REALIZATION OF HYPERGEOMETRIC MOTIVES IN PRODUCTS OF FERMAT CURVES

MASHA VLASENKO

This is a research project for participants of the program "Varieties: Arithmetic and Transformations" (IMPAN Warsaw, September 1– December 1, 2018).

A generalized hypergeometric differential operator of order r with parameters $\vec{\alpha}, \vec{\beta} \in \mathbb{C}^r$ is the operator on $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ given by

(1)
$$\prod_{i=1}^{r} \left(s \frac{d}{ds} - \alpha_i \right) - s \prod_{i=1}^{r} \left(s \frac{d}{ds} - \beta_i \right).$$

As we will learn soon, hypergeometric differential equations are rigid and the eigenvalues of local monodromies around s = 0 and $s = \infty$ are given by $\{\exp(2\pi i\alpha_j)\}_{j=1}^r$ and $\{\exp(2\pi i\beta_k)\}_{k=1}^r$ respectively. A necessary condition for a differential operator to be of geometric origin is that the local monodromies are quasi-unipotent, which in this case gives $\vec{\alpha}, \vec{\beta} \in \mathbb{Q}^r$. It is due to Katz [1] that this condition is also sufficient for rigid local systems on \mathbb{P}^1 . Thus for every $\vec{\alpha}, \vec{\beta} \in \mathbb{Q}^r$ there should exist a 1-parametric family of algebraic varieties such that the Gauss–Manin connection on a rank r subquotient in its cohomology is equivalent to the local system of solutions of the hypergeometric differential operator (1). Such objects are called *hypergeometric motives* (see e.g. [2]). We shall be looking at their particular realizations.

Fix an integer N > 1 and let \mathcal{C} be the Fermat curve $X^N + Y^N = Z^N$. Fix a primitive Nth root of unity ζ_N . The group $\mathbb{Z}/N \times \mathbb{Z}/N$ acts on \mathcal{C} by $[X : Y : Z] \mapsto [\zeta_N^a X : \zeta_N^b Y : Z]$. Take $r \ge 1$ and consider the following family of hypesurfaces in the r-fold product of \mathcal{C} 's

$$X_t = \{X_1 \dots X_r = tZ_1 \dots Z_r\} \subset \mathcal{C} \times \dots \times \mathcal{C}.$$

On X_t we then have action of the subgroup $G \subset (\mathbb{Z}/N \times \mathbb{Z}/N)^r$ consisting of $(a_1, b_1, \ldots, a_r, b_r)$ with $\sum a_i = 0$. Consider the splitting of the middle cohomology of this family by characters $\chi \in \widehat{G}$:

$$H^{r-1}(X_t) = \bigoplus_{\chi \in \widehat{G}} H^{r-1}(X_t)^{\chi}.$$

Problem 1. Show that after the substitution $s = t^N$ the Gauss–Manin connection on $H^{r-1}(X_t)^{\chi}$ is hypergeometric. Give an explicit relation between the classical hypergeometric data $(\vec{\alpha}, \vec{\beta})$ and data (N, r, χ) .

Our guess that the Gauss-Manin connection on $H^{r-1}(X_t)^{\chi}$ should be hypergeometric comes from the Euler integral representation of generalized hypergeometric functions, see e.g. [3]. For r = 2 varieties X_t are smooth when $t \notin \{0, \sqrt[N]{1}\}$. I attach a note [4] in which Problem 1 is solved for this case. When r > 2 one needs to substitute X_t above by a smooth variety (to resolve singularities).

Date: September 26, 2018.

MASHA VLASENKO

Problem 2. Compute Hodge numbers of $H^{r-1}(X_t)^{\chi}$.

If Problems 1 and 2 are solved successfully, this would give a computation of the Hodge numbers of hypergeometric motives. A formula for their Hodge numbers was conjectured by Golyshev–Corti [5] and proved recently by Fedorov [6].

References

- [1] N. Katz, Rigid Local Systems, Princeton University Press, 1996
- [2] F. Rodriguez Villegas, Hypergeometric motives, https://users.ictp.it/~villegas/hgm/ index.html
- [3] F. Beukers, Hypergeometric functions in one variable, http://www.staff.science.uu.nl/ ~beuke106/springschool99.pdf
- [4] M. Vlasenko, Realization of hypergeometric motives in products of Fermat curves: the case of two curves, 2012, https://www.impan.pl/~vat/rigidity/fermat_2.pdf
- [5] A. Corti, V. Golyshev, Hypergeometric equations and weighted projective spaces, Sci. China Math., 54(8):1577–1590, 2011.
- [6] R. Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, arXiv:1505.01704 [math.AG]