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A generalized hypergeometric differential operator of order r with parameters ~α, ~β ∈
Cr is the operator on P1 \ {0, 1,∞} given by
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As we will learn soon, hypergeometric differential equations are rigid and the eigenval-
ues of local monodromies around s = 0 and s =∞ are given by {exp(2πiαj)}rj=1 and
{exp(2πiβk)}rk=1 respectively. A necessary condition for a differential operator to be
of geometric origin is that the local monodromies are quasi-unipotent, which in this

case gives ~α, ~β ∈ Qr. It is due to Katz [1] that this condition is also sufficient for rigid

local systems on P1. Thus for every ~α, ~β ∈ Qr there should exist a 1-parametric family
of algebraic varieties such that the Gauss–Manin connection on a rank r subquotient
in its cohomology is equivalent to the local system of solutions of the hypergeometric
differential operator (1). Such objects are called hypergeometric motives (see e.g. [2]).
We shall be looking at their particular realizations.

Fix an integer N > 1 and let C be the Fermat curve XN +Y N = ZN . Fix a primitive
Nth root of unity ζN . The group Z/N × Z/N acts on C by [X : Y : Z] 7→ [ζaNX :
ζbNY : Z]. Take r ≥ 1 and consider the following family of hypesurfaces in the r-fold
product of C’s

Xt = {X1 . . . Xr = tZ1 . . . Zr} ⊂ C × · · · × C .
OnXt we then have action of the subgroupG ⊂ (Z/N×Z/N)r consisting of (a1, b1, . . . , ar, br)
with

∑
ai = 0. Consider the splitting of the middle cohomology of this family by char-

acters χ ∈ Ĝ:

Hr−1(Xt) =
⊕
χ∈Ĝ

Hr−1(Xt)
χ.

Problem 1. Show that after the substitution s = tN the Gauss–Manin connec-
tion on Hr−1(Xt)

χ is hypergeometric. Give an explicit relation between the classical

hypergeometric data (~α, ~β) and data (N, r, χ).

Our guess that the Gauss–Manin connection on Hr−1(Xt)
χ should be hypergeo-

metric comes from the Euler integral representation of generalized hypergeometric
functions, see e.g. [3]. For r = 2 varieties Xt are smooth when t 6∈ {0, N

√
1}. I attach a

note [4] in which Problem 1 is solved for this case. When r > 2 one needs to substitute
Xt above by a smooth variety (to resolve singularities).
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Problem 2. Compute Hodge numbers of Hr−1(Xt)
χ.

If Problems 1 and 2 are solved successfully, this would give a computation of the
Hodge numbers of hypergeometric motives. A formula for their Hodge numbers was
conjectured by Golyshev–Corti [5] and proved recently by Fedorov [6].
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