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Is a geometric object uniquely determined
by its symmetry group?



Regular polygons

Sym(T ) = D6 = 〈r , s | r3 = s2 = 1, rs = sr−1〉

Sym(S) = D8 = 〈r , s | r4 = s2 = 1, rs = sr−1〉
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Regular polygons

n 1
2

3

Sym(Pn) = D2n = 〈r , s | rn = s2 = 1, rs = sr−1〉

|Sym(Pn)| = 2n



Regular polygons are uniquely determined
by their symmetry group



Regular polytopes



Regular polytopes



Regular polytopes

Sym(C ) ' Sym(O)



Regular polytopes are not uniquely determined
by their symmetry group



Is a geometric object uniquely determined
by its symmetry group?

In algebraic geometry there are at least two possibilities for the
symmetry group:

Regular automorphism group  Aut(X )

Birational automorphism group  Bir(X )

Aut(X ) ⊆ Bir(X )



Theorem (Hacon, McKernan, Xu)

Let n be a positive integer.
Then there is a constant C = C (n) such that for any projective
n-dimensional variety X of general type, the order of Bir(X ) is
bounded by C · Vol(X ,KX ).

Theorem (Hurwitz)

The order of Bir(X ) = Aut(X ) for a smooth algebraic curve of
genus g ≥ 2 is bounded by 84 · (g − 1).

Algebraic varieties are not uniquely determined
by their symmetry group



Theorem (Cantat)

Bir(Pn) ' Bir(Pm) if and only if n = m.

Theorem (Cantat)

Let X be an n-dimensional variety.
If Bir(X ) is isomorphic to Bir(Pn), then X is rational.

Rational varieties are uniquely determined (up to birational
equivalence) among n-dimensional varieties by their birational

automorphism group
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A toric variety is a normal algebraic variety endowed with with a
faithful action of an algebraic torus T having an open orbit.

Demazure (and later Cox) gave a description of Aut(X ) for a
complete toric variety.

For most complete toric varieties, we have Aut(X ) = T .

Toric varieties are not uniquely determined
by their automorphism group



Theorem (Regeta, Urech, L.)

Let S and S ′ be normal affine surfaces with S toric.

If Aut(S) ' Aut(S ′) then S ' S ′.

Affine toric surfaces are uniquely determined among normal affine
surfaces by their regular automorphism group



Proposition (Regeta, Urech, L.)

Let S be an affine surface. If Aut(S) ' Aut(A2) then S ' A2.

Proposition (D́ıaz, L.)

Let S be a toric surface different from A2, A1 × A1
∗ and A1

∗ × A1
∗.

Then, there exits a non-normal toric surface S ′ such that
Aut(S) ' Aut(S ′).



Idea of proof

Theorem (Regeta, Urech, L.)

Let S and S ′ be normal affine surfaces with S toric.

If Aut(S) ' Aut(S ′) then S ' S ′.



Topology on Bir(X )

Let A be a variety and f : A× X 99K A× X be an A-birational
map, i.e.,

I f is the identity in the first factor, and

I induces an isomorphism between open subsets U and V of
A× X such that the projections from U and from V to A are
both surjective.

This yields a map A→ Bir(X ) that we call a morphism.

The Zariski topology on Bir(X ) is the finest topology making all
such morphisms continuous.



Algebraic elements in Bir(X )

Definition

An algebraic subgroup of Bir(X ) is the image of a morphism
G → Bir(X ) that is also an homomorphism.

An element g ∈ Bir(X ) is called algebraic if it is contained in an
algebraic subgroup.



Divisibility in Bir(S)

Definition

Let G be a group.

I An element f in is called divisible by n if there exists an
element g ∈ G such that gn = f .

I An element is called divisible if it is divisible by all n ∈ Z>0.

Lemma

Let S be a surface and f ∈ Bir(S).
Then the following two conditions are equivalent:

I There exists a k > 0 such that f k is divisible; and

I f is algebraic.



Algebraic elements in Aut(S)

Definition

An algebraic subgroup of Aut(X ) is the image of a regular action
G → Aut(X ) of an algebraic group.

An element g ∈ Aut(X ) is called algebraic if it is contained in an
algebraic subgroup.

Lemma

Let S be a normal affine surface and
let g ∈ Aut(S) be an automorphism. Then

g is an algebraic element in Bir(S) if and only if
g is an algebraic element in Aut(S).



Algebraic elements are preserved

Proposition

Let S and S ′ be normal affine surfaces,
ϕ : Aut(S)→ Aut(S ′) a group homomorphism, and
g ∈ Aut(S) an algebraic element.

Then ϕ(g) is an algebraic element in Aut(S ′).



Torus goes to a 2-dimensional torus

Lemma

Let S and S ′ be normal affine surfaces with S toric, and
ϕ : Aut(S)→ Aut(S ′) a group isomorphism.

Then ϕ(T ) is a 2-dimensional torus in Aut(S ′).



Root subgroups

Definition

Let T ⊂ Aut(X ) be a maximal torus in Aut(X ). An algebraic
subgroup U ⊂ Aut(X ) isomorphic to Ga is called a root subgroup
with respect to T if the normalizer of U in Aut(X ) contains T .

This is equivalent to saying that T and U span an algebraic group
isomorphic to Ga oχ T with χ : T → Gm character.

A root subgroup is also uniquely determined by a homogeneous
derivation of ∂ of OX (with some integrability conditions).

Demazure’s description of Aut0(X ) is based on a description of
root subgroups of non-necessarily complete toric variety.



Root subgroups go to root subgroups

Lemma

Let S and S ′ be normal affine surfaces with S toric,
ϕ : Aut(S)→ Aut(S ′) a group isomorphism, and
U ⊂ Aut(S) a root subgroup

Then ϕ(U) is a root subgroup in Aut(S ′) with respect to ϕ(T ).



End of the proof

We know now that S ′ is a toric surface and we have a bijection on
the root subgroups of S and S ′ with respect to T and ϕ(T ).

Hence, to conclude the proof, it is enough to show that we can
recover a toric surface S from the abstract group structure of its
root subgroups and their relationship with the torus.

Recall that any affine toric surface S without torus factor is
isomorphic to Vd ,e , the quotient of A2 under the Z/dZ-action

g : (x , y) 7→ (ξex , ξy)

where ξ is a d-th primitive root of unity 0 ≤ e < d , (e, d) = 1.

Vd ,e is isomorphic to Vd ′,e′ if and only if
d = d ′ and e = e ′ or d = d ′ and e · e ′ = 1 mod d .



End of the proof

The center of Ga oχ T is {0} × kerχ, so we can recover kerχ.

There are two families K, L of commuting root subgroups in
Aut(S). We define the following subsets of Z>0:

KU =
{∣∣kerχ ∩ kerχ′

∣∣ ,∀U ′ ∈ L
}
∀U ∈ K

LU =
{∣∣kerχ ∩ kerχ′

∣∣ , ∀U ′ ∈ K
}
∀U ∈ L

After some finite part, they form arithmetic progressions.

The two shortest common differences in this arithmetic
progressions are:

d and d + e or d and d + e ′ with e · e ′ = 1 mod d

Hence, these sets uniquely determine S .



What about higher dimensional toric varieties?



An ind-variety is a set V together with an ascending filtration
V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V such that the following conditions are
satisfied:

I V =
⋃

k≥0 Vk ;

I each Vk has is an algebraic variety;

I for every k ∈ Z≥0, the embedding Vk ⊂ Vk+1 is closed in the
Zariski-topology.

Morphisms of ind-varieties:

V =
⋃

k Vk and W =
⋃

m Wm

A map ψ : V →W such that for any k there is an m ∈ Z≥0 such
that ψ(Vk) ⊂Wm and such that the induced map Vk →Wm is a
morphism of algebraic varieties.



Definition

An ind-group is a group object in the category of ind-varieties, i.e.,
an ind-variety endowed with a group structure such that
multiplication and inversion are morphisms.

Theorem (Kraft)

Let X be an affine variety. Then Aut(X ) has a natural structure of
an ind-group such that for any algebraic group G, a regular
G-action on X induces an ind-group homomorphism G → Aut(X ).



Theorem (Regeta, Urech, L.)

Let X be an affine toric variety different from the algebraic torus
and let Y be a normal affine variety.

If Aut(X ) and Aut(Y ) are isomorphic as ind-groups,
then X and Y are isomorphic.

Theorem (Regeta, Urech, L.)

Let T be an algebraic torus and let C be a smooth affine curve.
If C has trivial automorphism group and no invertible global
functions, then Aut(T ) and Aut(C × T ) are isomorphic as
ind-groups.



Idea of proof

Lemma (Kraft)

Let Y be a normal affine variety and let H ⊂ Aut(Y ) be a torus.
If there exists a root subgroup U ⊂ Aut(Y ) with respect to H such
that O(X )U is multiplicity-free, then dim H ≤ dim Y ≤ dim H + 1.

Let ϕ : Aut(X )→ Aut(Y ) be an isomorphism of ind-groups.

For every algebraic subgroup G ⊂ Aut(X ), the isomorphism ϕ
restricts to an isomorphism of algebraic groups.

We find a subtorus H ⊂ ϕ(T ) of codimension 1 and a root
subgroup U satisfying the lemma to conclude that dim Y ≤ dim X .

Both X and Y have a faithful action of T with dim T = dim X .
So dim Y = n and Y is toric.



Idea of proof

The weight of root subgroups (roots) are also preserved by ϕ.

The sets of roots of X and Y are identified by the isomorphism ϕ
restricted to T .

Finally, a combinatorial computation in terms of the cones defining
the toric varieties proves that a toric variety is determined by its
set of roots.



¡Gracias!


