September 23–29, 2018

Two definitions. Let $S = \mathbb{k}[x_1, \ldots, x_n], T = \mathbb{k}[\partial_1, \ldots, \partial_n]$, with T acting on S by differentiation (where ∂_i acts as $\frac{\partial}{\partial x_i}$), denoted \neg , as in $\partial_i \neg x_i^3 = 3x_i^2$.

For $F \in S$ homogeneous of degree d, a power sum decomposition of F is an expression $F = \lambda_1 \ell_1^d + \lambda_2 \ell_2^d$ $\dots + \lambda_r \ell_r^d, \lambda_i \in \mathbb{K}, \ell_i \in S_1$ linear forms. The Waring rank, denoted rank(F), is the least number of terms r in a power sum decomposition of F.

The apolar ideal or annihilating ideal of F is the ideal $F^{\perp} = \{ \Theta \in T : \Theta \neg F = 0 \}.$

We assume always that k has characteristic 0 or > d. We also assume that k has any needed roots, roots of unity, etc.

DISCUSSION EXERCISES

These are exercises suggested for discussion during the workshop.

- 1. (a) In a decomposition $F = \sum_{i=1}^{r} \lambda_i \ell_i^d$, if r is minimal, then the λ_i are uniquely determined, and can be found by linear algebra.
 - (b) The set of ranks achievable by forms of a given degree and number of variables is an interval; that is, if there is a form of rank r, then there are forms of rank $1, 2, \ldots, r$.
- **2.** Find examples of forms $F_t \to F_0 \neq 0$ so that for $t \neq 0$, rank (F_t) is constant, but (a) rank $F_0 < \operatorname{rank} F_t$, and (b) rank $F_0 > \operatorname{rank} F_t$.
- **3.** Let $F \in S_d$ be a homogeneous form of degree d. Let $P = (c_1, \ldots, c_n)$ be a point in affine space and let $D_P = c_1 \partial_1 + \dots + c_n \partial_n \in T_1$, $\ell_P = c_1 x_1 + \dots + c_n x_n \in S_1$.
 - (a) $D_P^d \dashv F = d! F(P).$
 - (b) Let $D \in T_k$. For all $d \ge k$, D(P) = 0 as a polynomial if and only if $D \dashv \ell_P^d = 0$.
 - (c) $D_P^k \in F^{\perp}$ if and only if F vanishes to order (at least) d+1-k at the point P, that is, every partial derivative of F of order $\leq d - k$ vanishes at the point P.
- 4. Sylvester's algorithm: finding power sum decompositions for binary forms, that is, polynomials of 2 variables.
 - Let F(x, y) be a homogeneous form of degree d in 2 variables. We write α for $\partial/\partial x$ and β for $\partial/\partial y$.
 - (a) Suppose $t_1, \ldots, t_{d+1} \in \mathbb{K}$ are any pairwise distinct numbers. Show that $(x+t_1y)^d, \ldots, (x+t_{d+1}y)^d$ are linearly independent and in fact span the vector space of homogeneous forms of degree d in 2 variables.
 - (b) Suppose $F = \lambda_1 (a_1 x + b_1 y)^d + \dots + \lambda_r (a_r x + b_r y)^d$. Let $h(\alpha, \beta) = (b_1 \alpha a_1 \beta) (b_2 \alpha a_2 \beta) \cdots (b_r \alpha a_r \beta) (b_r \alpha$ $a_r\beta$). Show that $h \in F^{\perp}$.
 - (c) Conversely, if $h(\alpha, \beta) = (b_1\alpha a_1\beta)(b_2\alpha a_2\beta)\cdots(b_r\alpha a_r\beta) \in F^{\perp}$ with distinct roots (i.e., no repeated or proportional factors), $h \neq 0$, then there exist λ_i such that $F = \lambda_1 (a_1 x + b_1 y)^d + \cdots + b_i y^{-1} + \cdots + b_i y^{-1}$ $\lambda_r (a_r x + b_r y)^d$.
 - (d) Deduce Sylvester's algorithm: the rank of F is the least r such that F^{\perp} contains a form of degree r with projectively distinct roots.
 - (e) Let $F = x^3 y$. Find F^{\perp} . Show that there is no $h \in F^{\perp}$ of degree 3 or less with distinct roots, therefore F cannot be written as a linear combination of 3 powers of linear forms. Find an $h \in F^{\perp}$ of degree 4 with distinct roots and write F as a linear combination of 4 powers of linear forms.
- 5. Some exercises about the apolar ideal.
 - (a) F^{\perp} is an **m**-primary ideal, and if F is homogeneous then so is F^{\perp} . $T/F^{\perp} \cong \text{Derivs}(F)$ as a (a) T-module (graded, if F is homogeneous). (b) $(x_1^{a_1} \cdots x_n^{a_n})^{\perp} = (\partial_1^{a_1+1}, \dots, \partial_n^{a_n+1}).$ (c) For $F \in S$ and $\Theta \in T$, $(\Theta \neg F)^{\perp} = F^{\perp} : \Theta$. (Recall for any ring R, ideal $I \subseteq R$, and $a \in R$,

 - $I: a = \{r \in R \colon ar \in I\}.\}$

- (d) The polynomials $x^d + hy^d \to x^d$ as $h \to 0$. What is the limit of the ideals $(x^d + hy^d)^{\perp}$ and how does it compare to $(x^d)^{\perp}$? What about $xyz + hw^3 \to xyz$, and $\lim(xyz + hw^3)^{\perp}$ versus $(xyz)^{\perp}$?
- (e) Find the apolar ideal, and its Hilbert function, for the following forms: $x_1^d + \cdots + x_n^d$, an elementary symmetric polynomial, the $d \times d$ generic determinant, the $d \times d$ generic permanent, and the Hilbert function for the following form of degree 4 in 13 variables: $x^3t_1 + x^2yt_2 + x^2zt_3 + xy^2t_4 + xyzt_5 + xz^2t_6 + y^3t_7 + y^2zt_8 + yz^2t_9 + z^3t_{10}$. (This last one is not unimodal.)
- 6. Let x_1, \ldots, x_n, y be independent variables and $F = F(x_1, \ldots, x_n)$ a form of degree d > 1. Then $\operatorname{rank}(F + y^d) = \operatorname{rank}(F) + 1$. [3]
- 7. For an $n \times n$ symmetric matrix M, let Q be the quadratic form given by

$$Q(x_1,\ldots,x_n) = \sum_{1 \le i,j \le n} x_i m_{ij} x_j = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} M \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Show rank $Q = \operatorname{rank} M$.

8. The following is a conjecture of Shitov: Let $S = \mathbb{k}[x_1, \ldots, x_n]$ and let u be a new variable. Let $F \in S_d$ and $G \in S_{d-1}$, with $G \neq 0$. Then

$$\operatorname{rank}(F + uG) \ge d + \min_{v \in S_1} \operatorname{rank}(F + vG),$$

with equality if G is a power of a linear form. [12]

This conjecture is open, but the following two special cases are exercises.

- (a) The case F = 0.
- (b) The case d = 2.

Additional Exercises

These are additional exercises. Some of them are more difficult; some of them are easy but perhaps tedious; some of them require a bit of computation.

- **9.** Let S be the set of solutions to the equation $(ax + by)^2 (cx + dy)^2 = xy$ (in variables a, b, c, d, over \Bbbk). Find equations and a parametrization for the affine variety $S \subset \mathbb{A}^4$. (There are two irreducible components.) What is the closure of S in \mathbb{P}^4 ?
- 10. Write out explicitly the system of equations in a, b given by the equation $(ax + by)^4 = x^3y$ and show that the system has no solutions. Do the same for the equation $(a_1x + b_1y)^4 + (a_2x + b_2y)^4 = x^3y$ (in variables a_1, b_1, a_2, b_2).

The "brute force" approach to determining Waring rank of a form such as x^3y is to find the first time that there is a solution to the equations $(ax + by)^4 = x^3y$, $(a_1x + b_1y)^4 + (a_2x + b_2y)^4 = x^3y$, $(a_1x + b_1y)^4 + (a_2x + b_2y)^4 + (a_3x + b_3y)^4 = x^3y$, etc. Is this a feasible approach in general? Is it even feasible for the specific form x^3y ?

11. For a binary form F of degree ≤ 3 , rank(F) is determined by the multiplicities of the roots of F (whether F has 1, 2, or 3 distinct roots), independently of the location of the roots. In particular in degree 3, a cubic form with 3 distinct roots has rank 2, a form with 2 distinct roots (one double root and one single root) has rank 3, and a form with 1 root (a triple root) has rank 1. But in degree ≥ 4 this is no longer the case: rank $xy(x^2 + y^2) = 2$ while rank xy(y + x)(y - 2x) = 3.

However if F has a root of multiplicity m, and F is not a dth power of a linear form, then rank F > m. [13]

12. Here are power sum decompositions of a few special polynomials. The exercise is to verify them.

(a)

$$y_1 \cdots y_d = \frac{1}{2^{d-1}d!} \sum_{\substack{\epsilon \in \{\pm 1\}^d \\ \epsilon_1 = 1}} \left(\prod_{i=1}^d \epsilon_i \right) \left(\sum_{i=1}^d \epsilon_i y_i \right)^d$$

(b) More generally, let $M = x_1^{a_1} \cdots x_n^{a_n}$ be a monomial of degree d with $1 \le a_1 \le \cdots \le a_n$. For $2 \le i \le n$ let ζ_i be a primitive $(a_i + 1)$ th root of unity (assume that \Bbbk contains enough roots of unity). Then

$$M = \frac{1}{C} \sum_{\substack{0 \le k_i \le a_i \\ 2 \le i \le n}} (x_1 + \zeta_2^{k_2} x_2 + \dots + \zeta_n^{k_n} x_n)^d (\zeta_2^{k_2} \cdots \zeta_n^{k_n})$$

where $C = \begin{pmatrix} d \\ a_1, a_2, \dots, a_n \end{pmatrix} (a_1 + 1) \cdots (a_n + 1)$, where $\begin{pmatrix} d \\ a_1, \dots, a_n \end{pmatrix}$ is the multinomial coefficient $d!/(a_1! \cdots a_n!)$. [2]

(c) More generally in a different direction, let $e_{n,d}$ be the elementary symmetric polynomial of degree d in n variables. Then for d = 2k + 1 odd, n > d, we have

$$2^{d-1}d!e_{n,d} = \sum_{I \subseteq [n], |I| \le k} (-1)^{|I|} \binom{n-k-|I|-1}{k-|I|} (\delta(I,1)x_1 + \delta(I,2)x_2 + \dots + \delta(I,n)x_n)^d$$

where $[n] = \{1, 2, ..., n\}$ and $\delta(I, i) = -1$ if $i \in I$, 1 if $i \notin I$. And for d = 2k even, n > d, we have

$$2^{d}(n-d)d!e_{n,d} = \sum_{I \subseteq [n], |I| \le k} (-1)^{|I|} \binom{n-k-|I|-1}{k-|I|} (n-2|I|) (\delta(I,1)x_1 + \delta(I,2)x_2 + \dots + \delta(I,n)x_n)^d.$$

See [7].

13. Here are two identities for the determinant and permanent.

Let X_d be the $d \times d$ matrix with entries $x_{i,j}$. Let $\det_d = \det X_d$ and $\operatorname{per}_d = \operatorname{per} X_d$.

(a) Derksen found the identity

$$\det_{3} = \frac{1}{2} \Big((x_{13} + x_{12})(x_{21} - x_{22})(x_{31} + x_{32}) \\ + (x_{11} + x_{12})(x_{22} - x_{23})(x_{32} + x_{33}) \\ + 2x_{12}(x_{23} - x_{21})(x_{33} + x_{31}) \\ + (x_{13} - x_{12})(x_{22} + x_{21})(x_{32} - x_{31}) \\ + (x_{11} - x_{12})(x_{23} + x_{22})(x_{33} - x_{32}) \Big).$$

(More precisely, Derksen found a tensor identity in terms of the columns of X_3 . See [5]. The above is a polynomial version of Derksen's identity.)

(b) Glynn's identity for the permanent is

$$\operatorname{per}_{d} = \frac{1}{2^{d-1}} \sum_{\substack{\epsilon \in \{\pm 1\}^{d} \\ \epsilon_{1} = 1}} \prod_{i=1}^{d} \sum_{j=1}^{d} \epsilon_{i} \epsilon_{j} x_{i,j},$$

see [6]. For example,

$$per_{3} = \frac{1}{4} \Big\{ (x_{1,1} + x_{1,2} + x_{1,3})(x_{2,1} + x_{2,2} + x_{2,3})(x_{3,1} + x_{3,2} + x_{3,3}) \\ - (x_{1,1} + x_{1,2} - x_{1,3})(x_{2,1} + x_{2,2} - x_{2,3})(x_{3,1} + x_{3,2} - x_{3,3}) \\ - (x_{1,1} - x_{1,2} + x_{1,3})(x_{2,1} - x_{2,2} + x_{2,3})(x_{3,1} - x_{3,2} + x_{3,3}) \\ + (x_{1,1} - x_{1,2} - x_{1,3})(x_{2,1} - x_{2,2} - x_{2,3})(x_{3,1} - x_{3,2} - x_{3,3}) \Big\}.$$

14. Conjugate rank. (From Greg Blekherman.)

Let F be a homogeneous real form. Let us compare the following three distinct values:

- 4
- The complex Waring rank of F, the least length of an expression $F = \sum \lambda_i \ell_i^d$ with $\lambda_i \in \mathbb{C}$, and ℓ_i having complex coefficients.
- The real Waring rank of F, the least length of an expression $F = \sum \lambda_i \ell_i^d$ with $\lambda_i \in \mathbb{R}$, and ℓ_i having real coefficients.
- The "conjugate rank" of F, the least length of an expression $F = \sum \lambda_i \ell_i^d$ with $\lambda_i \in \mathbb{R}, \ell_i$ having complex coefficients, and the ℓ_i occuring in conjugate pairs (or real). Equivalently, the set $\{\ell_1, \ldots, \ell_r\}$ should be fixed under complex conjugation.

With the obvious choice of notation, $\operatorname{rank}_{\mathbb{R}}(F) \ge \operatorname{rank}_{\operatorname{conjugate}}(F) \ge \operatorname{rank}_{\mathbb{C}}(F)$.

- (a) Show by example that $\operatorname{rank}_{\mathbb{R}}(F) > \operatorname{rank}_{\mathbb{C}}(F)$ can occur.
- (b) What happens when F is a binary form?
- 15. Let Q_n = x₁² + · · · + x_n².
 (a) Every form of degree ≤ m is a derivative of Q_n^m. [10, Theorem 3.10]
 - (b) Show

$$Q_n^2 = \frac{1}{6} \sum_{i < j} (x_i \pm x_j)^4 + \frac{4-n}{3} \sum_{i=1}^n x_i^4$$

thus rank $Q_n^2 \leq n^2 \ll$ the general rank of a form of degree 4 in *n* variables, for $n \gg 0$. (c) Similarly,

$$60Q_n^3 = \sum_{i < j < k} (x_i \pm x_j \pm x_k)^6 + 2(5-n) \sum_{i < j} (x_i \pm x_j)^6 + 2(n^2 - 9n + 38) \sum x_i^6,$$

so rank $Q_n^3 \leq 4\binom{n}{3} + 2\binom{n}{2} + n \ll$ the general rank, for $n \gg 0$.

16. What is the Waring rank of $F = x^2y + y^2z$, the plane cubic consisting of a smooth conic plus a tangent line? More generally, what is the Waring rank of any reducible cubic (in any number of variables)? [4]

Problems

- 17. B. Segre in his book "The Non-Singular Cubic Surfaces" [11], Section 96–97, determined the Waring rank of some quaternary cubics (forms of degree 3 in 4 variables); he showed that all of them have rank less than or equal to 7, and that rank 7 does occur. It was left to the reader to complete the determination of Waring ranks of all cubic surfaces.
- 18. What are the Waring ranks of the forms $Q^m = (x_1^2 + \dots + x_n^2)^m$? These are known in only a handful of cases, see Reznick [9]. What about $Q^m L^k$ for a linear form L which may be tangent to Q or not?
- **19.** Fixing the degree d = 3, what is the maximum rank of cubics in n variables as a function of n? For n = 1, 2, 3, 4, the maximum rank is 1, 3, 5, 7, see [8]. (The generic ranks for n = 2, 3, 4 are 2, 3, 5.) For n = 5 the generic rank is 8, and rank $x_1(x_1x_2 + x_3^2 + x_4^2 + x_5^2) = 9$, but the maximum rank is unknown.
- **20.** The 4×4 determinant be written as a sum of three determinants of 2×2 matrices of quadratic forms. Can this be done with fewer than three terms?
- **21.** Is there any irreducible nondegenerate projective variety $X \subset \mathbb{P}^N$ such that the maximum rank with respect to X is equal to 2 times the general rank, over the complex numbers \mathbb{C} , or any algebraically closed field? (An example over \mathbb{R} is given in [1].)
- **22.** The Sylvester bound followed immediately from the trivial observation that if $F \in \text{span}\{\ell_1^d, \ldots, \ell_r^d\}$, then $\operatorname{Derivs}(F)_{d-1} \subseteq \operatorname{span}\{\ell_1^{d-1}, \ldots, \ell_r^{d-1}\}$. Does the converse hold?

$$\operatorname{rank}(F + uG) \ge d + \min_{v \in S_1} \operatorname{rank}(F + vG),$$

with equality if G is a power of a linear form. [12]

References

- Grigoriy Blekherman and Rainer Sinn, Real rank with respect to varieties, Linear Algebra Appl. 505 (2016), 344–360, DOI 10.1016/j.laa.2016.04.035. MR3506500
- Weronika Buczyńska, Jarosław Buczyński, and Zach Teitler, Waring decompositions of monomials, J. Algebra 378 (2013), 45–57, DOI 10.1016/j.jalgebra.2012.12.011. MR3017012
- [3] Enrico Carlini, Maria Virginia Catalisano, and Luca Chiantini, Progress on the symmetric Strassen conjecture, J. Pure Appl. Algebra 219 (2015), no. 8, 3149–3157, DOI 10.1016/j.jpaa.2014.10.006. MR3320211
- [4] Enrico Carlini, Emanuele Ventura, and Cheng Guo, Real and complex Waring rank of reducible cubic forms, J. Pure Appl. Algebra 220 (2016), no. 11, 3692–3701, DOI 10.1016/j.jpaa.2016.05.007. MR3506475
- [5] Harm Derksen, On the nuclear norm and the singular value decomposition of tensors, Found. Comput. Math. 16 (2016), no. 3, 779–811, DOI 10.1007/s10208-015-9264-x. MR3494510
- [6] David G. Glynn, The permanent of a square matrix, European J. Combin. 31 (2010), no. 7, 1887–1891, DOI 10.1016/j.ejc.2010.01.010. MR2673027
- [7] Hwangrae Lee, Power sum decompositions of elementary symmetric polynomials, Linear Algebra Appl. 492 (2016), 89–97, DOI 10.1016/j.laa.2015.11.018. MR3440150
- [8] Johannes Kleppe, Representing a homogenous polynomial as a sum of powers of linear forms, Master's Thesis, 1999. http://folk.uio.no/johannkl/kleppe-master.pdf.
- Bruce Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463, viii+155, DOI 10.1090/memo/0463. MR1096187
- [10] _____, Uniform denominators in Hilbert's seventeenth problem, Math. Z. 220 (1995), no. 1, 75–97, DOI 10.1007/BF02572604. MR1347159
- [11] B. Segre, The Non-singular Cubic Surfaces, Oxford University Press, Oxford, 1942. MR0008171
- [12] Yaroslav Shitov, A Counterexample to Comon's Conjecture, SIAM J. Appl. Algebra Geom. 2 (2018), no. 3, 428–443, DOI 10.1137/17M1131970. MR3852707
- [13] Neriman Tokcan, On the Waring rank of binary forms, Linear Algebra Appl. 524 (2017), 250–262, DOI 10.1016/j.laa.2017.03.007. MR3630187