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Abstract

For solving a linear ill-posed problem, a combination of the Tikho-
nov regularization and a finite dimensional projection method is con-
sidered. In the present paper we treat a parameter describing a dis-
cretization level as the second parameter of regularization. The set
of all regularization parameter pairs which satisfy a certain discrep-
ancy principle (called the discrepancy set) is investigated. For the case
of truncated SVD and LQS projection methods, under the standard
source conditions, an order of convergence is derived. It appeared to
be the same for all parameters from the discrepancy set. This order
of convergence is optimal under the same conditions as those for the
Tikhonov regularization with the discrepancy principle and without
additional discretization.
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1 Introduction

In this paper we consider ill-posed problems of the form

Au = f, (1.1)

where A ∈ L(X, Y ) is a linear, injective and bounded operator between real
infinite dimensional Hilbert spaces X and Y with a nonclosed range R(A).
Throughout the paper we assume that f ∈ R(A) so that (1.1) has a unique
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solution u ∈ X. Moreover, we assume that f is unknown and a noisy right
hand side f δ with

‖f − f δ‖ ≤ δ (1.2)

is available only. The stable solving (1.1) with the noisy data f δ requires
an application of appropriate regularization methods. The one of the most
widely applied methods is the Tikhonov regularization [1, 2, 11, 12]. Its
simplest version consists in solving minimization problem

min
v∈X

Fα(v), where Fα(v) := ‖Av − f δ‖2 + α‖v‖2, (1.3)

where α > 0 is the regularization parameter which is to be properly chosen.
The solution of (1.3) is denoted by uδα.

However, a numerical realization of the method requires a finite dimen-
sional approach. So, in practice the Tikhonov regularization is applied to a
finite dimensional discretization of (1.1):

Anu
δ
n = f δn,

where An is a finite dimensional approximation of A. Then the regularization
parameter α = αn(δ) is chosen for a fixed n (see [1], sec.5.2, [2, 8, 9]). In
another approach An can be considered as a noisy operator with an error
bound ‖A − An‖ ≤ h and then special regularization methods should be
applied to the corresponding linear ill-posed problem with a noisy right hand
side and a noisy operator. Such a case has recently been studied in [10, 6, 5].

In this paper we treat the parameter n describing a discretization level
as the second parameter of regularization that should be chosen. This ap-
proach can be characterized as a special two parameter regularization. The
goal of this paper is to describe such a set of parameter pairs for which an
optimal order of convergence occurs, when the data noise δ → 0. The choice
of multiple regularization parameters is a crucial and challenging issue for
the multi-parameter regularization. For a choice of these two regularization
parameters we use the discrepancy principle of the form

‖Anuδn,α − f δ‖ = Cδ

and the set DS(δ) of all parameters satisfying this principle will be called
the discrepancy set.

In the papers [4, 3, 5, 6] multi-parameter regularization was considered
in another context: it meant multiple penalty regularization. Some mod-
ification of discrepancy principle was used there for the choice of multiple
regularization parameters. A corresponding discrepancy curves or surfaces
were analyzed and computational aspects were discussed.
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The advantage of the multi-parameter regularization is such that it gives
more freedom in attaining order-optimal accuracy, since there are many reg-
ularization parameters satisfying multi-parameter discrepancy principle. In
[4] the authors show one of possible ways to employ this freedom in choos-
ing the regularization. They consider the case when one is interested in an
order optimal approximation of the solution u with respect to L2-norm and
simultaneously in an estimation of its value at some point.

In this paper for the case of the combination of the Tikhonov regulariza-
tion and a finite dimensional projection method we describe the discrepancy
set DS(δ). Under the standard source condition of the form

u ∈ Xµ,ρ := {v ∈ X : v = (A∗A)µw and ‖w‖ ≤ ρ} (1.4)

we prove the optimal order of convergence of uδn,α to u, when δ → 0 and
regularization parameter pairs n(δ), α(δ) are taken from the discrepancy set
DS(δ), provided µ ≤ 1

2
. The best accuracy that can be guaranteed by the

discrepancy principle for such a solution has the order O(
√
δ). This should be

expected, because the simplest version of the Tikhonov regularization (with
the qualification equals 1) is used.

In Section 3 the case of discretization by truncated singular value decom-
position is taken into account, since it allows us to analyze in details the
discrepancy set and its properties. Next, in Section 4 a combination of a
least squares projection methods with the Tikhonov regularization is con-
sidered. Also in this case, the optimal order of convergence is obtained for
regularization parametr pairs belonging to the discrepancy set.

2 Finite dimensional approximation and

Tikhonov regularization

For a finite dimensional approximation of (1.1) let us apply projection meth-
ods. Let

{Xn}, Xn ⊂ X and {Yn}, Yn ⊂ Y

be finite dimensional approximations of X and R(A), i.e. the union of Xn, is
dense in X and the union of Yn is dense in R(A). Let An = QnAPn, where Pn
is the orthogonal projection of X on Xn and Qn is the orthogonal projection
of Y on Yn. Then (1.1) is approximated by

Anun = Qnf. (2.1)

In the case of noisy data, f is replaced by f δ and the solution is denoted by
uδn.
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Natural practical approach to approximate u is to chose the sequence of
subspaces {Xn} and next to find minimum norm solution of Au = f in a
finite dimensional space Xn. In such a case un is the minimum norm least
squares solution to the equation (2.1) where An = APn and Yn := AXn. This
method is called LSQ projection method in contrary to the case of dual LSQ
method, when the sequence of Yn is first defined while Xn are related to Yn:
Xn = A∗Yn.

Note that, since An has closed range, a least squares solution exists for
arbitrary f δ. Generally, in the case of LSQ projection, without additional
assumptions it cannot be guaranteed that un → u as n → ∞ even in the
error free case (see in [1] the example given by T.I. Seidman (1980)). Thus
a combination of the LSQ projection method with a regularization method
should be consider. We focus on the Tikhonov regularization applied to (2.1):
the regularized solution uδn,α is the solution of

(A∗nAn + α)uδn,α = A∗nf
δ. (2.2)

We consider the question of an optimal choice of regularization parameters n
and α for given δ. We turn our attention to a-posteriori parameter choice rule.
We will consider here the following variant of the widely-used discrepancy
principle due to Morozov [7]: We are interested in all parameters (n, α) that
fulfill the equation

‖Auδn,α − f δ‖ = Cδ (2.3)

for given δ. Therefore we define a discrepancy set DS(δ) by

DS(δ) := {n, α : n ∈ N, α ∈ R+, ‖Auδn,α − f δ‖ = Cδ}. (2.4)

This discrepancy set is an analog of discrepancy curve defined and investi-
gated in [3, 4] for multi-parameter regularization of Tikhonov-type, where
in the case of two parameters the regularization of solution is defined as the
minimizer in X of the functional

Fα,β(v) = ‖Av − f δ‖2 + α‖Bv‖2 + β‖x‖2

for a certain operator B.
In the standard approach, the discrepancy principle for Tikhonov regu-

larization of discrete problems has the form

‖Anuδn,α −Qnf
δ‖ = C̃δ. (2.5)

In the case An = APn considered in the present paper, this formula takes
the form: ‖Auδn,α −Qnf

δ‖ = C̃δ. Let α∗ denote the parameter indicated by
(2.4) for a fixed n and a fixed δ. Since (1−Qn)f δ ⊥ AXn, we have

‖Auδn,α − f δ‖ = ‖Auδn,α −Qnf
δ‖+ ‖(1−Qn)f δ‖.
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Thus α∗ satisfies the standard discrepancy principle (2.5) with constant

C̃ = C − ‖(1−Qn)f δ‖
δ

provided n is sufficiently large such that C̃ ≥ 1. Since δ̃ := C̃δ 1
C
< δ, it

follows from the above that the parameter α indicated by (2.5) with the
same C and n as in (2.3) is greater or equal to α∗.

The reason of introducing the discrepancy principle of the form (2.3) is
that we look for the best approximation of the exact solution u, not for the
best approximation of the discrete solution un.

3 Discrepancy set for the regularized trun-

cated SVD

In order to observe properties of the discrepancy set DS(δ) in details, we con-
sider first the truncated singular value decomposition as the exceptional pro-
jection method which is simultaneously the LSQ and the dual LSQ method.

Let {µj, ϕj, ψj}∞j=1 be the singular system for A where µ1 ≥ µ2 ≥ · · ·,
A∗Aϕj = µ2

jϕj, Aϕj = µjψj and ϕj, ψj are normed. Then

A =
∞∑
j=1

µj(·, ϕj)ψj and u =
∞∑
j=1

fj
µj
ϕ, (3.1)

where u is the solution of Au = f and fj = (f, ψj).
Let subspaces Xn and Yn be spanned by ϕj, ψj:

Xn := span{ϕ1, · · ·, ϕn}, Yn := span{ψ1, · · ·, ψn}

Then

An =
n∑
j=1

µj(·, ϕj)ψj (3.2)

and the solution uδn ∈ Xn of the equation Anu
δ
n = Qnf

δ has the form

uδn =
n∑
j=1

f δj
µj
ϕj where f δj := (f δ, ψj). (3.3)

Since Yn = AXn and Xn = A∗Yn, this method is the LSQ as well as the dual
LSQ method. It is known that the dual LSQ method has self-regularization
property, i.e. ∃n(δ) such that ‖uδn − u†‖ → 0 as δ → 0. In our case we have

‖uδn − u†‖ ≤ ‖Pnu† − u†‖+
δ

µn
,
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thus in the noise free case un is the best possible approximation in Xn. How-
ever, in the case of rapidly decreasing singular values (severly ill-problems)
finite dimentional problems become very ill conditioned, so we have to com-
bine the projection method with an additional regularization.

On the other hand, the Tikhonov regularization method without dis-
cretization yields to regularized solution of the form

uδα =
∞∑
j=1

µj
µ2
j + α

f δj ϕj. (3.4)

It is easy to see that the Tikhonov method applied to the equation Anv =
Qnf

δ with the operator (3.2) gives

uδn,α =
n∑
j=1

µj
µ2
j + α

f δj ϕj, (3.5)

For this case the discrepancy set DS(δ) defined by (2.4) can be easily
described. In order to do that, we need two values: n(δ) and α(δ) which
are defined by the standard discrepancy principle for the TSVD and the
Tikhonov method, respectively. Let C > 1 and

n(δ) = min{j ∈ N : ‖Auδj − f δ‖ ≤ Cδ}. (3.6)

i.e. for n = n(δ)

‖Auδn − f δ‖ ≤ Cδ < ‖Auδn−1 − f δ‖.

Let Q be orthogonal projection on AX. If δ is sufficiently small such that
‖Qf δ‖ > Cδ then n(δ) exists, since the sequence

φj := ‖Auδj − f δ‖2 =
∞∑

i=j+1

(f δi )2

is decreasing to 0 and φ0 ≥ ‖Qf δ‖ > Cδ.
Similarly, let α(δ) be such that

‖Auδα(δ) − f δ‖ = Cδ. (3.7)

This nonlinear equation has the unique solution if ‖Qf δ‖ > Cδ, since from
(3.4) the continuous function

φ(α) := ‖Auδα(δ) − f δ‖2 =
∞∑
j=1

(
α

µ2
j + α

)2

(f δj )2
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Figure 3.1: Properties of φ(n, α)

is strictly increasing to ‖Qf δ‖2 when α→∞ and vanishes at α = 0.
Fix δ > 0. Denote

φ(n, α) := ‖Auδn,α − f δ‖2.

From (3.5) and (3.1) it follows

φ(n, α) =
n∑
j=1

α2

(µ2
j + α)2

(f δj )2 +
∞∑

j=n+1

(f δj )2. (3.8)

Lemma 3.1 If n(δ) and α(δ) are given by (3.6) and (3.7), respectively, then

a) ∀α > 0 φ(n, α) > φ(n+ 1, α),

b) ∀n > 0 φ(n, α) is monotonically increasing w.r to α,

c) ∀n ≥ n(δ) φ(n, 0) ≤ (Cδ)2,

d) ∀n φ(n, α(δ)) ≥ (Cδ)2.

Proof: Let us take into account the sequence of functions

gj(α) :=
α2

(µ2
j + α)2

.

Since gj(α) < 1, from (3.8) the item a) follows. For any j = 1, 2, · · · and
α > 0 g′j(α) > 0, so gj(α) is monotonically increasing and thus φ(n, ·) is
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Figure 3.2: Discrepancy set DS(δ) for the Tikhonov regularization of trun-
cated SVD

monotonically increasing also. Moreover, by the definition of n(δ), for any
n ≥ n(δ)

φ(n, 0) ≤
∞∑

j=n(δ)+1

(f δj )2 = ‖Auδn − f δ‖2 = (Cδ)2.

On the other hand, by (3.8) and the definition of α(δ) we have

φ(n, α(δ)) ≥
∞∑
j=1

α2

(µ2
j + α)2

(f δj )2 = ‖Auδα − f δ‖2 = (Cδ)2,

since gj(α) < 1.

This auxiliary lemma implies the following properties of DS(δ):

Lemma 3.2 If n(δ) and α(δ) are given by (3.6) and (3.7), respectively, then

a) ∀n > n(δ) there exists the unique α(n, δ) such that (n, α(n, δ)) ∈ DS(δ)

b) α(n, δ)→ α(δ) as n→∞.

Proof: The existence of α(n, δ) follows directly from the items c) and
d) of Lemma 3.1 and its uniqueness follows from the item b). Moreover, from
(3.8) limn→∞ φ(n, α) = φ(α). Thus, for α = α(δ) satisfying (3.7)

lim
n→∞

φ(n, α(δ)) = φ(α(δ)) = (Cδ)2.
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On the other hand ∀n > n(δ) φ(n, α(n, δ)) = (Cδ)2. Thus α(n, δ)→ α(δ) as
n→∞, which ends the proof.

3.1 Convergence

Let the exact solution of Au = f satisfies the standard source condition (1.4),
i.e. u ∈ Xµ,ρ, which means that

∞∑
j=1

f 2
j

µ2+4µ
j

≤ ρ2. (3.9)

We are going to show, that for arbitrary choice of a pair (n, α) from the
discrepancy set DS(δ) the rate of convergence (as δ → 0) of regularized
solution uδn,α to u is of the optimal order in the case µ ≤ 1

2
.

We will need the following auxiliary lemma:

Lemma 3.3 Let C ≥ 1 in (2.4). If (1.2) and (n, α) ∈ DS(δ) then

(C − 1)δ ≤ ‖Aun,α − f‖ ≤ (C + 1)δ.

Proof: We have

Aun,α − f =
[
Auδn,α − f δ

]
+
[
A(un,α − uδn,α)− (f − f δ)

]
. (3.10)

Since (n, α) ∈ DS(δ), the norm of the first right hand side term is equal to
Cδ. Moreover, using the singular value representation of A (3.1) and formula
(3.5) we get

A(un,α − uδn,α)− (f − f δ) =
n∑
j=1

−α
µ2 + α

(fj − f δj )ψj −
∞∑

j=n+1

(fj − f δj )ψj.

Thus, since
α

µ2
j + α

< 1,

the norm of the second term of the right hand side of (3.10) is bounded by δ.
Now, applying the standard norm inequalities to (3.10) ends the proof.

The next two Propositions give estimations of the right hand side of the
obvious inequality

‖uδn,α − u‖ ≤ ‖uδn,α − un,α‖+ ‖un,α − u‖. (3.11)
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Proposition 3.4 Let u ∈ Xµ,ρ and µ ≤ 1
2
. If (1.2) is satisfied and (n, α) ∈

DS(δ) then

‖uδn,α − un,α‖ ≤ (C − 1)−
1

2µ+1ρ
1

2µ+1 δ
2µ

2µ+1 .

Remark If u ∈ Xµ,ρ and µ > 1
2

then for (n, α) ∈ DS(δ) we have

‖uδn,α − un,α‖ = O(
√
δ).

Proof: Since

uδn,α − un,α =
n∑
j=1

µj
µ2
j + α

(fj − f δj )ϕj,

from the assumption (1.2) it follows that

‖uδn,α − un,α‖ ≤ δ sup
1≤j≤n

µj
µ2
j + α

. (3.12)

The task is now to estimate this supremum. We have

Aun,α − f =
n∑
j=1

−α
µ2
j + α

µ1+2µ
j

fj

µ1+2µ
j

ψj −
∞∑

j=n+1

µ1+2µ
j

fj

µ1+2µ
j

ψj.

From the source condition (3.9) and from Lemma 3.3 it follows that

(C − 1)δ ≤ ‖Aun,α − f‖ ≤ ρmax

{
{ α

µ2
j + α

µ1+2µ
j }nj=1, µ

1+2µ
n+1

}
.

If µ+ 1
2
≤ 1 then

α

µ2
j + α

(µ2
j)
µ+ 1

2 ≤ αµ+ 1
2 .

Thus

(C − 1)δ ≤
{
ρµ2µ+1

n+1 , as α ≤ µ2
n+1;

ραµ+ 1
2 , as α > µ2

n+1.
(3.13)

If α ≤ µ2
n+1 then ∀j ≤ n

µj
µ2
j + α

<
1

µj
≤ 1

µn+1

.

If α > µ2
n+1 then we have two cases:
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• if j ≤ n such that α > µj then

µj
µ2
j + α

≤
√
α

µ2
j + α

≤ 1√
α

;

• if j ≤ n such that α > µj then

µj
µ2
j + α

≤ 1

µj
≤ 1√

α
.

Thus from (3.13) it follows that in all the cases

µj
µ2
j + α

≤ (C − 1)−
1

2µ+1ρ
1

2µ+1 δ
−1µ
2µ+1 (3.14)

which due to (3.12) ends the proof.

Proposition 3.5 If u ∈ Xµ,ρ and (n, α) ∈ DS(δ) then ∀µ > 0

‖un,α − u‖ ≤ (C + 1)
2µ

2µ+1ρ
1

2µ+1 δ
2µ

2µ+1 .

Proof: Denote

gj :=

{
α

µ2
j+α

fj, j ≤ n;

fj, j > n.

Using (3.1) and (3.5) we get for any 0 ≤ β < 2

‖un,α − u‖ =
∞∑
j=1

g2
j

µ2
j

=
∞∑
j=1

(
1

µ2
j

gβj )g2−β
j .

Fix β = 2
1+2µ

. Applying the Hölder inequality with p = 1 + 2µ and s = 1+2µ
2µ

yields
∞∑
j=1

(
1

µ2
j

gβj )g2−β
j ≤

[
∞∑
j=1

1

µ
2(1+2µ)
j

g2
j

] 1
1+2µ

[
∞∑
j=1

g2
j

] 2µ
1+2µ

. (3.15)

Since |gj| ≤ |fj|,

∞∑
j=1

1

µ
2(1+2µ)
j

g2
j ≤

∞∑
j=1

1

µ
2(1+2µ)
j

f 2
j ≤ ρ2,
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which follows from the source condition (3.9). Moreover, since ‖Aun,α−f‖2 =∑∞
j=1 g

2
j , from Lemma 3.3 we see that

∞∑
j=1

g2
j ≤ (C + 1)2δ2.

Substituting these inequalities into (3.15) completes the proof.

Now, we can formulate the main result of this section which follows from
Propositions 3.4 and 3.5.

Theorem 3.6 Suppose that

• ‖f − f δ‖ ≤ δ,

• u ∈ Xµ,ρ,

• (n, α) ∈ DS(δ).

If

µ0 := min{µ, 1

2
},

then ∃C̃ = C̃(C, ρ, µ) such that

‖uδn,α − u‖ ≤ C̃δ
2µ0

2µ0+1 .

Remark The combination of the TSVD and the Tikhonov method with
regularization parameters from DS(δ) has the best possible order of accuracy
when the source condition (1.4) is satisfied with µ ≤ 1

2
. It follows from the

fact that in this combination we apply the classical Tikhonov regularization
which has the qualification equals 1.

4 A regularized Ritz approach

This section is devoted to a combination of a least squares projection method
with the Tikhonov regularization. Now, contrary to the truncated SVD, the
discretization method may be not convergent even for the exact data.

Let {Xn} be a finite dimensional approximation of X and let Yn := AXn.
Consider the equation (2.1) with An = APn. The minimizer un,α of the
Tikhonov functional Fα(z) := ‖Az − f‖2 + α‖z‖2 over the subspace Xn

satisfies the equation (2.2).
Let us consider first the discrepancy set DS(δ) (2.4).
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Lemma 4.1 Let C describing the set DS(δ) be greater than 2. Put

n0(δ) := min{n : ‖f δ −Qnf
δ‖ ≤ δ}.

For any n ≥ n0(δ) there exists the unique α = α(n) such that (n, α) ∈ DS(δ).

Remark We have the following relation between n0(δ) and n(δ) defined by
(3.6): n(δ) = n0(Cδ). Thus n(δ) ≤ n0(δ).

Proof: From (2.3) the pair (n, α) ∈ DS(δ) when

Cδ = ‖Auδn,α −Qnf
δ‖+ ‖f δ −Qnf

δ‖.

If n ≥ n0(δ) then ‖f δ −Qnf
δ‖ := cn(f δ)δ < δ and thus

‖Auδn,α −Qnf
δ‖ = (C − cn(f δ))δ where (C − cn(f δ)) > 1. (4.1)

The existence of α follows from the fact that (4.1) is the standard discrepancy
principle ‖Auδn,α − Qnf

δ‖ = γδ with γ > 1 which has the unique solution
α̃(n) for any fixed n.

It is easy to check that the auxiliary Lemma 3.3 holds also in this case.
Namely, in the proof we replace the singular system {µj, ϕj, ψj} by the sin-
gular system of An: {µn,j, ϕn,j, ψn,j} and we rewrite the term f − f δ in the
form

n∑
j=1

(fn,j − f δn,j)ψn,j + (1−Qn)(f − f δ).

We show here another proof of optimal order of convergence, which is
simple, but some additional assumptions are needed, because it is based on
the following lemma:

Lemma 4.2 Let C in (2.4) be greater than 2. Let

m(δ) := min{n : ‖A(1− Pn)u‖ ≤ δ}.

Then for any (n, α) ∈ DS(δ) such that n ≥ m(δ)

‖uδn,α‖ ≤ ‖u‖.

Proof: If (n, α) ∈ DS(δ) then taking into account that uδn,α is the
minimizer of Fα(z) over Xn we get

Fα(uδn,α) = (Cδ)2 + α‖uδn,α‖2 ≤ ‖APnu− f δ‖2 + α‖Pnu‖2.
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Thus
α‖uδn,α‖2 ≤ α‖u‖2 +

[
‖APnu− f δ‖2 − (Cδ)2

]
.

For n > m(δ) the term in the square brackets is less then zero because

‖APnu− f δ‖ ≤ ‖A(1− Pn)u‖+ ‖f − f δ‖ ≤ 2δ ≤ Cδ,

which ends the proof.

Theorem 4.3 Let u ∈ Xµ,ρ and µ ≤ 1
2

and let the assumptions of Lemma
4.2 be satisfied. If (n, α) ∈ DS(δ) and n ≥ m(δ) then

‖uδn,α − u‖ ≤ C̃δ
2µ

2µ+1 ,

where C̃ = (2ρ(C + 1)2µ)
1

2µ+1 .

Proof: By Lemma 4.2 we have

‖uδn,α − u‖2 = ‖uδn,α‖2 − 2(uδn,α, u) + ‖u‖2 ≤

≤ 2(‖u‖2 − (uδn,α, u)) = 2(u− uδn,α, u).

Put u = (A∗A)µw. Then

‖uδn,α − u‖2 ≤ 2(u− uδn,α, (A∗A)µw) ≤ 2ρ‖((A∗A)
1
2 )2µ(u− uδn,α)‖.

Using the inequality ‖Bτx‖ ≤ ‖Bx‖τ‖x‖1−τ which holds for a bounded self-

adjoint operator B and 0 < τ ≤ 1 and applying it for B = (A∗A)
1
2 and

τ = 2µo we get

‖uδn,α − u‖2 ≤ 2ρ‖(A∗A)
1
2 (u− uδn,α)‖2µ‖u− uδn,α‖1−2µ. (4.2)

Now, let us use the polar decomposition of A: there exists a partially iso-
metric mapping U : X → Y such that

A = U(A∗A)
1
2 and A∗ = (A∗A)

1
2U.

Thus
‖(A∗A)

1
2A∗‖ = ‖(A∗A)−

1
2 (A∗A)

1
2U‖ = 1

and it follows

‖(A∗A)
1
2 (u− uδn,α)‖ = ‖(A∗A)−

1
2A∗A(u− uδn,α)‖ ≤ ‖Auδn,α − f‖.
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Moreover, if (n, α) ∈ DS(δ) then

|‖Auδn,α − f‖ ≤ Cδ + ‖f − f δ‖ ≤ (C + 1)δ.

Combining these inequalities with (4.2) we see that

‖uδn,α − u‖1+2µ ≤ 2ρ(C + 1)2µδ2µ

which establishes the assertion of the theorem.

Corollary 4.4 If u = (A∗A)µw and ‖w‖ ≤ ρ with µ > 1
2

then u = (A∗A)
1
2v

where
‖v‖ = ‖(A∗A)µ−

1
2w‖ ≤ ρ‖A‖2µ−1 =: ρ̃.

From this and Theorem 4.3 it follows that for (n, α) ∈ DS(δ) and n ≥ m(δ)

‖uδn,α − u‖ ≤
√

2ρ̃(C + 1)
√
δ.
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