Yaroslav Chabanyuk, Wojciech Rosa Lublin Technology University Uliana Khimka National University "Lviv Polytechnic", Lviv, Ukraine

Compensating operator diffusion process with variable diffusion in semi-Markov space

Consider the diffusion process in semi-Markov space with variable diffusion defined by stochastic differential equation [1,2]

$$du^{\varepsilon}(t) = C(u^{\varepsilon}(t); x(t/\varepsilon)) dt + \sigma(u^{\varepsilon}(t); x(t/\varepsilon)) dw(t),$$
(1)

where $u^{\varepsilon}(t)$ — random evolution in the form of a diffusion process [2]; x(t), $t \ge 0$ — semi-Markov process in the standard phase space of (X, \mathbf{X}) with stationary distribution $\pi(B), B \in \mathbf{X}$, [2]; ε — small parameter.

Compensating operator [2] can be defined by the relation

$$\mathbf{L}\varphi(x,t) = q(x) \left[\int_0^\infty G_x(ds) \int_X P(x,dy)\varphi(y,t+s) - \varphi(x,t) \right],$$

where $G_x(ds)$ — distribution function [2].

Lemma. A compensating operator [2] by the process (1) on test-functions $\varphi(u, x) \in C^3(R, X)$ is defined by the formula

$$\begin{split} \mathbf{L}^{\varepsilon}(x) &= \varepsilon^{-1} \mathbf{Q} \varphi(u, x) + \theta_{1}^{\varepsilon}(x) \mathbf{Q}_{0} \varphi(u, x) \\ &= \varepsilon^{-1} \mathbf{Q} \varphi(u, x) + \mathbf{C}(x) \varphi(u, x) + \varepsilon \theta_{2}^{\varepsilon}(x) \varphi(u, x), \end{split}$$

where \mathbf{Q} — generator of embedded Markov process [2]; $\mathbf{Q}_0 = q(x) \int_X P(x, dy), q(x) = \int_0^\infty (1 - G_x(t)) dt$; limited operators $\theta_1^{\varepsilon}(x), \ \theta_2^{\varepsilon}(x)$; $\mathbf{C}(x)\varphi(u, x) = C(u, x)\varphi'(u, x) + \frac{1}{2}\sigma^2(u, x)\varphi''(u, x)$.

References

- U. T. Khimka, Ya. M. Chabanyuk, A difference stochastic optimization procedure with impulse perturbation, Cybernetics and Systems Analysis 49 (2013), 768–773.
- [2] V. Koroliuk, N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific Publishing, Hackensack, NJ 2005.