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Compensating operator diffusion process
with variable diffusion in semi-Markov space

Consider the diffusion process in semi-Markov space with variable diffusion defined
by stochastic differential equation [1,2]

duε(t) = C(uε(t);x(t/ε)) dt+ σ(uε(t);x(t/ε)) dw(t), (1)

where uε(t) — random evolution in the form of a diffusion process [2]; x(t),
t  0 — semi-Markov process in the standard phase space of (X,X) with statio-
nary distribution π(B), B ∈ X, [2]; ε — small parameter.

Compensating operator [2] can be defined by the relation

Lϕ(x, t) = q(x)
[∫ ∞
0

Gx(ds)
∫
X

P (x, dy)ϕ(y, t+ s)− ϕ(x, t)
]
,

where Gx(ds) — distribution function [2].

Lemma. A compensating operator [2] by the process (1) on test-functions ϕ(u, x) ∈
C3(R,X) is defined by the formula

Lε(x) = ε−1Qϕ(u, x) + θε1(x)Q0ϕ(u, x)

= ε−1Qϕ(u, x) +C(x)ϕ(u, x) + εθε2(x)ϕ(u, x),

where Q— generator of embedded Markov process [2]; Q0 = q(x)
∫
X
P (x, dy), q(x) =∫∞

0 (1 − Gx(t)) dt; limited operators θε1(x), θε2(x); C(x)ϕ(u, x) = C(u, x)ϕ′(u, x) +
1
2σ
2(u, x)ϕ′′(u, x).
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