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Two definitions. Let S = k[x1, . . . , xn], T = k[∂1, . . . , ∂n], with T acting on S by differentiation (where
∂i acts as ∂

∂xi
), denoted , as in ∂i x3i = 3x2i .

For F ∈ S homogeneous of degree d, a power sum decomposition of F is an expression F = λ1`
d
1 +

· · ·+ λr`
d
r , λi ∈ k, `i ∈ S1 linear forms. The Waring rank, denoted rank(F ), is the least number of terms

r in a power sum decomposition of F .
The apolar ideal or annihilating ideal of F is the ideal F⊥ = {Θ ∈ T : Θ F = 0}.
We assume always that k has characteristic 0 or > d. We also assume that k has any needed roots,

roots of unity, etc.

Discussion Exercises

These are exercises suggested for discussion during the workshop.

1. (a) In a decomposition F =
∑r
i=1 λi`

d
i , if r is minimal, then the λi are uniquely determined, and can

be found by linear algebra.
(b) The set of ranks achievable by forms of a given degree and number of variables is an interval;

that is, if there is a form of rank r, then there are forms of rank 1, 2, . . . , r.

2. Find examples of forms Ft → F0 6= 0 so that for t 6= 0, rank(Ft) is constant, but (a) rankF0 < rankFt,
and (b) rankF0 > rankFt.

3. Let F ∈ Sd be a homogeneous form of degree d. Let P = (c1, . . . , cn) be a point in affine space and
let DP = c1∂1 + · · ·+ cn∂n ∈ T1, `P = c1x1 + · · ·+ cnxn ∈ S1.
(a) Dd

P F = d!F (P ).
(b) Let D ∈ Tk. For all d ≥ k, D(P ) = 0 as a polynomial if and only if D `dP = 0.
(c) Dk

P ∈ F⊥ if and only if F vanishes to order (at least) d + 1 − k at the point P , that is, every
partial derivative of F of order ≤ d− k vanishes at the point P .

4. Sylvester’s algorithm: finding power sum decompositions for binary forms, that is, polynomials of 2
variables.

Let F (x, y) be a homogeneous form of degree d in 2 variables. We write α for ∂/∂x and β for ∂/∂y.
(a) Suppose t1, . . . , td+1 ∈ k are any pairwise distinct numbers. Show that (x+t1y)d, . . . , (x+td+1y)d

are linearly independent and in fact span the vector space of homogeneous forms of degree d in
2 variables.

(b) Suppose F = λ1(a1x+b1y)d+· · ·+λr(arx+bry)d. Let h(α, β) = (b1α−a1β)(b2α−a2β) · · · (brα−
arβ). Show that h ∈ F⊥.

(c) Conversely, if h(α, β) = (b1α− a1β)(b2α− a2β) · · · (brα− arβ) ∈ F⊥ with distinct roots (i.e., no
repeated or proportional factors), h 6= 0, then there exist λi such that F = λ1(a1x+ b1y)d+ · · ·+
λr(arx+ bry)d.

(d) Deduce Sylvester’s algorithm: the rank of F is the least r such that F⊥ contains a form of degree
r with projectively distinct roots.

(e) Let F = x3y. Find F⊥. Show that there is no h ∈ F⊥ of degree 3 or less with distinct roots,
therefore F cannot be written as a linear combination of 3 powers of linear forms. Find an h ∈ F⊥
of degree 4 with distinct roots and write F as a linear combination of 4 powers of linear forms.

5. Some exercises about the apolar ideal.
(a) F⊥ is an m-primary ideal, and if F is homogeneous then so is F⊥. T/F⊥ ∼= Derivs(F ) as a

T -module (graded, if F is homogeneous).
(b) (xa11 · · ·xann )⊥ = (∂a1+1

1 , . . . , ∂an+1
n ).

(c) For F ∈ S and Θ ∈ T , (Θ F )⊥ = F⊥ : Θ. (Recall for any ring R, ideal I ⊆ R, and a ∈ R,
I : a = {r ∈ R : ar ∈ I}.)

1



2

(d) The polynomials xd + hyd → xd as h→ 0. What is the limit of the ideals (xd + hyd)⊥ and how
does it compare to (xd)⊥? What about xyz + hw3 → xyz, and lim(xyz + hw3)⊥ versus (xyz)⊥?

(e) Find the apolar ideal, and its Hilbert function, for the following forms: xd1+· · ·+xdn, an elementary
symmetric polynomial, the d×d generic determinant, the d×d generic permanent, and the Hilbert
function for the following form of degree 4 in 13 variables: x3t1 +x2yt2 +x2zt3 +xy2t4 +xyzt5 +
xz2t6 + y3t7 + y2zt8 + yz2t9 + z3t10. (This last one is not unimodal.)

6. Let x1, . . . , xn, y be independent variables and F = F (x1, . . . , xn) a form of degree d > 1. Then
rank(F + yd) = rank(F ) + 1. [3]

7. For an n× n symmetric matrix M , let Q be the quadratic form given by

Q(x1, . . . , xn) =
∑

1≤i,j≤n

ximijxj =
(
x1 · · · xn

)
M

x1...
xn

 .

Show rankQ = rankM .

8. The following is a conjecture of Shitov: Let S = k[x1, . . . , xn] and let u be a new variable. Let F ∈ Sd
and G ∈ Sd−1, with G 6= 0. Then

rank(F + uG) ≥ d+ min
v∈S1

rank(F + vG),

with equality if G is a power of a linear form. [12]
This conjecture is open, but the following two special cases are exercises.

(a) The case F = 0.
(b) The case d = 2.

Additional Exercises

These are additional exercises. Some of them are more difficult; some of them are easy but perhaps
tedious; some of them require a bit of computation.

9. Let S be the set of solutions to the equation (ax+ by)2 − (cx+ dy)2 = xy (in variables a, b, c, d, over
k). Find equations and a parametrization for the affine variety S ⊂ A4. (There are two irreducible
components.) What is the closure of S in P4?

10. Write out explicitly the system of equations in a, b given by the equation (ax+ by)4 = x3y and show
that the system has no solutions. Do the same for the equation (a1x+ b1y)4 + (a2x+ b2y)4 = x3y (in
variables a1, b1, a2, b2).

The “brute force” approach to determining Waring rank of a form such as x3y is to find the first
time that there is a solution to the equations (ax + by)4 = x3y, (a1x + b1y)4 + (a2x + b2y)4 = x3y,
(a1x+ b1y)4 + (a2x+ b2y)4 + (a3x+ b3y)4 = x3y, etc. Is this a feasible approach in general? Is it even
feasible for the specific form x3y?

11. For a binary form F of degree ≤ 3, rank(F ) is determined by the multiplicities of the roots of F
(whether F has 1, 2, or 3 distinct roots), independently of the location of the roots. In particular in
degree 3, a cubic form with 3 distinct roots has rank 2, a form with 2 distinct roots (one double root
and one single root) has rank 3, and a form with 1 root (a triple root) has rank 1. But in degree ≥ 4
this is no longer the case: rankxy(x2 + y2) = 2 while rankxy(y + x)(y − 2x) = 3.

However if F has a root of multiplicity m, and F is not a dth power of a linear form, then
rankF > m. [13]

12. Here are power sum decompositions of a few special polynomials. The exercise is to verify them.
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(a)

y1 · · · yd =
1

2d−1d!

∑
ε∈{±1}d
ε1=1

(
d∏
i=1

εi

)(
d∑
i=1

εiyi

)d

(b) More generally, let M = xa11 · · ·xann be a monomial of degree d with 1 ≤ a1 ≤ · · · ≤ an. For
2 ≤ i ≤ n let ζi be a primitive (ai + 1)th root of unity (assume that k contains enough roots of
unity). Then

M =
1

C

∑
0≤ki≤ai
2≤i≤n

(x1 + ζk22 x2 + · · ·+ ζknn xn)d(ζk22 · · · ζknn )

where C =

(
d

a1, a2, . . . , an

)
(a1 + 1) · · · (an + 1), where

(
d

a1,...,an

)
is the multinomial coefficient

d!/(a1! · · · an!). [2]
(c) More generally in a different direction, let en,d be the elementary symmetric polynomial of degree

d in n variables. Then for d = 2k + 1 odd, n > d, we have

2d−1d!en,d =
∑

I⊆[n],|I|≤k

(−1)|I|
(
n− k − |I| − 1

k − |I|

)
(δ(I, 1)x1 + δ(I, 2)x2 + · · ·+ δ(I, n)xn)d

where [n] = {1, 2, . . . , n} and δ(I, i) = −1 if i ∈ I, 1 if i /∈ I. And for d = 2k even, n > d, we
have

2d(n− d)d!en,d =
∑

I⊆[n],|I|≤k

(−1)|I|
(
n− k − |I| − 1

k − |I|

)
(n− 2|I|)

(δ(I, 1)x1 + δ(I, 2)x2 + · · ·+ δ(I, n)xn)d.

See [7].

13. Here are two identities for the determinant and permanent.
Let Xd be the d× d matrix with entries xi,j . Let detd = detXd and perd = perXd.

(a) Derksen found the identity

det3 =
1

2

(
(x13 + x12)(x21 − x22)(x31 + x32)

+ (x11 + x12)(x22 − x23)(x32 + x33)

+ 2x12(x23 − x21)(x33 + x31)

+ (x13 − x12)(x22 + x21)(x32 − x31)

+ (x11 − x12)(x23 + x22)(x33 − x32)
)
.

(More precisely, Derksen found a tensor identity in terms of the columns of X3. See [5]. The
above is a polynomial version of Derksen’s identity.)

(b) Glynn’s identity for the permanent is

perd =
1

2d−1

∑
ε∈{±1}d
ε1=1

d∏
i=1

d∑
j=1

εiεjxi,j ,

see [6]. For example,

per3 =
1

4

{
(x1,1 + x1,2 + x1,3)(x2,1 + x2,2 + x2,3)(x3,1 + x3,2 + x3,3)

− (x1,1 + x1,2 − x1,3)(x2,1 + x2,2 − x2,3)(x3,1 + x3,2 − x3,3)

− (x1,1 − x1,2 + x1,3)(x2,1 − x2,2 + x2,3)(x3,1 − x3,2 + x3,3)

+ (x1,1 − x1,2 − x1,3)(x2,1 − x2,2 − x2,3)(x3,1 − x3,2 − x3,3)
}
.

14. Conjugate rank. (From Greg Blekherman.)
Let F be a homogeneous real form. Let us compare the following three distinct values:
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• The complex Waring rank of F , the least length of an expression F =
∑
λi`

d
i with λi ∈ C, and

`i having complex coefficients.
• The real Waring rank of F , the least length of an expression F =

∑
λi`

d
i with λi ∈ R, and `i

having real coefficients.
• The “conjugate rank” of F , the least length of an expression F =

∑
λi`

d
i with λi ∈ R, `i

having complex coefficients, and the `i occuring in conjugate pairs (or real). Equivalently, the
set {`1, . . . , `r} should be fixed under complex conjugation.

With the obvious choice of notation, rankR(F ) ≥ rankconjugate(F ) ≥ rankC(F ).
(a) Show by example that rankR(F ) > rankC(F ) can occur.
(b) What happens when F is a binary form?

15. Let Qn = x21 + · · ·+ x2n.
(a) Every form of degree ≤ m is a derivative of Qmn . [10, Theorem 3.10]
(b) Show

Q2
n =

1

6

∑
i<j

(xi ± xj)4 +
4− n

3

n∑
i=1

x4i ,

thus rankQ2
n ≤ n2 � the general rank of a form of degree 4 in n variables, for n� 0.

(c) Similarly,

60Q3
n =

∑
i<j<k

(xi ± xj ± xk)6 + 2(5− n)
∑
i<j

(xi ± xj)6 + 2(n2 − 9n+ 38)
∑

x6i ,

so rankQ3
n ≤ 4

(
n
3

)
+ 2
(
n
2

)
+ n� the general rank, for n� 0.

16. What is the Waring rank of F = x2y+y2z, the plane cubic consisting of a smooth conic plus a tangent
line? More generally, what is the Waring rank of any reducible cubic (in any number of variables)?
[4]

Problems

17. B. Segre in his book “The Non-Singular Cubic Surfaces” [11], Section 96–97, determined the Waring
rank of some quaternary cubics (forms of degree 3 in 4 variables); he showed that all of them have
rank less than or equal to 7, and that rank 7 does occur. It was left to the reader to complete the
determination of Waring ranks of all cubic surfaces.

18. What are the Waring ranks of the forms Qm = (x21 + · · ·+ x2n)m? These are known in only a handful
of cases, see Reznick [9]. What about QmLk for a linear form L which may be tangent to Q or not?

19. Fixing the degree d = 3, what is the maximum rank of cubics in n variables as a function of n? For
n = 1, 2, 3, 4, the maximum rank is 1, 3, 5, 7, see [8]. (The generic ranks for n = 2, 3, 4 are 2, 3, 5.) For
n = 5 the generic rank is 8, and rankx1(x1x2 +x23 +x24 +x25) = 9, but the maximum rank is unknown.

20. The 4×4 determinant be written as a sum of three determinants of 2×2 matrices of quadratic forms.
Can this be done with fewer than three terms?

21. Is there any irreducible nondegenerate projective variety X ⊂ PN such that the maximum rank with
respect to X is equal to 2 times the general rank, over the complex numbers C, or any algebraically
closed field? (An example over R is given in [1].)

22. The Sylvester bound followed immediately from the trivial observation that if F ∈ span{`d1, . . . , `dr},
then Derivs(F )d−1 ⊆ span{`d−11 , . . . , `d−1r }. Does the converse hold?
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23. A conjecture of Shitov: Let F ∈ Sd and G ∈ Sd−1, with G 6= 0, and let u be a new variable. Then

rank(F + uG) ≥ d+ min
v∈S1

rank(F + vG),

with equality if G is a power of a linear form. [12]

References

[1] Grigoriy Blekherman and Rainer Sinn, Real rank with respect to varieties, Linear Algebra Appl. 505 (2016), 344–360,

DOI 10.1016/j.laa.2016.04.035. MR3506500
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