L KZM ZAKOPANE 2022

Andrzej Ossowski, Joanna Napiórkowska Military University of Technology, Faculty of Cybernetics

Ternary logic control for stability modification of bilinear systems

In this work the problem of stability modification of bilinear control systems [1], [2]:

(1)
$$d\boldsymbol{x}/dt = \boldsymbol{A}_0 \boldsymbol{x} + u_1 \boldsymbol{B}_1 \boldsymbol{x} + \ldots + u_m \boldsymbol{B}_m \boldsymbol{x}, \quad |u_i(t)| < \alpha, \quad i = 1, 2, \ldots, m,$$

where $\boldsymbol{x} \in \mathbb{R}^n$ denotes the state vector, α is a control bound, \boldsymbol{A}_0 is a Hurwitz $n \times n$ matrix and B_i , i = 1, 2..., m, are $n \times n$ matrices, is considered.

Applying a quadratic Lyapunov function $V_{\mathbf{S}}(\mathbf{x}) = \mathbf{x}^T \mathbf{S} \mathbf{x}$ such that the index of exponential stability

(2)
$$\gamma_0(\boldsymbol{S}) = -\sup_{\boldsymbol{x}\neq\boldsymbol{0}} \left[\frac{\boldsymbol{x}^T \boldsymbol{S} \boldsymbol{A}_0 \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{S} \boldsymbol{x}} \right] > 0,$$

it is proved that optimal controls improving stability of system (1) are of the bangbang form:

(3)
$$\hat{u}_i = -\alpha \operatorname{sign}[\boldsymbol{x}^T \boldsymbol{S} \boldsymbol{B}_i \boldsymbol{x}]; \quad i = 1, 2, \dots, m_i$$

with quadratic switching surfaces [2]. Moreover, stability properties of the closed-loop system at $\boldsymbol{x} = 0$ in the state space \mathbb{R}^n are determined by the stability index

(4)
$$\gamma(\mathbf{S}) = -\sup_{\mathbf{x}\neq\mathbf{0}} \left[\frac{\mathbf{x}^T \mathbf{S} \mathbf{A}_0 \mathbf{x}}{\mathbf{x}^T \mathbf{S} \mathbf{x}} - \alpha \cdot \frac{|\mathbf{x}^T \mathbf{S} \mathbf{B}_1 \mathbf{x}|}{\mathbf{x}^T \mathbf{S} \mathbf{x}} - \dots - \alpha \cdot \frac{|\mathbf{x}^T \mathbf{S} \mathbf{B}_m \mathbf{x}|}{\mathbf{x}^T \mathbf{S} \mathbf{x}} \right],$$

which is always greater than or equal to $\gamma_0(\mathbf{S})$.

If an additional bound on the total "power" of controls is assumed

(5)
$$|u_1| + \ldots + |u_m| \leq k\alpha, \quad k \in \{1, 2, \ldots, m\},$$

then at any state $\boldsymbol{x}(t)$ only k (out of m) controls u_{i1}, \ldots, u_{ik} satisfying the inequality relation

(6)
$$|\boldsymbol{x}^T \boldsymbol{S} \boldsymbol{B}_{i1} \boldsymbol{x}| \ge \ldots \ge |\boldsymbol{x}^T \boldsymbol{S} \boldsymbol{B}_{im} \boldsymbol{x}|$$

can be switched on, i.e. be non-zero [2]. Therefore the feedback controller has to make an appropriate choice of the active controls in real time according to the actual state $\boldsymbol{x}(t)$ of the system. Since the optimal controls are three-valued $(0, +\alpha, -\alpha)$ and the input information contained in inequalities (6) is also ternary, the controller is in fact a ternary logic system.

The general structure of the ternary logic controller of system (1) is proposed. It is proved that the controller can be realized by a multilayer neural network composed of the fundamental blocks: input layer, comparator, selector and converter.

References

- P. O. Gutman, Stabilizing controllers for bilinear systems, IEEE Transactions on Automatic Control AC-26 (1981), 917–922.
- [2] A. Ossowski, Analiza jakościowa w zagadnieniach dynamiki i sterowania układów mechatronicznych, Prace IPPT 8 (2007).