, i.e. $(\lambda - \frac{1}{k})x_k = 0$ for every $k \in \mathbb{N}$. If $\lambda \neq \frac{1}{k}$ for all $k \in \mathbb{N}$, then the last condition implies x = 0, so such a λ is not an eigenvalue. However, if $\lambda = \frac{1}{k}$ for some $k \in \mathbb{N}$, then the condition $Tx = \lambda x$ is equivalent to x being proportional to the k^{th} canonical vector e_k . We have thus proved that $\sigma_{p}(U) = \{\frac{1}{k} : k \in \mathbb{N}\}$ (it is easily seen that $0 \notin \sigma_{p}(U)$), where each eigenvalue has multiplicity one: $\ker(U - \frac{1}{k}I) = \ln(e_k)$. Finally, $\sigma(U) = \{0\} \cup \{\frac{1}{k} : k \in \mathbb{N}\}$.

Since $i \notin \sigma(U)$, the operator U - iI is invertible. Notice that $(U - iI)(x) = ((\frac{1}{k} - i)x_k)_{k=1}^{\infty}$ and an easy estimate (see part (a)) shows that

$$||U - iI|| = \sup_{k \in \mathbb{N}} \left| \frac{1}{k} - i \right| = \sqrt{2}.$$

In view of the 'invertibility result' (Corollary 4.2), if $V \in \mathscr{L}(\ell_2)$ has norm smaller that $||U - iI||^{-1}$, then U + V - iI is invertible.