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Abstract

The completeness of a bond market model with infinite number of sources of random-
ness on a finite time interval in the Heath-Jarrow-Morton framework is studied. It is proved
that the market in the case of trading strategies is not complete. An explicit construction
of a bounded contingent claim, which can not be replicated, is provided. Moreover, a
new concept of generalized strategies is introduced and sufficient conditions for the market
completeness with such strategies are given. An example of a complete model is provided.
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1 Introduction

We investigate the completeness of a continuous time zero-coupon bond market model in the
Heath-Jarrow-Morton framework. Let P (t, T ), 0 ≤ t, T ≤ S̄ < ∞ be the price at time t of

a bond paying 1 at maturity T and P̂ (t, T ) be the discounted price. S̄ denotes a finite time
horizon of the model. The paper is devoted to the problem of completeness of the market. We
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say that a market is complete if an arbitrary bounded random variable can be replicated by an
admissible strategy. Thus we are concerned with a problem of replicating for, each S ≤ S̄,
contingent claims depending on the information available up to time S. If S = S̄ we have a
situation which occurs in practice, when a trader hedges a payoff which depends on the bond’s
prices up to time S̄, uses bonds with maturities not exceeding S̄. Strategies of this type will be
called natural.

The bond market we study is infinite in the sense that the price process is a function-valued
process. The concept of the portfolio and the strategy may be formalized in many possible
ways. We base our approach on the stochastic integration theory with respect to the Hilbert
space-valued martingales, as presented in Métivier [15] and Da Prato, Zabczyk [5].

The problem of completeness has been investigated by several authors. Björk et. al [2],
[3] regarded the price process in the space of continuous functions and obtained conditions for
approximate completeness. Cylindrical integration theory, due to Mikulevicius, Rozovski [16],
[17], and signed measures as portfolios were used in the paper of De Donno, Pratelli [6]. The
problem of replicating with the help of natural strategies was discussed and partially solved
in Carmona, Tehranchi [4]. It was shown in [4], with the use of the Malliavin calculus, that
each contingent claim of a special form can be replicated. The problem was also considered
in Aihara, Bagchi [1]. The lack of completeness was shown in Taflin [19] however, for a non-
standard definition of the set of contingent claims, namely for D0 :=

⋂
p>1 L

p(Ω).

In the present paper the problem of completeness in the class of all bounded random vari-
ables is studied. We consider two cases, the first one when strategies take values in the spaceG∗

- the dual of the Sobolev space G = H1[0, S̄] and the second one when strategies are only (P̂t)

integrable processes. The strategies in the latter case are called generalized strategies. We prove
that in the first case, under some natural conditions, the bond market model is not complete. The
main contribution of this paper is the result on incompleteness for bounded contingent claims.
Moreover, we provide a construction of a bounded random variable which can not be replicated.
As a corollary we obtain incompleteness when the strategies take values in L2[0, S̄], compare
[1]. Our results seem to be in a contrast with Theorem 4.1 in [1] which states that the bond
market is complete (see our Remark 3.8).

For the class of generalized strategies we establish a sufficient condition for completeness.
Although these strategies have a clear mathematical meaning, portfolios used can be even non-
continuous functionals on G. We provide an example of a Gaussian bond market which is
complete.

2 The model

2.1 Process of bond prices

We consider a bond market with a finite time horizon S̄ defined on a filtered probability space
(Ω,F , (Ft)t∈[0,S̄],P) satisfying usual conditions. The filtration is generated by a sequence of
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independent standard Wiener processes W i, i = 1, 2, . . ., i.e. Ft is generated by W i(s), where
i = 1, 2, . . ., s ≤ t. We interpret Wt = (W 1(t),W 2(t), ...) as a cylindrical Wiener process W
in l2. The dynamics of the forward rate curve is given by the equation:

df(t, T ) = α(t, T )dt+
∞∑
i=1

σi(t, T )dW i(t), t ∈ [0, S̄], T ∈ [0, S̄], (2.1)

where we put
α(t, T ) = σi(t, T ) = 0 for t ≥ T and i = 1, 2, . . . . (2.2)

The formula (2.1) defines a family of equations parametrized by a continuous parameter T ∈
[0, S̄]. For each T ∈ [0, S̄] the equation describes the evolution of the forward rate on the
interval [0, S̄]. Denote by σt a linear operator from l2 into H := L2[0, S̄] given by the formula

(σtu)(T ) :=
∞∑
i=1

σi(t, T )ui, u = (ui)∞i=1 ∈ l2, t, T ∈ [0, S̄],

and αt(T ) = α(t, T ). In this notation the formula (2.1) has the following form:

dft = αtdt+ σtdWt, (2.3)

or equivalently, using a stochastic integral:

ft = f0 +

∫ t

0

αsds+

∫ t

0

σsdWs, t ∈ [0, S̄]. (2.4)

For the concept of the stochastic integral in Hilbert spaces see [15], [5].
The drift coefficient α is assumed to be a process taking values in the space H , with the norm
denoted by | · |H , satisfying Bochner integrability condition:

∫ S̄

0

| αt |H dt =

∫ S̄

0

(∫ S̄

0

α2(t, T )dT

) 1
2

dt <∞ P− a.s.. (2.5)

Processes (σt) is assumed to be a predictable process taking values in the space of Hilbert-
Schmidt operators LHS(l2, H):

‖σt‖2
LHS(l2,H) =

∞∑
i=1

| σit |2H=
∞∑
i=1

(∫ S̄

0

σi(t, T )2dT

)
<∞ P− a.s., (2.6)

and satisfied the integrability condition:

∫ S̄

0

‖σt‖2
LHS(l2,H)dt =

∞∑
i=1

∫ S̄

0

(∫ S̄

0

σi(t, T )2dT

)
dt <∞ P− a.s.. (2.7)
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Conditions (2.5) and (2.7) are necessary and sufficient for the forward rate curve process (ft) to
be continuous in H .
The short rate process r is defined by r(t) := f(t, t) and the evolution of the money held in the
savings account is given by the equation:

dB(t) = r(t)B(t)dt.

The bond price P is a process defined by the following formula:

P (t, T ) = e−
R T

t f(t,u)du, (2.8)

and the discounted bond price P̂ , due to (2.2), satisfies:

P̂ (t, T ) := B−1(t)P (t, T ) = e−
R T
0 f(t,u)du. (2.9)

Let G := H1[0, S̄] be the Hilbert space of absolutely continuous functions with square inte-
grable first derivative equipped with the norm:

| g |2G:=| g(0) |2 +

∫ S̄

0

(dg
ds

(s)
)2

ds, g ∈ G.

Note that the process P̂ takes values in G. In fact, since:

d

dT
P̂ (t, T ) = −P̂ (t, T )f(t, T ),

we have:

| P̂t |2G = P̂ (t, 0)2 +

∫ S̄

0

(
P̂ (t, T )f(t, T )

)2

dT

≤ P̂ (t, 0)2 + C(t)

∫ S̄

0

f(t, T )2dT <∞,

where C(t) := supT∈[0,S̄] P̂
2(t, T ) is finite because P̂ (t, T ) is a continuous function of T . We

will also assume that the model is arbitrage-free, in the sense that the process P̂ (·, T ) is a local
martingale for every T ∈ [0, S̄], see Delbaen, Schachermayer [7], [8]. This postulate is satisfied
if and only if the following HJM -condition holds, see Jakubowski, Zabczyk [10]:∫ T

t

α(t, u)du =
1

2

∣∣∣ ∫ T

t

σ(t, u)du
∣∣∣2
l2

∀ t, T ∈ [0, S̄]. (2.10)

Differentiating (2.10) with respect to T gives the following formula:

α(t, T ) =
∞∑
i=1

σi(t, T )

∫ T

t

σi(t, u)du ∀ t, T ∈ [0, S̄]. (2.11)
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As a consequence of (2.11) we can write the following expression for the process P̂ , see [10]:

dP̂ (t, T ) = P̂ (t, T )
( ∞∑
i=1

bi(t, T )dW i(t)
)
, (2.12)

where

bi(t, T ) := −
∫ T

0

σi(t, u)du, t, T ∈ [0, S̄]. (2.13)

Let (Γt) be a stochastic process with values in the space of linear operators from l2 into G given
by the formula:

(Γtu)(T ) := P̂ (t, T )
∞∑
i=1

bi(t, T )ui, u ∈ l2, t, T ∈ [0, S̄]. (2.14)

Proposition 2.1 For every t ∈ [0, S̄], Γt given by (2.14) is a Hilbert-Schmidt operator form l2

to G. Moreover with probability one∫ S̄

0

‖Γt‖2
LHS(l2,G)dt <∞. (2.15)

Proof: At the beginning we show an auxiliary estimation. By (2.9) we have:

| P̂ (t, T ) |≤ e
R S̄
0 |f(t,u)|du ≤ e(

R S̄
0 |f(t,u)|2du)

1
2 (S̄)

1
2 = e|ft|H (S̄)

1
2 . (2.16)

Since (ft) is a continuous process in H , we conclude that the function t −→| ft |H is bounded
as a continuous function on [0, S̄], i.e. there exists a constant A > 0 such that:

sup
t∈[0,S̄]

| ft |H≤ A. (2.17)

Thus for some B > 0 we have:

| P̂ (t, T ) |≤ B ∀ t, T ∈ [0, S̄]. (2.18)

For any i = 1, 2, ..., we have:

d

dT

(
P̂ (t, T )bi(t, T )

)
=

d

dT
P̂ (t, T ) bi(t, T ) + P̂ (t, T )

d

dT
bi(t, T )

= f(t, T )P̂ (t, T )

∫ T

0

σi(t, u)du− P̂ (t, T )σi(t, T ). (2.19)
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Using (2.17), (2.18), (2.19) we can estimate the G-norm of P̂ (t, ·)bi(t, ·) by the H-norm of σit:

| P̂ (t, ·)bi(t, ·) |2G=

∫ S̄

0

P̂ (t, T )2

(
f(t, T )

∫ T

0

σi(t, u)du− σi(t, T )

)2

dT

≤ B2

∫ S̄

0

2

((
f(t, T )

∫ T

0

σi(t, u)du

)2

+ σi(t, T )2

)
dT

≤ B2

(
2

∫ S̄

0

f(t, T )2

(
T

∫ T

0

σi(t, u)2du

)
dT + 2 | σit |2H

)

≤ B2

(
2

∫ S̄

0

f(t, T )2S̄ | σit |2H dT + 2 | σit |2H

)

≤ 2B2 | σit |2H

(
S̄

∫ S̄

0

f(t, T )2dT + 1

)
= 2B2 | σit |2H

(
S̄ | ft |2H +1

)
≤ 2B2(S̄A+ 1) | σit |2H . (2.20)

Let (ei)∞i=1 be a standard basis in l2. In virtue of (2.7) and (2.20) we obtain the desired estima-
tion: ∫ S̄

0

‖Γt‖2
LHS(l2,G)dt =

∫ S̄

0

∞∑
i=1

| Γtei |2G dt =

∫ S̄

0

∞∑
i=1

| P̂ (t, ·)bi(t, ·) |2G dt

≤ 2B2(S̄A+ 1)

∫ S̄

0

∞∑
i=1

| σit |2H dt ≤ 2B2(S̄A+ 1)

∫ S̄

0

‖σt‖2
LHS(l2,H)dt <∞.

As an immediate consequence we obtain:

Corollary 2.2 The process P̂ of discounted bond prices is a G-valued local martingale.

Since (2.15), hence the equation (2.12) can be written in the form, see [15], [5]:

P̂t = P̂0 +

∫ t

0

ΓsdWs, t ∈ [0, S̄]. (2.21)

2.2 Portfolios and strategies

2.2.1 Trading strategies

In general portfolios ϕ are identified with linear functionals acting on a space in which the
price process lives. For the bond market the following classes of portfolios are considered in
literature.
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A) Portfolios consisting of finite or infinite number of bonds:

ϕ =
m∑
i=1

αiδ{Ti}, m ∈ N ∪∞, αi, Ti ∈ [0, S̄], i = 1, 2, ...,m,
∞∑
i=1

| αi |<∞.

B) ϕ are finite signed measures on the interval [0, S̄].

C) ϕ are bounded functionals on the space G = H1[0, S̄], shortly ϕ ∈ G∗, where G∗ denotes
the dual space.

The classA has an obvious interpretation. Some justification for using portfolios as finite signed
measures or as elements of G∗ can be found in [6] or in [2] and [3]. Let us recall that the space
G∗ contains finite signed measures on the interval [0, S̄].

Definition 2.3 A trading strategy is any predictable process with values in some fixed class in
A - C.

Definition 2.4 The (discounted) wealth process V̂ ϕ corresponding to ϕ is given by:

V̂ ϕ
t = V̂ ϕ

0 +

∫ t

0

< ϕs, dP̂s >G∗,G , t ∈ [0, S̄],

The concept of stochastic integral will be discussed now.

Since P̂ is a G-valued local martingale of the form (2.21), the class of integrands, see [15],
consists of all G∗-valued predictable processes ϕ satisfying:∫ S̄

0

| ϕt(Q
1
2
t ) |2G∗ dt <∞, (2.22)

where

Qt = ΓtΓ
′

t, t ∈ [0, S̄]. (2.23)

In (2.23) Γ
′
t is the conjugate of Γt, i.e. for all a ∈ G and b ∈ l2 we have< Γ

′
ta, b >l2=< a,Γtb >G.

We say that a predictable process ϕ is P̂ integrable if ϕ satisfies (2.22). The construction of the
stochastic integral in [15] is developed for a square integrable martingale, but it can be extended
to local martingales by the localization procedure. Moreover, identifying Hilbert space G with
its dual, with ϕ̃ ∈ G∗ corresponding to ϕ ∈ G, we have

| ϕ(Q
1
2
t ) |2G∗ =< (ΓtΓ

′

t)
1
2 ϕ̃, (ΓtΓ

′

t)
1
2 ϕ̃ >G=| Γ′

tϕ̃ |2G=| Γ∗t ϕ̃ |2G∗ .

So, the condition (2.22) can be reformulated as:∫ S̄

0

| Γ∗sϕs |2l2 ds <∞. (2.24)
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Therefore, ϕ is (P̂t) integrable if (2.24) holds and then∫ t

0

< ϕs, dP̂s >G∗,G =

∫ t

0

< Γ∗sϕs, dWs >l2,l2 . (2.25)

We define a class of admissible strategies in a standard way, see, for instance, Karatzas, Shreve
[13], Hunt, Kennedy [9], Jarrow, Madan [11].

Definition 2.5 A strategy ϕ is admissible if it is (P̂t) integrable and if the process∫ t

0

< ϕs, dP̂s >G∗,G, t ∈ [0, S̄]

is a martingale. The class of all admissible strategies will be denoted by A.

Example 2.6 Assume that ϕ is a G∗-valued predictable process.

1) If ϕ satisfies the integrability condition:

E

(∫ S̄

0

| Γ∗sϕs |2l2 ds

) 1
2

<∞,

then ϕ ∈ A. Indeed, the Burkholder-Davies-Gundy inequality implies that the integral∫ ·
0
< ϕs, dP̂s >G∗,G is a martingale.

2) If there exists a constant K > 0 such that the following condition holds:∣∣∣∣∫ t

0

< ϕs, dP̂s >G∗,G

∣∣∣∣ < K, ∀ t ∈ [0, S̄],

then ϕ ∈ A, because a bounded local martingale is a martingale. �

2.2.2 Generalized strategies

A class of generalized strategies consists of predictable processes for which the integral with

respect to the process P̂ is well defined. This class contains G∗-valued strategies but also
strategies which take values in the space of unbounded functionals on G. The integral with

respect to the process P̂ given by (2.21) is defined in [15], see also Peszat, Zabczyk [18], where
the space of integands is explicitly described. The class of integrands consists of all predictable
processes ϕ taking values in the space of linear but not necessarily continuous functionals on
G, satisfying the following conditions:

ImQ
1
2
t ⊆ Domϕt, ϕt(Q

1
2
t ) ∈ G∗, ∀t ∈ [0, S], (2.26)∫ S̄

0

| ϕt(Q
1
2
t ) |2G∗ dt <∞. (2.27)
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Definition 2.7 An admissible generalized strategy is a predictable process ϕ taking values in
the space of linear functionals on G, satisfying (2.26) and the following condition:

E

(∫ S̄

0

| ϕt(Q
1
2
t ) |2G∗ dt

)
<∞.

The stochastic integral of ϕ with respect to (P̂t) is denoted by
∫

(ϕs, dP̂s). Notice that∫ t

0

(ϕs, dP̂s) =

∫ t

0

< Γ∗s ◦ ϕs, dWs >l2,l2 , t ∈ [0, S̄], (2.28)

where by Γ∗s ◦ ϕs is given by the formula Γ∗s ◦ ϕs(u) = ϕs(Γsu), u ∈ l2.

3 Completeness

3.1 Case of trading strategies

We define the completeness of the market in a usual way.

Definition 3.1 Let S ≤ S̄. The bond market is complete on [0, S] if for any FS-measurable,
bounded random variable ξ there exists an admissible strategy ϕ and a constant c such that

ξ = c+

∫ S

0

< ϕt, dP̂t >G∗,G . (3.29)

Theorem 3.2 The bond market is not complete on [0, S] for any S ≤ S̄.

For the proof we will need the following lemmas.

Lemma 3.3 (Appendix B in [5]) Let X,Y, Z be three Hilbert spaces and A : X −→ Z, B :

Y −→ Z two linear bounded operators. Then ImA ⊆ ImB if and only if there exists constant
c > 0 such that ‖A∗f‖ ≤ c‖B∗f‖ for all f ∈ Z∗.

The next lemma states a uniqueness of random variables representation in a class of admissible
strategies. This property is crucial in a method which is used in the proof of the main result.

Lemma 3.4 Let x, y ∈ R. Assume that ψ is integrable with respect to W and such that∫ t
0
ψsdWs, t ∈ [0, S] is a martingale. If for ϕ ∈ A the following condition

x+

∫ S

0

< ϕs, dP̂s >G∗,G= y +

∫ S

0

< ψs, dWs >l2,l2 , (3.30)

is satisfied, then x = y and Γ∗sϕs = ψs a.s. wrt. P ⊗ λ on Ω × [0, S], where λ denotes a
Lebesgue measure.
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Proof: Taking expectations of both sides in (3.30) we immediately obtain that x = y.
Thus the following condition is satisfied:∫ S

0

< Γ∗sϕs − ψs, dWs >l2,l2= 0.

By Lemma 10.15 in [5], there exists a standard, one dimensional Wiener process B for which
we have: ∫ t

0

< Γ∗sϕs − ψs, dWs >l2,l2=

∫ t

0

| Γ∗sϕs − ψs |l2 dB(s) ∀ t ∈ [0, S].

Thus the process
∫ t

0
| Γ∗sϕs − ψs |l2 dB(s) is a martingale which is equal to zero at time S. So,

it is equal to zero for every t ∈ [0, S]. By the uniqueness of the martingale representation, see
Theorem 18.10 in Kallenberg [12], we conclude that the integrand must be zero which implies:
Γ∗sϕs = ψs, P ⊗ λ a.s.

3.1.1 Proof of Theorem 3.2

Due to the definition of the integral with respect to P̂ , the set of all final portfolio values starting
from zero initial endowment has the following structure:{∫ S

0

< ϕt, dP̂t >G∗,G : ϕ ∈ A
}

=

{∫ S

0

< Γ∗tϕt, dWt >l2,l2 : ϕ ∈ A
}
.

We will show that the operators Γ∗t , t ∈ [0, S], are not surjective and we construct process ψ
taking values in the space l2 satisfying conditions:

1) ψ is integrable wrt. W and such that
∫ t

0
< ψt, dWt >l2,l2 , t ∈ [0, S], is a martingale,

2) ψt /∈ Im(Γ∗t ) with positive P⊗ λ measure,

3) the random variable
∫ S

0
< ψt, dWt >l2,l2 is bounded.

Then, in virtue of Lemma 3.4, for any c ∈ R and ϕ ∈ A we have:∫ S

0

< ψt, dWt >l2,l2 6= c+

∫ S

0

< Γ∗tϕt, dWt >l2,l2 .

Thus the integral
∫ S

0
< ψt, dWt >l2,l2 is a bounded random variable which can not be replicated.

By Proposition 2.1 the operator Γt is a Hilbert-Schmidt operator for any t ∈ [0, S]. Thus Γt is
compact, so is Γ∗t . As a compact operator with values in infinite dimensional Hilbert space, Γ∗t
is not surjective.
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Let us consider the self-adjoint operator (Γ∗tΓt)
1
2 : l2 −→ l2 which is also compact. For any

u ∈ l2 we have:

| (Γ∗tΓt)
1
2u |2l2=< (Γ∗tΓt)

1
2u, (Γ∗tΓt)

1
2u >l2=< Γ∗tΓtu, u >l2=< Γtu,Γtu >G=| Γtu |2G ,

so by Lemma 3.3 it follows that Im(Γ∗t ) = Im((Γ∗tΓt)
1
2 ).

By Proposition 1.8 in [5] the operator (Γ∗tΓt)
1
2 can be represented by the formula:

(Γ∗tΓt)
1
2 =

∞∑
i=1

λi(t) git ⊗ git,

where λi(t) is a random variable and git is an l2- valued random variable for i=1,2,... . Here "⊗"
denotes the linear operation: (a ⊗ b)h = a < b, h > for a, b, h ∈ l2. Moreover, λi and gi are

predictable as functions of (ω, t) and λi(t) −→i→∞ 0 by compactness of (Γ∗tΓt)
1
2 .

Our aim now is to construct the process ψ̃ where ψ̃t = (ψ̃1(t), ψ̃2(t), ...) ∈ l2 such that it is not
of the form

∑∞
i=1 λi(t)g

i
t < git, u >l2 for any u ∈ l2. This process process must thus satisfy:

∞∑
i=1

(
ψ̃i(t)

λi(t)

)2

= ∞,

∞∑
i=1

(ψ̃i(t))2 <∞.

Let us define the sequence (ik(t))k=1,2,... in the following way:

i1(t) := inf

{
i :

1

λi(t)
≥ 1

}
,

ik+1(t) := inf

{
i > ik :

1

λi(t)
≥ k

}
and put

ψ̃i(t) =

{
0 if i 6= ik(t)
1
k

if i = ik(t).

Then we have
∑∞

i=1

(
ψ̃i(t)
λi(t)

)2

≥
∑∞

k=1
1
k2 k

2 = ∞ and
∑∞

i=1 ψ̃
i(t)2 =

∑∞
k=1

1
k2 < ∞, so the

process is bounded in l2. It is also predictable since it is obtained by measurable operations on

predictable elements. Thus the process ψ̃ is integrable with respect toW and
∫ ·

0
< ψ̃, dW >l2,l2

is a martingale.
Now let us define a stopping time τ as:

τ := inf{t > 0 :
∣∣∣ ∫ t

0

< ψ̃t, dWt >l2,l2

∣∣∣ ≥ 1} ∧ S.
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Finally, we define the required process as:

ψt := ψ̃t1[0,τ)(t).

Remark 3.5 From Theorem 3.2 with S = S̄ it follows that the bond market is not complete on
[0, S̄] if traders can use natural strategies only.

3.1.2 Incompleteness in L2[0, S̄]

Proposition 3.6 There exists a model of the bond market in which all L2[0, S̄]-valued processes
ϕ such that

E

(∫ S̄

0

| ϕt |2L2[0,S̄] dt

)
<∞ (3.31)

are admissible strategies (absolutely continuous measures are identified with their densities).

Proof: We will construct the model by defining the volatility coefficient. Let us assume that σ̃
satisfies the following conditions:

0 ≤ σ̃i(t, T ) ≤ K i = 1, 2, . . . , (t, T ) ∈ [0, S̄]× [0, S̄] for some K > 0, (3.32)

| σ̃it |2H≤
1

i2
i = 1, 2, . . . , t ∈ [0, S̄], (3.33)

and define a new operator σ as

σi(t, T ) =


σ̃i(t, T ) if

∑∞
i=1

∫ t
0
σ̃i(s, T )dW i(s) ≥ 0,

0 if
∑∞

i=1

∫ t
0
σ̃i(s, T )dW i(s) < 0.

(3.34)

Let the coefficient α be given by the HJM condition (2.11):

α(t, T ) =
∞∑
i=1

σi(t, T )

∫ T

t

σi(t, s)ds. (3.35)

It follows from (3.32), (3.33), (3.34) and (3.35) that coefficients α and σ satisfy (2.5) and (2.7).
Assume that the initial forward rate curve is nonnegative: f(0, T ) ≥ 0 for T ∈ [0, S̄]. Then

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+
∞∑
i=1

∫ t

0

σi(s, T )dW i(s) ≥ 0, (t, T ) ∈ [0, S̄]× [0, S̄]

12



and thus P̂ (t, T ) = e−
R T
0 f(t,u)du ≤ 1. It follows from the condition (3.33) that:

∞∑
i=1

∫ S̄

0

bi(t, T )2dT =
∞∑
i=1

∫ S̄

0

(∫ T

0

σi(t, u)du

)2

dT

≤
∞∑
i=1

∫ S̄

0

(
T

∫ T

0

σi(t, u)2du

)
dT ≤ S̄2

∞∑
i=1

1

i2
∀t ∈ [0, S̄].

As a consequence we obtain the following inequalities:

E

(∫ S̄

0

| Γ∗tϕt |2l2 dt

)
= E

(∫ S̄

0

∞∑
i=1

(∫ S̄

0

ϕt(T )P̂ (t, T )bi(t, T )dT
)2

dt)

)

≤ E

(∫ S̄

0

(∫ S̄

0

ϕt(T )2dT
∞∑
i=1

∫ S̄

0

bi(t, T )2dT
)
dt

)

≤ S̄2

∞∑
i=1

1

i2
E

(∫ S̄

0

∫ S̄

0

ϕt(T )2dTdt

)
<∞. (3.36)

In view of (3.36) we conclude that for each ϕ satisfying (3.31) the process
∫ ·

0
< ϕt, dP̂t >G∗,G

is a martingale and thus ϕ is admissible.

Corollary 3.7 There exists an incomplete bond market for which all L2[0, S̄]-valued processes
satisfying (3.31) are admissible. To see this is true it is enough to remark that the model pre-
sented in Proposition 3.6 is incomplete.

Remark 3.8 Due to relation L2[0, S̄] = H ⊇ G = H1[0, S̄] we can treat the process (P̂t) as
taking values in the spaceH . The inclusionH∗ ⊆ G∗ expresses the fact, that if we admitH as a
state space for the discounted bonds prices, then the investor can use smaller class of strategies
and as a consequence, in this case, the market is also incomplete. It follows from Corollary 3.7
that Theorem 4.1. in [1] is false.

Remark 3.9 It was pointed out by one of the reviewers that the market considered in [1] is
approximately complete but the limit passage, performed in [1] to get completeness, is not
correct.

3.1.3 Comments on admissibility

Notice that Lemma 3.4 can be reformulated in the following way. If for the W integrable pro-
cesses γ, ψ, such that the integrals

∫
< γs, dWs >l2,l2 and

∫
< ψs, dWs >l2,l2 are martingales,

we have:

x+

∫ S

0

< γs, dWs >l2,l2= y +

∫ S

0

< ψs, dWs >l2,l2

13



for some x, y ∈ R, then x = y and γ = ψ. It turns out that this assertion is not true if we assume
only the existence of the integrals or if we additionally assume that the integrals are bounded
from below. A counterexample in a one dimensional case which we show is based on Example
8 p. 259 in Lipcer, Shiryaev [14].

Example 3.10 Let us consider a one dimensional Wiener process B on the interval [0, 1]. The
following stopping time:

τ := inf{t ∈ [0, 1] : B2(t) + t = 1}

satisfies P (0 < τ < 1) = 1. The process

X(t) := − 2B(t)

(1− t2)
1{t≤τ}

is integrable with respect to B because the following estimation holds:∫ 1

0

X(s)2ds = 4

∫ τ

0

B(s)2

(1− s)4
ds <∞.

Applying the Itô formula to the process B(t)2

(1−t)2 we obtain:∫ 1

0

X(s)dB(s)− 1

2
X(s)2ds = −1− 2

∫ τ

0

B(s)2

(
1

(1− s)4
− 1

(1− s)3

)
ds < −1.

As a consequence, the Doléans-Dade exponent M = E(X), which is a local martingale, is not
a martingale because

E(M(1)) = E
(
e

R 1
0 X(s)dB(s)− 1

2
X(s)2ds

)
< e−1 < M(0) = 1.

The random variable M(1) satisfies estimation 0 < M(1) < e−1 and thus the application of the
martingale representation theorem to the square integrable martingale E[M(1) | Ft] provides:

M(1) = E[M(1)] +

∫ 1

0

γ(s)dB(s),

where E
∫ 1

0
γ2(s)ds < ∞. On the other hand the application of the martingale representation

theorem to the local martingale M provides, see Theorem 18.10 in [12]:

M(1) = M(0) +

∫ 1

0

ψ(s)dB(s) = 1 +

∫ 1

0

ψ(s)dB(s),

where P (
∫ 1

0
ψ2(s)ds < ∞) = 1. Moreover, ψ satisfies condition E

∫ 1

0
ψ2(s)ds = ∞ because

M is not a martingale.
Summarizing, we have two different representations of the same bounded random variable
M(1), i.e.

E[M(1)] = x 6= y = 1; γ 6= ψ.

Moreover, both representations are bounded from below by zero. �
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3.2 Completeness with generalized strategies

In this subsection we formulate a sufficient condition for completeness in the class of general-
ized strategies. Let S = S̄. We start from the auxiliary lemma.

Lemma 3.11 Let ξ be a square integrable, FS measurable random variable such that Eξ = 0.

Then ξ can be represented in the following form:

ξ =

∫ S

0

< ψs, dWs >l2,l2 ,

where ψ is a predictable, l2-valued process satisfying condition E
∫ S

0
| ψs |2l2< ∞. Moreover,

Eξ2 = E
∫ S

0
| ψs |2l2 .

Proof: This result is true when W is finite dimensional, see Lemma 18.11 in [12]. The gen-
eralization can be obtained by the following arguments. Let Gn ⊆ F be a σ-field generated
by

Wn(s) = (W 1(s),W 2(s), ...,W n(s)), s ≤ S,

and let ξn := E(ξ | Gn). Since ξ ∈ L2(Ω) and Gn ↑ F =
⋃
n≥1 Gn, so by the classical

convergence theorem for martingales, see Corollary 7.22 and Theorem.7.23 in [12], ξn −→ ξ

in L2(Ω). On the other hand we have:

ξn =

∫ S

0

ϕn(s)dWn(s).

Setting ϕ̃ns := (ϕn(s), 0, ...) ∈ l2 we see that

ξn =

∫ S

0

< ϕ̃ns , dWs >l2,l2 .

Hence E(ξm − ξn)
2 = E

∫ S
0

(ϕ̃ns − ϕ̃ms )2ds −→ 0 with m,n −→ ∞ and therefore {ϕ̃n} is a

Cauchy sequence in F = L2(Ω × [0, S],FS ⊗ B[0, S],P × λ; l2). By the completeness of F
there exists a predictable limit ϕ ∈ F of the sequence (ϕ̃n). Due to the fact that∫ S

0

< ϕ̃ns , dWs >l2,l2−→
∫ S

0

< ϕs, dWs >l2,l2 in L2(Ω),

we have the required representation: ξ =
∫ S

0
< ϕs, dWs >l2,l2 .

Theorem 3.12 If the operator Γ is injective P ⊗ λ a.s. then the bond market with admissible
generalized strategies is complete. Moreover, any square integrable random variable can be
replicated.
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Proof: Let ξ ∈ L2(Ω). Using Lemma 3.11 we can represent ξ in the following form

ξ = x+

∫ S

0

< ψs, dWs >l2,l2 ,

where x = E(ξ) and ψ is a predictable, l2-valued process satisfying condition

E
∫ S

0
| ψs |2l2 ds < ∞. We will find an admissible generalized strategy ϕ such that∫ S

0

< ψs, dWs >l2,l2=

∫ S

0

(ϕs, dP̂s). (3.37)

Since Γt is injective, so

ϕt(v) :=< ψt,Γ
−1
t v >l2 , ∀v ∈ ImΓt,

is a well defined linear functional. The process (ϕt(Γt)) is predictable and for any u ∈ l2 we
have:

< ψt, u >l2=< ψt,Γ
−1
t Γtu >l2= ϕt(Γtu).

Therefore

ψt = ϕt(Γt), ∀t ∈ [0, S], (3.38)

so by (2.28) the formula (3.37) is satisfied.

Now, we give an example of a bond market with deterministic volatility (Gaussian HJM-model)
which is complete.

Example 3.13 Let σj, j = 1, 2, ... be given by the formula:

σj(t, T ) := γj sin

(
jπ
(T − t

S̄ − t

)
∨ 0

)
, 0 ≤ t, T ≤ S̄,

where γj > 0, and
∑∞

j=1 γ
2
i < ∞. Notice that for any t ∈ [0, S̄] the sequence (σj(t, ·))j is an

orthogonal system in L2[t, S̄] and

| σj(t, ·) |L2[0,S̄]≤
S̄

2
γ2
j .

Hence the process (σt) satisfies (2.6). So the deterministic process (Γt) satisfies (2.15). There-

fore the corresponding process (P̂t) is a G-valued martingale. To prove that in this case the
bond market with generalized strategies is complete, it is enough, by Theorem 3.12, to show
that Γt is injective for all t ∈ [0, S̄]. To this end we prove that if Γtu = 0 for some u ∈ l2, then
u=0. Differentiating

Γtu(T ) = −
∞∑
j=1

(∫ T

0

σj(t, s)ds
)
uj
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with respect to T , we see that

∞∑
j=1

σj(t, s)uj = 0

in the sense of L2[t, S̄]. By orthogonality of the sequence (σj(t, ·))j we obtain that uj = 0 for
j = 1, 2, ..., hence u = 0. So, Γ is injective. �

Remark 3.14 In general if (Γt) is not injective P ⊗ λ a.s., then in a similar way as in the
proof of Theorem 3.2 one can show incompleteness even with the use of admissible generalized
strategies.
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