PIOTR GRACZYK
 LAREMA, UNIVERSITÉ D'ANGERS, FRANCJA

Estymatory kowariancji dla modeli graficznych
współautorzy:
H. Ishi(Nagoya), B. Kołodziejek(Warszawa),
S. Mamane(Johannesburg), H. Ochiai(Fukuoka)

XLV Konferencja Zastosowań Matematyki,
Zakopane-Kościelisko, 9/9/2016
[GI] P. Graczyk, H. Ishi, Riesz measures and Wishart laws associated to quadratic maps, Journal of Jap. Math. Soc.66(2014), 317-348.
[GIM] P. Graczyk, H. Ishi, S. Mamane, Wishart exponential families on cones related to A_{n} graphs, submitted, 2016.
[GIK] P. Graczyk, H. Ishi, B. Kołodziejek, Wishart exponential families and variance function on homogeneous cones, submitted, 2016.
[GIMO] P. Graczyk, H. Ishi, S. Mamane, H. Ochiai, On the Letac-Massam conjecture on cones $Q_{A_{n}}$, submitted, 2016.

Objective:

Modern statistics and analysis of χ^{2} Iaws on

matrix cones

χ^{2} laws on matrices are called Wishart laws

Let X be a Gaussian random vector $N(m, \Sigma)$ on \mathbb{R}^{r}, $m \in \mathbb{R}^{r}, \Sigma \in$ Sym $_{r}^{+}$
$f_{X}(x)=(\operatorname{det} 2 \pi \Sigma)^{-1 / 2} \exp \left(-\frac{1}{2} t(x-m) \Sigma^{-1}(x-m)\right)$.
X has unknown mean m and covariance Σ

We dispose of an observed sample $X^{(1)}, X^{(2)}, \ldots, X^{(s)}$

We want to estimate m and Σ, using the observed results $X^{(1)}, X^{(2)}, \ldots, X^{(s)}$

The sample mean

$$
\bar{X}_{s}=\frac{X^{(1)}+X^{(2)}+\ldots+X^{(s)}}{s}=\hat{m}
$$

is an estimator of $m=\int X d P$
and the sample covariance

$$
\hat{\Sigma}=\frac{1}{s} \sum_{i=1}^{s}\left(X^{(i)}-\bar{X}_{s}\right)^{t}\left(X^{(i)}-\bar{X}_{s}\right)
$$

is an estimator of $\Sigma=\int(X-m)^{t}(X-m) d P$.
$\hat{\Sigma}$ is a quadratic map $\mathbb{R}^{r} \times \ldots \times \mathbb{R}^{r} \mapsto \overline{\operatorname{Sym}^{+}(r, \mathbb{R})}$.

Proposition. The estimators \hat{m} and $\hat{\Sigma}$ are maximum likelihood estimators(MLE),
i.e. they maximize the sample density treated as a function of parameters (likelihood function)

$$
(m, \Sigma) \mapsto \prod_{i=1}^{s} f_{X}\left(x^{(i)}\right)=l\left(x^{(1)}, \ldots, x^{(s)} ; m, \Sigma\right)
$$

Proof. Maximizing of $\ln l\left(x^{(1)}, \ldots, x^{(s)} ; m, \Sigma\right)$ in (m, Σ).

Modern research in this area? All seems known and done? NO!!!
Problems. Studying the MLE estimators for Σ when

1. Some entries of the vector X are known to be conditionally independent with respect to other ones.

It follows that Σ is submitted to some restrictive conditions; the range of Σ is no longer the whole cone Sym $^{+}(r, \mathbb{R})$
but a subcone $P \subset \operatorname{Sym}^{+}(r, \mathbb{R})$ of matrices with obligatory zeros or its dual cone Q (explanation follows)
2. Some data is missing in observations $X^{(i)}$

A simplest example: We have s_{1} "full" observations of X and s_{2} observations of first k terms of X. How to estimate Σ from such a sample?

Conditional independence

Example: Simpson paradox

A university has 48000 students Half boys(24 000), half girls(24 000)

At the final exams: 10000 boys and 14000 girls fail Feminist organizations threaten to close the university, girl students want to lynch the president!

However, the president of the university proves that the results R of the exams are independent of the sex S of a student, knowing the department D

3 departments:
A(sciences)
B(literature, history, languages)
C(law)
16000 students each

A	Succ.	Fail	B Succ.	Fail	C Succ.	Fail
Girls 3	9	4	4	3	1	
Boys 1	3	4	4	9	3	

Actually $(R \perp S) \mid(D=d)$ for $d=\mathbf{A}, \mathbf{B}, \mathbf{C}$

Conditional independence in a.c. case
$X=\left(X_{1}, X_{2}, X_{3}\right):$ Random vector $f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)$: density function
X_{1} and X_{3} are conditionally independent knowing X_{2}
$\Leftrightarrow f_{X_{1}, X_{3} \mid X_{2}=x_{2}}=f_{X_{1} \mid X_{2}=x_{2}} f_{X_{3} \mid X_{2}=x_{2}}$
$\Leftrightarrow f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=F\left(x_{1}, x_{2}\right) G\left(x_{2}, x_{3}\right)$

Example 1. $X \sim N(0, \Sigma), \quad \Sigma \in S y m_{3}^{+}$
$f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=(\operatorname{det} 2 \pi \Sigma)^{-1 / 2} \exp \left(-^{\mathrm{t}} x \Sigma^{-1} x / 2\right)$
Put $\sigma:=\Sigma^{-1}$. Mixing x_{1} and x_{3} can be avoided only when $\sigma_{13}=0$:
$f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)$
$=(2 \pi)^{-3 / 2}(\operatorname{det} \sigma)^{1 / 2} \exp \left(-\left(\sigma_{11} x_{1}^{2}+2 \sigma_{12} x_{1} x_{2}+\sigma_{22} x_{2}^{2}\right) / 2\right)$ $\times \exp \left(-\left(2 \sigma_{23} x_{2} x_{3}+\sigma_{33} x_{3}^{2}\right) / 2\right)$

Therefore,
$\left(X_{1} \perp X_{3}\right) \mid X_{2} \Leftrightarrow \sigma_{13}=0$
The matrix $\sigma=\Sigma^{-1}$ has obligatory zeros $\sigma_{13}=\sigma_{31}=0$

The position of zeros in Σ^{-1} is encoded by a graph
$G=(V, E):$ undirected graph
$V=\{1, \ldots, r\}$: the set of vertices
$E \subset V \times V:$ the set of edges
$i \sim j \Leftrightarrow(i, j) \in E$
$Z_{G}:=\left\{x \in \operatorname{Sym}(r, \mathbb{R}) \mid x_{i j}=0\right.$ if $i \neq j$ and $\left.i \nsim j\right\}$
$P_{G}:=Z_{G} \cap \operatorname{Sym}_{r}^{+}$a sub-cone of $S y m_{r}^{+}$
$X \sim N(0, \Sigma), \quad \Sigma^{-1} \in P_{G}$
$\Leftrightarrow X_{i}$ and X_{j} are conditionally independent knowing all other components if $i \neq j$ and $i \nsim j$

Example $1\left(X_{1} \perp X_{3}\right) \mid X_{2}$ corresponds to G : 1-2-3

Example 1. Graph $G=A_{3}: 1-2-3$
$Z_{G}:=\left\{\left.\left(\begin{array}{ccc}x_{11} & x_{12} & 0 \\ x_{12} & x_{22} & x_{23} \\ 0 & x_{23} & x_{33}\end{array}\right) \right\rvert\, x_{i j} \in \mathbb{R}\right\}$
$P_{G}:=Z_{G} \cap$ Sym $_{3}^{+}$
This cone is homogeneous
($G L\left(P_{G}\right)$ acts transitively on P_{G})

$$
\begin{aligned}
Z_{G}^{*} & :=\left\{\left.\left(\begin{array}{ccc}
\xi_{11} & \xi_{12} & * \\
\xi_{12} & \xi_{22} & \xi_{23} \\
* & \xi_{23} & \xi_{33}
\end{array}\right) \right\rvert\, x_{i j} \in \mathbb{R}\right\} \\
P_{G}^{*} & =Q_{G}:=\left\{\xi \in Z_{G}^{*} \mid \operatorname{tr} x \xi>0 \text { for all } x \in \overline{\Omega_{1}} \backslash\{0\}\right\} \\
& =\left\{\xi \in Z_{G}^{*}| | \begin{array}{ll}
\xi_{11} & \xi_{12} \\
\xi_{12} & \xi_{22}
\end{array}\left|>0,\left|\begin{array}{ll}
\xi_{22} & \xi_{23} \\
\xi_{23} & \xi_{33}
\end{array}\right|>0, \xi_{33}>0\right\}\right.
\end{aligned}
$$

Example 2. Graph $G=A_{4}: 1-2-3-4$
$Z_{G}:=\left\{\left.\left(\begin{array}{cccc}x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{43} & x_{44}\end{array}\right) \right\rvert\, x_{11}, \ldots, x_{44} \in \mathbb{R}\right\}$
$P_{G}:=Z_{G} \cap S_{4}^{+}$
This cone is non-homogeneous

$$
\begin{aligned}
& P_{G}^{*}=Q_{G}:=\left\{\xi \in Z_{G}^{*} \mid \operatorname{tr} x \xi>0 \text { for all } x \in \overline{\Omega_{1}} \backslash\{0\}\right\} \\
& =\left\{\xi \in Z_{G}^{*}| | \begin{array}{ll}
\xi_{11} & \xi_{12} \\
\xi_{12} & \xi_{22}
\end{array}\left|>0,\left|\begin{array}{ll}
\xi_{22} & \xi_{23} \\
\xi_{23} & \xi_{33}
\end{array}\right|>0,\left|\begin{array}{ll}
\xi_{33} & \xi_{34} \\
\xi_{34} & \xi_{44}
\end{array}\right|>0, \xi_{44}>0\right\}\right.
\end{aligned}
$$

Theory of graphical models
started in 1976 by Lauritzen and Speed, is for decomposable graphs G
G is decomposable
$\Leftrightarrow G$ has no cycle of length ≥ 4 as an induced subgraph
Example: $A_{4}=1-2-3-4$ from Example 2
$\Omega_{G} \subset Z_{G}$ is homogeneous if and only if
G is decomposable and A_{4}-free (Letac-Massam, Ishi)

Back to the estimation of the covariance matrix of a normal vector Conditional independence case

Simplification:
$X={ }^{\mathrm{t}}\left(X_{1}, \ldots, X_{n}\right)$: random vector obeying $N(0, \Sigma)$ known mean 0 , unknown covariance matrix $\Sigma \in S_{n}^{+}$ with $\Sigma^{-1} \in P_{G}=Z_{G} \cap S_{n}^{+}$

Sample $X^{(1)}, \ldots, X^{(s)} \in \mathbb{R}^{n}$
The MLE of Σ on the whole cone S_{n}^{+}is (when $s \geq n$)
$\tilde{\Sigma}=\frac{1}{s}\left\{X^{(1) \mathrm{t}} X^{(1)}+X^{(2) \mathrm{t}} X^{(2)}+\cdots+X^{(s) \mathrm{t}} X^{(s)}\right\} \in \operatorname{Sym}(n, \mathbb{R})$
Let us look for an estimator when $\Sigma^{-1} \in P_{G}$.

Example 1: $G=1-2-3, \sigma_{13}=0$, we shall estimate $\sigma=\Sigma^{-1} \in P_{G}$ and $\Sigma=\sigma^{-1}$

The density function of the sample $X^{(1)}, \ldots, X^{(s)} \in \mathbb{R}^{3}$ $f\left(x^{(1)}, \ldots, x^{(s)} ; \sigma\right)=$
$=\prod_{k=1}^{s}\left\{(2 \pi)^{-3 / 2}(\operatorname{det} \sigma)^{1 / 2} \exp \left(-{ }^{\mathrm{t}} x^{(k)} \sigma x^{(k)} / 2\right)\right\}$
$=(2 \pi)^{-3 s / 2}(\operatorname{det} \sigma)^{s / 2} \exp \left(-\sum_{k=1}^{s}{ }^{\mathrm{t}} x^{(k)} \sigma x^{(k)} / 2\right)$
Note that
$\sum_{k=1}^{s}{ }^{\mathrm{t}} x^{(k)} \sigma x^{(k)}=\operatorname{tr}\left(\sum_{k=1}^{s} x^{(k) \mathrm{t}} x^{(k)}\right) \sigma=\langle s \tilde{\Sigma}, \sigma\rangle=\langle\pi(s \tilde{\Sigma}), \sigma\rangle$
where $\pi=$ projection on $Z_{G}^{*}\left(\right.$ since $\left.\sigma_{13}=0\right)$
$f\left(x^{(1)}, \ldots, x^{(s)} ; \sigma\right)=(2 \pi)^{-3 s / 2}(\operatorname{det} \sigma)^{s / 2} \exp \left(-\frac{1}{2}\langle\pi(s \tilde{\Sigma}), \sigma\rangle\right)$

Which $\sigma \in P_{G}$ is most likely?
Maximum Likelihood Estimation \Rightarrow it's $\sigma=\hat{\sigma}$ for which $f\left(x^{(1)}, \ldots, x^{(s)} ; \hat{\sigma}\right)$ is maximum

We study $\log f\left(x^{(1)}, \ldots, x^{(s)} ; \sigma\right)$ as a function of $\sigma \in Z_{G}$ $\operatorname{grad}_{\sigma}$ does not contain $\frac{\partial}{\partial \sigma_{13}} ; \quad$ grad log det $x=x^{-1}$

$$
\operatorname{grad} \log f\left(x^{(1)}, \ldots, x^{(s)} ; \sigma\right)=\frac{s}{2}\left(\pi\left(\sigma^{-1}\right)-\pi(\tilde{\Sigma})\right)
$$

If $s \geq 3$, then $\pi(\tilde{\Sigma})$ belongs to Q_{G}.

We must find $\hat{\sigma} \in P_{G}$ such that

$$
\pi\left(\hat{\sigma}^{-1}\right)=\pi(\tilde{\Sigma}) \in Q_{G}
$$

The inverse map ψ to $x \in P_{G} \mapsto \pi\left(x^{-1}\right) \in Q_{G}$ is needed. Only if $\pi=I d$ this is trivial $\left(\Psi(y)=y^{-1}\right)$

Then
$\hat{\sigma}=\Psi(\pi(\tilde{\Sigma})) \in P_{G}$ is the MLE of σ
and, consequently
$\hat{\Sigma}=\hat{\sigma}^{-1}=\left(\Psi(\pi(\tilde{\Sigma}))^{-1}\right.$ is the MLE of Σ.
$\pi(\tilde{\Sigma})$ is the MLE of $\pi(\Sigma)$, which determines Σ

The MLE argument is valid for any graphical cone.

CRUCIAL POINTS:

1. law of $\pi(\tilde{\Sigma})$ on Q_{G}
2. knowledge of the inverse map Ψ
law of $\pi(\tilde{\Sigma})$ on Q_{G}
$\pi(\tilde{\Sigma})$ is a quadratic map of the normal sample with values in Q_{G} :
$\hat{\Sigma}=\pi(\tilde{\Sigma})=\frac{1}{s} \pi\left(X^{(1) \mathrm{t}} X^{(1)}+X^{(2)} \mathrm{t} X^{(2)}+\cdots+X^{(s)}{ }^{\mathrm{t}} X^{(s)}\right)$
$\pi(\tilde{\Sigma}) \in Q_{G}$ obeys a Wishart law on Q_{G}

Missing data

The simplest example:
$X={ }^{t}\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}, X \hookrightarrow N(\mu, \Sigma)$

We dispose of
s_{1} "full" observations $X^{(1)}, \ldots, X^{\left(s_{1}\right)}$
s_{2} incomplete observations $X^{\prime(1)}, \ldots, X^{\prime\left(s_{2}\right)}$
$X^{\prime}={ }^{t}\left(X_{1}, *\right)$: the second entry X_{2} is not observed

It is natural to set
$X^{\prime} \hookrightarrow$ conditional law of $X_{1} \left\lvert\,\left(X_{2}=\mu_{2}\right)=N\left(\mu_{1}, \frac{1}{\sigma_{11}}\right)\right.$,
$\sigma=\Sigma^{-1}$
$f\left(x^{(1)}, \ldots, x^{\left(s_{1}\right)}, x^{\prime(1)}, \ldots, x^{\prime\left(s_{2}\right)} ; \sigma\right)=$
$(2 \pi)^{-\left(s_{1}+s_{2}\right) / 2}(\operatorname{det} \sigma)^{s_{1} / 2} \sigma_{11}^{s_{2} / 2} \times$
$\exp \left\{-\frac{1}{2}\left[\sum_{i}{ }^{t} \bar{x}^{(i)} \sigma \bar{x}^{(i)}+\sum_{j} \sigma_{11}\left(\bar{x}^{\prime(j)}\right)^{2}\right]\right\}, \quad \bar{x}=x-\mu$
The power function appears
$\Delta_{\left(\frac{s_{1}+s_{2}}{2}, \frac{s_{1}}{2}\right)}(\sigma)=\sigma_{11}^{s_{2} / 2}(\operatorname{det} \sigma)^{s_{1} / 2}$
The MLE equation $\operatorname{grad}_{\sigma} \log f=0$ is
$\operatorname{grad} \log \Delta_{\left(\frac{\left.s_{1}+s_{2}, \frac{s_{1}}{2}\right)}{}(\sigma)=\pi\left(\tilde{q}\left(\bar{x}^{(1)}, \ldots, \bar{x}^{\left(s_{1}\right)}, \bar{x}^{\prime(1)}, \ldots, \bar{x}^{\prime\left(s_{2}\right)}\right)\right)\right.}$
with a quadratic form $\tilde{q}(x)$ equal on the sample x to $\frac{1}{2} \sum_{i=1}^{s_{1}} \bar{x}^{(i) t} \bar{x}^{(i)}+\left(\begin{array}{cc}\frac{1}{2} \sum_{j=1}^{s_{2}}\left(\bar{x}^{\prime}(j)\right. &)^{2} \\ 0 & 0\end{array}\right)=q_{1,2}^{\otimes s_{1}}(x) \otimes q_{1}^{\otimes s_{2}}\left(x^{\prime}\right)$

The inverse map $\Psi_{\underline{s}}$ to

$$
x \in P_{G} \mapsto \operatorname{grad} \log \Delta_{\left(\frac{\left.s_{1}+s_{2}, \frac{s_{1}}{2}\right)}{}\right.}(\sigma) \in Q_{G}
$$

is needed.
We show its existence and write it explicitely ([GIM]).
Thus $\hat{\sigma}=\Psi_{\underline{s}}\left(\pi(\tilde{q}(X)) \in P_{G}\right.$ is the MLE of σ and, consequently $\pi(\tilde{q}(X))$ is the MLE of $\pi(\Sigma)$, which determines Σ

The equation

$$
\pi\left(y^{-1}\right)=\xi \in Q_{G}, \quad y \in P_{G}
$$

was solved by Lauritzen(1991) for decomposable graphs G, in terms of graph theory (cliques, separators...); the inverse map is called the Lauritzen map

We give such maps in monotonous missing data set-up:

$$
\Psi_{\underline{s}}=\left(\pi\left(\operatorname{grad} \log \Delta_{\left(s_{1}, \ldots, s_{n}\right)}\right)^{-1}=-\operatorname{grad} \log \delta_{-\left(s_{1}, \ldots, s_{n}\right)}\right.
$$

where $\delta_{-\left(s_{1}, \ldots, s_{n}\right)}$ is another power function (definitions later)

From now on,

$$
G=A_{n}=1-2-\ldots-n
$$

$Q_{A_{n}}$ and $P_{A_{n}}$ are important non-homogeneous($n \geq 4$) cones appearing in the statistical theory of graphical models

They correspond to the practical model of nearest neighbour interactions:
in the Gaussian character $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, non-neighbours $X_{i}, X_{j},|i-j|>1$ are conditionally independent with respect to other variables.

The Wishart laws on Q_{G} and P_{G} were first studied by Letac, Massam
G. Letac and H. Massam,

Wishart distributions for decomposable graphs, The Annals of Statistics, 35 (2007), 1278-1323.

Motivations:

- MLE theory

Lauritzen, S.L. (1996) Graphical models. Oxford University Press

- Bayesian statistics: searching conjugate prior distributions for $\pi(\Sigma) \in Q_{G}$ and $\sigma \in P_{G}$
Diaconis P. and Ylvisaker D. (1979) Conjugate priors for exponential families. The Annals of Statistics 7(2):269-281.

Letac-Massam, following the Lauritzen graph theory methods, define power functions H on Q_{G} and P_{G}. For $G=A_{n}=1-2-\ldots-n$ they are defined: on $Q_{A_{n}}$ by:

$$
H(\alpha, \beta, \eta)=\frac{\prod_{i=1}^{n-1}\left|\eta_{\{i: i+1\}}\right|^{\alpha_{i}}}{\prod_{i=2}^{n-1} \eta_{i i}^{\beta_{i}}}
$$

and on $P_{A_{n}}$ by

$$
H\left(\alpha, \beta, \pi\left(y^{-1}\right)\right)
$$

Our results:

1. we introduce natural power functions
$\delta_{\underline{s}}^{(M)}(\eta)$ on $Q_{A_{n}}, \quad \Delta_{\underline{s}}^{(M)}(y)$ on $P_{A_{n}}, \quad M=1, \ldots, n$
which contain (strictly) the Letac-Massam functions H. These functions are densities of Riesz measures on the cones $Q_{A_{n}}$ and $P_{A_{n}}$ respectively
2. We construct all Wishart families on $Q_{A_{n}}$ and $P_{A_{n}}$ generated by $\delta_{\underline{s}}^{(M)}(\eta)$ and $\Delta_{\underline{s}}^{(M)}(y)$. They contain (strictly) the Letac-Massam Wishart families $\gamma_{(\alpha, \beta, y)}^{Q}$ and $\gamma_{(\alpha, \beta, \eta)}^{P}$

We give their properties (density, moments)
3. we give an essential extension and simplification of Letac-Massam theory
4. we prove the Letac-Massam Conjecture on $Q_{A_{n}}$, on Laplace transform property of $H(\alpha, \beta, \eta)$
5. we find MLE of σ and $\pi(\Sigma)$ in the monotonous missing data case:
we construct an infinity of Lauritzen-type inverse maps $\Psi_{\underline{s}}: Q_{A_{n}} \mapsto P_{A_{n}}$
6. We determine the variance function $V(m)$ for the Wishart families on $Q_{A_{n}}$, where the mean $m=m_{\underline{s}}(y)$ is the expectation of $\gamma_{\underline{s}, y}$.

In [GIK] $V(m)$ is determined for homogeneous cones

This is done thanks to an explicit form of the inverse mean map ψ_{s}.
$\Psi_{\underline{s}}$ and $\psi_{\underline{s}}$ are closely related: $\Psi_{\underline{s}}=-\psi_{-\underline{s}}$

Density of $\tilde{q}(X), X=$ a normal sample

In order to find MLEs, one needs quadratic forms $\tilde{q}\left(X^{(1)}, \ldots, X^{(s)}\right) \hookrightarrow$ Wishart law $\gamma_{\tilde{q}, \sigma}$
the simplest case: $q(x)=x^{t} x$
$\mu_{q}=q\left(\right.$ Leb $\left._{\mathbb{R}^{r}}\right)$ a Riesz measure
$\mathcal{L}_{\mu_{q}}(\eta)=\int_{\mathbb{R}^{r}} e^{-\left\langle\eta, x^{t} x\right\rangle} d x=\int_{\mathbb{R}^{r}} e^{-t} x \eta x d x=\pi^{r / 2}(\operatorname{det} \eta)^{-1 / 2}$
For an s-sample $\mathcal{L}_{\mu_{q}}{ }^{\oplus s}(\eta)=\pi^{r s / 2}(\operatorname{det} \eta)^{-s / 2}$
For more general $\tilde{q}: \mathcal{L}_{\mu_{\tilde{q}}}(\eta)=c . \Delta_{-\underline{s}}(\eta)$

$$
\begin{aligned}
\Delta_{\underline{s}}(x) & :=\prod_{k=1}^{r}\left(\operatorname{det} x_{\{1, \ldots, k\}}\right)^{s_{k}-s_{k+1}} \\
& =x_{11}^{s_{1}}\left(\frac{\operatorname{det} x_{\{1,2\}}}{x_{11}}\right)^{s_{2}} \cdots\left(\frac{\operatorname{det} x}{\operatorname{det} x_{\{1, \ldots, r-1\}}}\right)^{s_{r}}
\end{aligned}
$$

If μ is a measure on a cone $\Omega \subset V=\mathbb{R}^{n}$, then the family of probability measures

$$
\gamma_{y}(d x)=\frac{e^{-(x, y)}}{\mathcal{L}(\mu)(y)} \mu(d x)
$$

is called exponential family generated by μ.
The density of $\gamma_{\underline{s}, \sigma}$ is $\frac{e^{-(y, \sigma)}}{\mathcal{L}_{\mu_{\underline{s}}}(\sigma)} \mu_{\underline{s}}(d y)$.
Thus, the density of the Riesz measure $\mu_{\underline{s}}$ is crucial.

When $\Omega=\operatorname{Sym}_{n}^{+}=S_{n}^{+}$, the density of the Riesz measure is given by the multiparameter Siegel integral:

For $\underline{s} \in \mathbb{C}^{n}$ with $\Re s_{k}>\frac{k-1}{2} \quad(k=1, \ldots, n)$,

where
$\delta_{\underline{s}}(x)=\left(\frac{\operatorname{det} x}{\operatorname{det} x_{\{2, \ldots, n\}}}\right)^{s_{1}} \ldots\left(\frac{\operatorname{det} x_{\{n-1, n\}}}{x_{n n}}\right)^{s_{n-1}} x_{n n}^{s_{n}}$,
$\Gamma_{S_{n}^{+}}(\underline{s}):=\pi^{\frac{n-1}{2}} \Pi_{k=1}^{n}\left\ulcorner\left(s_{k}-\frac{k}{2}\right)\right.$

POWER FUNCTIONS AND THEIR LAPLACE TRANS-

 FORMS for $G=A_{n}$
Eliminating orders of vertices

There are many (but not all) orders of vertices $1,2, \ldots, n$ that we should consider in order to have a harmonious theory of Riesz and Wishart distributions on the cones related to A_{n} graphs.

These orders are called eliminating orders of vertices.

Let v^{+}be the set of future(w.r. to the order) neigbours (w.r. to the graph) of v.

An eliminating order of the vertices of G is a permutation $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that for all v, the set v^{+}is a complete graph

Example. For the graph $A_{3}: 1-2-3$:
the orders $1 \prec 2 \prec 3,1 \prec 3 \prec 2,3 \prec 2 \prec 1$ and $3 \prec 1 \prec 2$ are eliminating orders
$2 \prec 1 \prec 3$ and $2 \prec 3 \prec 1$ are not eliminating.

Proposition. All eliminating orders on A_{n} are obtained by an intertwining of two sequences
$1 \prec 2 \prec 3<\ldots \prec M-1 \prec M$
$n \prec n-1 \prec \ldots \prec M+2 \prec M+1 \prec M$
for an $M \in V$.

Definition 1. For $\underline{s} \in \mathbb{C}^{n}$, we define functions

$$
\Delta_{\underline{s}}^{\prec}: P_{G} \rightarrow \mathbb{C}^{n} \text { and } \delta_{\underline{s}}^{\prec}: Q_{G} \rightarrow \mathbb{C}^{n} \text { by }
$$

$$
\begin{aligned}
& \Delta_{\underline{s}}^{\prec}(y):=\prod_{v \in V}\left(\frac{\operatorname{det} y_{\{v\} \cup v^{-}}}{\operatorname{det} y_{v^{-}}}\right)^{s v} \\
& \delta_{\underline{s}}^{\prec}(\eta):=\prod_{v \in V}\left(\frac{\operatorname{det} \eta_{\{v\} \cup v^{+}}}{\operatorname{det} \eta_{v^{+}}}\right)^{s_{v}} \quad\left(\eta \in P_{G}\right), \\
&\left(\eta \in Q_{G}\right)
\end{aligned}
$$

where $\operatorname{det} y_{\emptyset}=1=\operatorname{det} \eta_{\emptyset}, V=\{1, \ldots, n\}$

Property. On the cones $Q_{A_{n}}$ and $P_{A_{n}}$, the power functions $\Delta_{\underline{s}}^{\prec}(y)$ and $\delta_{\underline{s}}^{\prec}(\eta)$ for eliminating orders \prec, depend only on the maximal element M of the order. We write $\Delta_{\underline{s}}^{\prec}(y)=\Delta_{\underline{s}}^{(M)}(y), \delta_{\underline{s}}^{\prec}(\eta)=\delta_{\underline{s}}^{(M)}(\eta)$

Proposition 2. Let $M=1, \ldots, n$. The " M-power functions" $\Delta_{\underline{s}}^{(M)}(y)$ on P_{G} and $\delta_{\underline{s}}^{(M)}(x)$ on Q_{G} are given by:

$$
\begin{gathered}
\Delta_{\underline{s}}^{(M)}(y)= \\
y_{11}^{s_{1}-s_{2}} \ldots\left|y_{\{1: M-1\}}\right|^{s_{M-1}-\left.s_{M}|y|\right|^{s_{M}}} \\
\\
\times\left|y_{\{M+1: n\}}\right|^{s_{M+1}-s_{M}} \ldots y_{n n}^{s_{n}-s_{n-1}} . \\
\delta_{\underline{s}}^{(M)}(\eta)=\frac{\prod_{i=1}^{M-1}\left|\eta_{\{i: i+1\}}\right|^{s_{i}} \prod_{i=M+1}^{n}\left|\eta_{\{i-1: i\}}\right|^{s_{i}}}{\prod_{i=2}^{M-1} \eta_{i i}^{s_{i-1}} \cdot \eta_{M M}^{s_{M-1}-s_{M}+s_{M+1}} \cdot \prod_{i=M+1}^{n-1} \eta_{i i}^{s_{i+1}}} .
\end{gathered}
$$

Theorem 3. For all $y \in P_{A_{n}}$,

$$
\delta_{\underline{s}}^{(M)}\left(\pi\left(y^{-1}\right)\right)=\Delta_{-\underline{s}}^{(M)}(y) .
$$

Characteristic function of a cone

$$
\varphi_{\Omega}(x)=\int_{\Omega^{*}} e^{-(x, y)} d y=\mathcal{L}_{\left(\Omega^{*}, L e b\right)}\left(\operatorname{Leb}_{\Omega^{*}}\right)(x)
$$

$\varphi_{\Omega}(x) d x$ is the invariant measure of the cone Ω :

$$
\int_{\Omega} f(g x) \varphi_{\Omega}(x) d x=\int_{\Omega} f(x) \varphi_{\Omega}(x) d x
$$

For $n \geq 2$ define $\varphi_{n}: Q_{A_{n}} \rightarrow \mathbb{R}_{+}$by

$$
\varphi_{n}(\eta)=\prod_{i=1}^{n-1}\left|\eta_{\{i, i+1\}}\right|^{-3 / 2} \prod_{i \neq 1, n} \eta_{i i}
$$

We will see that φ_{n} is the characteristic function of the cone $Q_{A_{n}}$.

Theorem 4. For all $n \geq 1$, for all $1 \leq M \leq n$ and for all $y \in P_{A_{n}}$, the integral $\int_{Q_{A_{n}}} e^{-\operatorname{tr}(y \eta)} \delta_{\underline{s}}^{(M)}(\eta) \varphi_{A_{n}}(\eta) d \eta$ converges if and only if $s_{i}>\frac{1}{2}$, for all $i \neq M$ and $s_{M}>0$. In this case, we have

$$
\begin{aligned}
\int_{Q_{A_{n}}} & e^{-\operatorname{tr}(y \eta)} \delta_{\underline{s}}^{(M)}(\eta) \varphi_{A_{n}}(\eta) d \eta \\
= & \pi^{(n-1) / 2}\left\{\prod _ { i \neq M } \ulcorner (s _ { i } - \frac { 1 } { 2 }) \} \left\ulcorner\left(s_{M}\right) \Delta_{-\underline{s}}^{(M)}(y) .\right.\right.
\end{aligned}
$$

Theorem 5. For all $n \geq 1$, for all $1 \leq M \leq n$ and for all $\eta \in Q_{A_{n}}$, the integral $\int_{P_{A_{n}}} e^{-\operatorname{tr}(y \eta)} \Delta_{\underline{s}}^{(M)}(y) d y$ converges if and only if $s_{i}>-\frac{3}{2}$, for all $i \neq M$ and $s_{M}>-1$. And in this case, we have

$$
\begin{aligned}
\int_{P_{A_{n}}} & e^{-\operatorname{tr}(y \eta)} \Delta_{\underline{s}}^{(M)}(y) d y \\
= & \pi^{(n-1) / 2}\left\{\prod_{i \neq M} \Gamma\left(s_{i}+\frac{3}{2}\right)\right\} \Gamma\left(s_{M}+1\right) \delta_{-\underline{s}}^{(M)}(\eta) \varphi_{A_{n}}(\eta) .
\end{aligned}
$$

LETAC-MASSAM LAPLACE INTEGRALS

Recall Letac-Massam power functions on $Q_{A_{n}}$

$$
H(\alpha, \beta, \eta)=\frac{\prod_{i=1}^{n-1}\left|\eta_{\{i: i+1\}}\right|^{\alpha_{i}}}{\prod_{i=2}^{n-1} \eta_{i i}^{\beta_{i}}}
$$

The Laplace transform formula $\quad \forall y \in P_{A_{n}}$
$\int_{Q_{A_{n}}} e^{-\operatorname{tr}(y \eta)} H(\alpha, \beta, \eta) \varphi_{Q_{A_{n}}}(\eta) d \eta=C_{\alpha, \beta} H\left(\alpha, \beta, \pi^{-1}(y)\right)$,
will be referred to as the Letac-Massam formula on $Q_{A_{n}}$

Define $r_{i}=\alpha_{i}-\beta_{i+1}$, for all $1 \leq i \leq n-3$ and $p_{i}=\alpha_{i}-\beta_{i}$, for all $3 \leq i \leq n-1$. We have

$$
H(\alpha, \beta, \eta)=\delta_{\underline{s}}^{(M)}(\eta) \prod_{i=2}^{M-1} \eta_{i i}^{r_{i-1}} \prod_{i=M+1}^{n-1} \eta_{i i}^{p_{i}}
$$

where $s_{i}=\alpha_{i}$, for all $1 \leq i \leq M-1$; $s_{i}=\alpha_{i-1}$, for all $M+1 \leq i \leq n$ and $\beta_{M}=s_{M-1}-s_{M}+s_{M+1}$.

We have proved
Theorem. The Letac-Massam formula on $Q_{A_{n}}$ holds if and only if

$$
H(\alpha, \beta, \eta)=\delta_{\underline{s}}^{(M)}(\eta)
$$

for some $M=2, \ldots, n-1$.
(a new formulation of "Letac-Massam conjecture")

Methods. Change of variables
Let $\Phi_{n}: \mathbb{R}^{+} \times \mathbb{R} \times P_{A_{n-1}} \longrightarrow P_{A_{n}},(a, b, z) \longmapsto y$ with
$y=\left(\begin{array}{cccc}1 & & & \\ b & \ddots & & \\ 0 & & & \\ \vdots & & \ddots & \\ 0 & \ldots \ldots \ldots & 0 & 1\end{array}\right)\left(\begin{array}{cccc}a & 0 & \ldots & 0 \\ 0 & & & \\ \vdots & & z & \\ 0 & & & \end{array}\right)\left(\begin{array}{ccccc}1 & & & \\ b & \ddots & & \\ 0 & & & \\ \vdots & & & \ddots & \\ 0 & \ldots \ldots \ldots & 0 & 1\end{array}\right)^{T}$
Let $\Psi_{n}: \mathbb{R}^{+} \times \mathbb{R} \times Q_{A_{n-1}} \longrightarrow Q_{A_{n}},(\alpha, \beta, x) \longmapsto \eta$ with
$\eta=\pi\left(\left(\begin{array}{cccc}1 & & & \\ \beta & \ddots & & \\ 0 & & & \\ \vdots & & \ddots & \\ 0 & \ldots & \ldots . & 0 \\ 1\end{array}\right)^{T}\left(\begin{array}{cccc}\alpha & 0 & \ldots & 0 \\ 0 & & & \\ \vdots & & x & \\ 0 & & \end{array}\right)\left(\begin{array}{cccc}1 & & & \\ \beta & \cdots & & \\ 0 & & & \\ \vdots & & \ddots & \\ 0 & \ldots \ldots \ldots & 0 & 1\end{array}\right)\right)$
The maps Φ_{n} and Ψ_{n} are bijections.

Back to MLE of σ and Σ

Theorem The map

$$
-\operatorname{grad} \log \Delta_{-\underline{s}}^{(M)}: P_{A_{n}} \rightarrow Q_{A_{n}}
$$

has the inverse map

$$
\operatorname{grad} \log \delta_{\underline{s}}^{(M)}: Q_{A_{n}} \rightarrow P_{A_{n}}
$$

proved on homogeneous cones by Kai-Nomura (2005)
\Rightarrow solution of MLE equation

$$
\operatorname{grad} \log \Delta_{\underline{s}}(\hat{\sigma})=\pi\left(q_{1,2}^{\otimes s_{1}}(x) \otimes q_{1}^{\otimes s_{2}}\left(x^{\prime}\right)\right)
$$

