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Newton polygons and the constant associated with the
Prouhet–Tarry–Escott problem

by

Ranjan Bera (Bangalore) and Saranya G. Nair (Zuarinagar)

Abstract. In a 2017 article Filaseta and Markovich obtained new information on
the lower bounds of 2-adic valuation of certain constants Cn associated with the Prouhet–
Tarry–Escott (PTE) problem for the cases n = 8 and n = 9 by using the classical theory
of Newton polygons, and also pointed out that it would be of interest to obtain improved
lower bounds in the cases when 10 ≤ n ≤ 12. In the present article, we obtain new 2-adic
information on the lower bounds of Cn for the cases n = 10 and n = 12.

1. Introduction. Given natural numbers n and k, with n > k, the
Prouhet–Tarry–Escott (henceforth abbreviated PTE) problem asks about
distinct sets of integers, say X = [x1, . . . , xn] and Y = [y1, . . . , yn], such that

(1)
n∑

i=1

xji =

n∑
i=1

yji for j = 1, . . . , k.

If X and Y satisfy (1), then the pair (X,Y ) is called a PTE solution and is
written as X =k Y . We call n the size of the solution and k the degree. For
example,

[3, 6, 6, 7] =2 [4, 5, 5, 8]

is a PTE solution of size 4 and degree 2. Dating back to 1750s, a special
case of this problem appeared in the works of Goldbach and Euler. For any
integers a, b, c, d,

[a+ b+ d, a+ c+ d, b+ c+ d, d] =2 [a+ d, b+ d, c+ d, a+ b+ c+ d]

is a family of PTE solutions of size 4 and degree 2 due to Goldbach. In fact,
this example was also found by Euler when d = 0. Prouhet’s work in 1851
established that for any given k there is a solution with sufficiently large n.
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Prouhet’s contribution to this problem was pointed out by Wright [18]. Tarry
and Escott studied the more general problem in the 1910s and hence, nowa-
days, this problem is referred to as the Prouhet–Tarry–Escott problem. Vol-
ume II of L. E. Dickson’s “History of the Theory of Numbers” [8] provides an
extensive historical account of this problem, encompassing numerous early
references.

The maximal non-trivial case of the PTE problem occurs when k = n−1.
A solution of size n and degree n−1 is called an ideal solution. An important
open problem in the area is a conjecture of Wright [17] that states that
an ideal solution exists for every n ≥ 3. Wright’s conjecture is verified for
3 ≤ n ≤ 10 and n = 12. Even though the problem has been investigated for a
long time, ideal solutions for n = 11 and n ≥ 13 are hitherto unknown. Ideal
solutions are particularly interesting due to their connections with problems
in theoretical computer science and graph theory. The following question
from graph theory is one such instance. Given any integer m ≥ 4, does there
exist a graph G such that G has a chordless cycle of order m and all roots
of the chromatic polynomial of G are integers? In [12], Hernández and Luca
established that ideal solutions of the PTE problem of size n can be used
to construct such graphs of order n+ 1, thus answering the aforementioned
question on graphs affirmatively for m = 8, 9, 10, 11 and 13.

Some of the recent developments in the PTE problem are documented in
[4, 5, 10, 13, 15]. Interesting works on generalizations of the PTE problem can
be found in [1, 6]. For more applications stemming from the PTE problem,
we refer to [2, 11, 12, 14, 16].

The following lemma and its corollary related to elementary symmetric
functions will help in our further discussion of the PTE problem (see [3, 4]).

Lemma 1.1. Let n and k be integers with 1 ≤ k < n. Let x1, . . . , xn and
y1, . . . , yn denote arbitrary integers. The following are equivalent:

(i)
n∑

i=1

xli =
n∑

i=1

yli for l ∈ {1, . . . , k},

(ii) deg
( n∏
i=1

(z − xi)−
n∏

i=1

(z − yi)
)
≤ n− k − 1,

(iii) (z − 1)k+1
∣∣∣ ( n∑

i=1

zxi −
n∑

i=1

zyi
)
.

Corollary 1.2. The lists X = [x1, . . . , xn] and Y = [y1, . . . , yn] give an
ideal PTE solution if and only if

n∏
i=1

(z − xi)−
n∏

i=1

(z − yi) = C(2)

for some integer C.
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From now on, we will consider ideal PTE solutions as being lists X =
[x1, . . . , xn] and Y = [y1, . . . , yn] satisfying (2). It has been shown in [4, 5,
7, 15] that the information about C, particularly on the representation of C
given in (2), is very useful in deriving examples of ideal PTE solutions. Since
C depends on n, X and Y , we define for X =n−1 Y the constant

Cn = Cn(X,Y ) =

n∏
i=1

(z − xi)−
n∏

i=1

(z − yi).

Since Cn is the constant term of the polynomial on the right hand side of
the above equation, we can alternatively write

Cn = (−1)n
( n∏

i=1

xi −
n∏

i=1

yi

)
.

An important divisibility result for Cn is that n! |Cn+1 (see [13]). Next, we
state a result that follows from Corollary 1.2 and is used throughout this
paper.

Corollary 1.3. Let a∈Z. The lists X=[x1, . . . , xn] and Y =[y1, . . . , yn]
form an ideal PTE solution if and only if the lists X ′ = [x1 + a, . . . , xn + a]
and Y ′ = [y1 + a, . . . , yn + a] form an ideal PTE solution. Furthermore, if
these are ideal solutions, then Cn(X,Y ) = Cn(X

′, Y ′).

Define

Cn =

∞∏
j=1

p
ej
j ,

where

ej = min {e : pej ∥Cn(X,Y ) for some X and Y as above with X =n−1 Y }.

Thus, Cn can be viewed as the greatest common divisor over all constants
Cn(X,Y ) where X and Y vary over distinct ordered lists of n integers sat-
isfying X =n−1 Y .

For 3 ≤ n ≤ 7, the possible values of Cn were proved in [5]. For example,
C7 = 26 · 33 · 52 · 7 · 11. It was also proved in [5] that

(3)
C8 = 2e0 · 33 · 52 · 72 · 11 · 13,
C9 = 2e1 · 3e2 · 52 · 72 · 11 · 13 · 17e3 · 23e4 · 29e5 ,

where 4 ≤ e0 ≤ 8, 7 ≤ e1 ≤ 9, 3 ≤ e2 ≤ 4, and 0 ≤ ej ≤ 1 for j ∈ {3, 4, 5}.
For a prime p and a positive integer r, we let νp(r) be the maximal power

of p dividing r and we define νp(0) = +∞. Further we write ν(r) = νp(r)
if the prime is clear from the context. Obviously, νp(r) = k is equivalent to
pk ∥ r. We will also use the standard floor and ceiling notation.
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Thus it follows from (3) that

(4) 4 ≤ ν2(C8) ≤ 8 and 7 ≤ ν2(C9) ≤ 9.

Similar divisibility results on Cn for n = 10 and 12 were also proved in [5],
and in particular,

(5) 7 ≤ ν2(C10) ≤ 11 and 8 ≤ ν2(C12) ≤ 12.

Using the theory of classical Newton polygons, Filaseta and Markovich [10]
improved the existing lower bounds of ν2(C8) and ν2(C9), as given in (4),
to 6 ≤ ν2(C8) ≤ 8 and ν2(C9) = 9. Their results motivated us to investigate
whether we can improve the lower bounds for 2-adic values of C10 and C12

as given by (5).
The following result is the main contribution of this article:

Theorem 1. With the notations as above,

9 ≤ ν2(C10) ≤ 11 and 11 ≤ ν2(C12) ≤ 12.

Remark 1.4. The case n = 10 has been discussed in Section 3. There
we show that in all but one cases (see Case 2.3(ii)) of conditions on X =
[x1, . . . , x10] and Y = [y1, . . . , y10] that we consider, one has 210 |C10. More
specifically, only when exactly five xj ’s and five yj ’s are odd, and exactly one
xj and one yj are of the form 2 (mod 4), we obtain 29 ∥C10. Further analysis
using this information on C10 helped us to deduce 2-adic information on the
remaining xj ’s and yj ’s. For instance, all the remaining xj ’s and yj ’s must be
of the form 4 (mod 8) and 0 (mod 8) respectively. Observe that by analyzing
this information, if it is possible to find an example of an ideal solution in
this special case, then ν2(C10) = 9 in Theorem 1. On the other hand, if one
proves that an ideal solution with these divisibility properties does not exist,
then the lower bound for ν2(C10) would be ≥ 10 in Theorem 1.

We introduce Newton polygons, and state further results based on the
Newton polygons required in the proof of Theorem 1, in Section 2. We prove
Theorem 1 for n = 10 in Section 3 and n = 12 in Section 4.

2. Preliminaries. We write

(6) f(z) =
n∏

j=1

(z − xj) =
n∑

j=0

ajz
j and g(z) =

n∏
j=1

(z − yj) =
n∑

j=0

bjz
j ,

where xj and yj are chosen so that

f(z)− g(z) = Cn(7)

and that the exact power of 2 dividing Cn is equal to the exact power of 2
in Cn. From Corollary 1.2, we see that X = [x1, . . . , xn] and Y = [y1, . . . , yn]
is an ideal solution. We will write C = Cn if n is clear from the context.
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Newton polygons. We introduce the definition of a Newton polygon
for a polynomial with respect to a prime. Let h(x) =

∑n
j=0 cjx

j ∈ Z[x] with
c0cn ̸= 0 and let p be a prime. Let S be the following set of points in the
extended plane:

S = {(0, ν(cn)), (1, ν(cn−1)), (2, ν(cn−2)), . . . , (n, ν(c0))}.

Consider the lower edges along the convex hull of these points. The leftmost
endpoint is (0, ν(cn)) and the rightmost endpoint is (n, ν(c0)). The endpoints
of each edge belong to S and the slopes of the edges increase from left to
right. When referring to the edges of a Newton polygon, we shall not allow
two different edges to have the same slope. The polygonal path formed by
these edges is called the Newton polygon of h(x) with respect to the prime
p and denoted by NPp(h). We write NP(h) = NPp(h) if p is clear from
the context. The endpoints of the edges of NPp(h) are called the vertices
of NPp(h). Next we state a lemma of Dumas [9] that relates the Newton
polygon of the product polynomial h1(x)h2(x) to those of h1(x) and h2(x).

Lemma 2.1. Let h1(x), h2(x) ∈ Z[x] with h1(0)h2(0) ̸= 0 and let p be
a prime. Let k be a non-negative integer such that pk divides the leading
coefficient of h1(x)h2(x) but pk+1 does not. Then the edges of the Newton
polygon for h1(x)h2(x) with respect to p can be formed by constructing a
polygonal path beginning at (0, k) and using translates of the edges in the
Newton polygons for h1(x) and h2(x) with respect to the prime p, using
exactly one translate for each edge of the Newton polygons for h1(x) and
h2(x). Necessarily, the edges are translated so as to form a polygonal path
with increasing slopes.

Let us consider the Newton polygons for the polynomials f(z) and g(z)
defined in (6) with respect to the prime p = 2. We will denote them as
NP(f) and NP(g) as the prime is fixed. For a fixed n, consider the two sets
of points

S1 = {(j, ν2(an−j)) : 0 ≤ j ≤ n} and S2 = {(j, ν2(bn−j)) : 0 ≤ j ≤ n}.

Since f(z)−g(z) = C, a constant, we see that an−j = bn−j for 0 ≤ j ≤ n−1.
Thus, S1 and S2 have at least n of n + 1 points in common. Using Corol-
lary 1.2 we may assume that a0 ̸= 0 and b0 ̸= 0, thus ensuring ν2(a0) ̸= +∞
and ν2(b0) ̸= +∞. This in turn ensures that the rightmost points in NP(f)
and NP(g) are in the finite plane. Observe that (7) still holds after this
translation. We will be frequently using Corollary 1.2 to reduce the different
cases in Sections 3 and 4.

The following lemma derived using Lemma 2.1 is crucial in applying
Newton polygons in the study of the PTE problem as given by [10]. It uses
the fact that f(z) and g(z) are products of n linear factors.



6 R. Bera and S. G. Nair

Lemma 2.2. The Newton polygons of f(z) and g(z) each pass through
n+1 lattice points (including the endpoints), which we denote respectively as

T1 = {(j, tj) : 0 ≤ j ≤ n} and T2 = {(j, t′j) : 0 ≤ j ≤ n}.
After possibly rearranging the xj and yj, we find that 2tj−tj−1 exactly di-
vides xj and 2t

′
j−t′j−1 exactly divides yj for each j ∈ {1, . . . , n}.

We explain the importance of rearranging. The values of ν2(xj) and ν2(yj)
are increasing as j ranges from 1 to n. We will keep such an ordering through-
out the paper. In particular, the values of the xj and the values of the yj
are not necessarily increasing. Since the slopes of the edges of the Newton
polygons increase from left to right, even though the points in S1 and S2 are
the same except for (n, ν2(a0)) and (n, ν2(b0)), the vertices of the Newton
polygons for S1 and S2, i.e. the points in T1 and T2 may not always be the
same. We will see that a point in T1 may be the same as a point in T2. For
example, consider n = 10 and let

X = {9, 17, 25, 33, 41, 66, 68, 76, 92, 108},
Y = {101, 123, 127, 135, 145, 146, 162, 168, 184, 216}.

In this case, consider f(z) =
∏10

i=1(z − xi) and g(z) =
∏10

i=1(z − yi); the
respective sets S1 and S2 with respect to the prime p = 2 are

S1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1),
(7, 4), (8, 7), (9, 10), (10, 9)},

S2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1),
(7, 4), (8, 7), (9, 10), (10, 14)}.

The corresponding vertex sets for the Newton polygons T1 and T2 with
respect to p = 2 are

T1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1),
(7, 3), (8, 5), (9, 7), (10, 9)},

T2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1),
(7, 4), (8, 7), (9, 10), (10, 14)}.

This is an example of f(z) and g(z) where S1 and S2 are the same except
for the last point, but T1 and T2 are different.

Notations. Let us introduce some notations that will be useful in sub-
sequent sections. Let k1 be the number of odd xj and k′1 be the number of
odd yj . Therefore ν2(xj) = ν2(yj) = 0 for such xj and yj . Let k2 be the
number of xj that are congruent to 2 (mod 4) and k′2 be the number of yj
that are congruent to 2 (mod 4). Thus, ν2(xj) = ν2(yj) = 1 for such xj
and yj .
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Remark 2.3. By Corollary 1.3, translating xj and yj by 1 or any odd
number if necessary, we may suppose k′1 ≤ ⌊n/2⌋, and a0 and b0 are not 0.
Furthermore, we may translate by 2 (or some other number congruent to
2 (mod 4)) to obtain k′2 ≥ ⌈(n−k′1)/2⌉. This will help us reduce the number
of cases to be dealt with, but sometimes we may consider a further transla-
tion to get more information about C. Cases that can be obtained through
translation will be termed equivalent.

Using the following lemma from [4], we deduce that if C is even, then
k1 = k′1.

Lemma 2.4. Let [x1, . . . , xn] =n−1 [y1, . . . , yn] be two lists of integers that
constitute an ideal PTE solution, and suppose that a prime p divides the
constant C associated with this solution. Then we can reorder the integers yi
so that

xj ≡ yj (mod p) for j ∈ {1, . . . , n}.
From the above lemma, we deduce that the number of odd xj must equal

the number of odd yj , i.e., k1 = k′1. Also, we can interchange the roles of f(z)
and g(z), if necessary, so that k′2 ≥ k2. Since there are n elements in each of
the lists X and Y , it must be the case that k1 + k2 ≤ n and k′1 + k′2 ≤ n.
Further, we state the following two lemmas and a corollary from [10].

Lemma 2.5. Let n ≥ 8 and [x1, . . . , xn] =n−1 [y1, . . . , yn]. Let t be such
that x1, . . . , xt and y1 . . . , yt are odd and the other xj and yj are even. Then

xk1 + · · ·+ xkt ≡ yk1 + · · ·+ ykt (mod 16) for k ≥ 1,

and

xkt+1 + · · ·+ xkn ≡ ykt+1 + · · ·+ ykn (mod 16) for k ≥ 1.

Corollary 2.6. Let n ≥ 8 and [x1, . . . , xn] =n−1 [y1, . . . , yn]. Let k1, k2
and k′1, k

′
2 be as above. Then k2 ≡ k′2 (mod 4).

Lemma 2.7. If the points (n, ν2(a0)) in S1 and (n, ν2(b0)) in S2 are dis-
tinct and

k = min {ν2(a0), ν2(b0)},

then 2k ∥C.

Let n ≥ 4 be an integer. For integers x1, . . . , xn, define

T (x1, . . . , xn) =
n∑

i=1

( ∏
i<j<k<l≤n

xixjxkxl

)
if n ≥ 4,

H(x1, . . . , xn) =

n∑
i=1

( ∏
i<j≤n

xixj

)
if n ≥ 2.
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The following simple lemma discusses the divisibility of T (x1, . . . , xn) and
H(x1, . . . , xn) by 2 and 4 when all the xi’s are odd, and will be useful in
later calculations. The easy proof is omitted.

Lemma 2.8. With the notations as above, assume that all the xi’s are
odd. Let n ≥ 8 be an integer.

(i) If all the xi’s, 1 ≤ i ≤ n, are of the form 4k + 1 (or 4k + 3), then

T (x1, . . . , xn) ≡
(
n

4

)
(mod 4).

In particular, when n = 8, T (x1, . . . , x8) is exactly divisible by 2.
(ii) If exactly two xi’s (1 ≤ i ≤ n) are of the form 4k + 3, then

T (x1, . . . , xn) ≡
(
n− 2

2

)
+ 2

(
n− 2

3

)
+

(
n− 2

4

)
(mod 4).

In particular, for n = 8 we have 2 ∥T (x1, . . . , x8).
(iii) If exactly four xi’s (1 ≤ i ≤ n) are of the form 4k + 3, then

T (x1, . . . , xn) ≡ 1 + 2

(
n− 4

2

)
+

(
n− 4

4

)
(mod 4).

In particular, for n = 8 we have 2 ∥T (x1, . . . , x8).
(iv) If exactly one xi is of the form 4k + 3, then

H(x1, . . . , xn) ≡ 3(n− 1) +

(
n− 1

2

)
(mod 4).

In particular, for n = 8 we have 2 ∥H(x1, . . . , x8).
(v) If exactly three xi are of the form 4k + 3, then

H(x1, . . . , xn) ≡ n+

(
n− 3

2

)
(mod 4).

In particular, for n = 8 we have 2 ∥H(x1, . . . , x8).

3. Lower bound for ν2(C10). Recall from (5) that

7 ≤ ν2(C10) ≤ 11.

Using the results discussed in Section 2, we will increase the lower bound
by proving that 9 ≤ ν2(C10) ≤ 11. To facilitate potential future analysis,
we show that in all but one cases of conditions on X = [x1, . . . , x10] and
Y = [y1, . . . , y10] that we consider, one has 210 |C10 (see Case 2.3(ii) where
we prove 29 ∥C).

Throughout this section, we write C for C10. It follows from Remark 2.3
with n = 10 that k′1 + k′2 ≤ 10, k1 = k′1 ≤ 5 and k2 ≤ k′2.
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3.1. Case 1: k′1 + k′2 = 10. In this case, no element yj is divisible by 4.
Since k1 = k′1 ≤ 5, we get k′2 ≥ 5. Further, k2 ≤ k′2 implies the list X contains
at most k′2 elements that are of the form 2 (mod 4). Therefore, every point
(j, ν2(a10−j)) in S1 is at or above the corresponding point (j, ν2(b10−j)) in S2.
Let us consider the following subcases.

Case 1.1: k2 = k′2. We have k1 = k′1 ≤ 5, and k2 = k′2 ≥ 5. Putting
z = 2 in (6), we obtain

10∏
j=1

(2− xj)−
10∏
j=1

(2− yj) = f(2)− g(2) = C.

This implies 22k2 |C. If k2 ≥ 6, this leads to 212 |C, which contradicts
ν2(C) ≤ 11. Therefore, k2 = 5, and thus 210 |C.

Case 1.2: k2 < k′2. In this case, X must contain at least one xj that
is divisible by 4, but we know that no yj is divisible by 4. We consider the
cases k2 = 0 and k2 ̸= 0 separately.

Case 1.2(i): k2 = 0. Since k′2 ≥ 5 and k2 ≡ k′2 (mod 4), we have k′2 = 8,
and hence k1 = k′1 = 2. In this case, eight xj ’s are of the form 0 (mod 4)
and eight yj ’s are of the form 2 (mod 4). Now consider the Newton polygons
of f(z) and g(z). Since k2 = 0, the edges of NP(f) with positive slope have
slope ≥ 2. In particular, this implies

ν2(a10−j) ≥ 2(j − 2) for 3 ≤ j ≤ 10.

As the points (j, ν2(a10−j)) ∈ S1 and (j, ν2(b10−j)) ∈ S2 agree for 0 ≤
j ≤ 9, we deduce

(8) ν2(b10−j) ≥ 2(j − 2) for 3 ≤ j ≤ 9.

Now we define ũj ∈ Z by the equation

(9) (z − y3)(z − y4) · · · (z − y10) =

8∑
j=0

ũjz
j .

We consider the 2-adic valuation of the ũj ’s. Since yj ≡ 2 (mod 4) for
3 ≤ j ≤ 10, we derive ν2(ũ0) = 8. As (z − y1)(z − y2) ≡ z2 + 1 (mod 2), we
have

(10)
b1 = ũ1 × (odd number) + ũ0 × (even number),
bj = ũj × (odd number) + ũj−1 × (even number) + ũj−2

for 2 ≤ j ≤ 7. We deduce from (8) with j = 9 that ν2(b1) ≥ 14. Now using
the facts ν2(b1) ≥ 14 and ν2(ũ0) = 8, it follows easily from the first equation
of (10) that ν2(ũ1) ≥ 9. Using this along with ν2(b2) ≥ 12 (from (8)) and
ν2(ũ0) = 8, it follows from the expression for b2 as given by (10) with j = 2
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that ν2(ũ2) = 8. Continuing, we obtain

ν2(ũ3) ≥ 9, ν2(ũ4) ≥ 8, ν2(ũ5) ≥ 6, ν2(ũ6) ≥ 4, ν2(ũ7) ≥ 2.(11)

Since yj ≡ 2 (mod 4) for 3 ≤ j ≤ 10, we can write

yj = 2y′j for 3 ≤ j ≤ 10, where y′j is odd.

Then the y′j ’s are of the form either 4k + 1 or 4k + 3. Observe that if y′j is
of the form 4k + 1, then yj + 4 = 2y′j + 4 = 2y′′j , where y′′j is of the form
4k+3. Therefore, translating z by z− 4 in the definition of Cn given by (7)
we need to consider only the following equivalent subcases.

(i) If all the y′j ’s, 3 ≤ j ≤ 10, are congruent modulo 4, then it follows
from (9) that

ũ4 = coefficient of z4 in (z − y3) · · · (z − y10)

=
∑

3≤i<j<k<l≤10

yiyjykyl = 24
∑

3≤i<j<k<l≤10

y′iy
′
jy

′
ky

′
l

= 24T (y′3, . . . , y
′
10).

Therefore, by Lemma 2.8(i) we have ν2(ũ4) = 5, which contradicts
ν2(ũ4) ≥ 8 (see (11)).

(ii) If exactly two (or four) y′j ’s are of the form 4k + 3, then a similar ar-
gument, together with an appeal to Lemma 2.8(ii) (or Lemma 2.8(iii)),
yields ν2(ũ4) = 5, which is a contradiction.

(iii) Assume that exactly one y′j is of the form 4k + 3. Consider u2, the
coefficient of z2 in (z − y3) · · · (z − y10) (see (9)). Proceeding along the
same lines as before, we obtain

ũ6 =
∑

3≤i<j≤10

yiyj

= 22H(y′3, . . . , y
′
10) (see Section 2 for notation).

By Lemma 2.8(iv), we have 2 ∥H(y′3, . . . , y
′
10), and hence ν2(ũ2) = 3,

which contradicts the fact that ν2(ũ2) = 8.
(iv) If exactly three y′j ’s are of the form 4k + 3, then a similar argument

together with an appeal to Lemma 2.8(v) shows that ν2(ũ2) = 3, leading
to a contradiction.

Thus, if k′1 + k′2 = 10 and k2 < k′2, then k2 can never be zero.
Case 1.2(ii): k2 ̸= 0. Then there is at least one xj of the form 4k + 2,

and hence, by taking z = xj in (7), we see that 22k
′
2 |C. Similar arguments

to Case 1.1 establish that k′2 = 5, and consequently 210 |C.

3.2. Case 2: k′1 + k′2 < 10. Since k′1 ≤ 5 and k′2 ≥ ⌈(n − k′1)/2⌉, we
have k′2 ≥ 3. Further k′2 < 10− k′1. Hence (k′1, 0) and (k′1 + k′2, k

′
2) are points

in S2 with x coordinate < 10. Therefore (k′1, 0) and (k′1 + k′2, k
′
2) are points
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in S1. Since there are exactly k1 = k′1 odd xj and NP(f) has integer slopes,
the segment joining (k′1, 0) and (k′1 + k′2, k

′
2) is part of NP(f). This implies

k2 ≥ k′2, and by our initial assumption we also have k2 ≤ k′2. Thus k2 = k′2.
Further k′1 ≤ 5, k′1 + k′2 < 10 and k′2 ≥ 3 give the following subcases.

Case 2.1: k2 = k′2 ≥ 5. We have k1 = k′1 ≤ 4. Thus, at least five xj ’s
and five yj ’s are exactly divisible by 2 and at least one xj and one yj are
divisible by 4. By taking z = 2 in (7), we get 212 |C, which is a contradiction.
Thus, this case does not arise.

Case 2.2: k2 = k′2 = 3. Let us consider the following subcases.

Case 2.2(i): k′1 ≤ 3. Taking z = 4 in (7), we see that 211 |C.

Case 2.2(ii): k′1 = 5. We translate z by z−2 in the definition of Cn given
by (7). As this translation will not affect the value of C (Corollary 1.3), let
us consider the equivalent case when k1 = k′1 = 5 and k2 = k′2 = 2. Without
loss of generality, assume that xi, yi for i ∈ {6, 7} are of the form 2 (mod 4).

For each of NP(f) and NP(g), the edge with slope 1 ends at (7, 2). Thus
the remaining edges to the right have slope at least 2, and we deduce that
the rightmost points on each of the Newton polygons must be at or above
(10, 8).

Suppose the rightmost points of both NP(f) and NP(g) are at (10, 8).
Thus

T1 = T2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0),
(6, 1), (7, 2), (8, 4), (9, 6), (10, 8)}.

Then Lemma 2.2 shows that the remaining xi and yi for i ∈ {8, 9, 10} must
be of the form 4 (mod 8). Substituting z = y8 in (7) yields 211 |C.

Now let the rightmost point of NP(f) be (10, 8) and that of NP(g) be
above (10, 8). By Lemma 2.8, we have 28 ∥C. Hence, we deduce that for
i ∈ {6, 7}, xi, yi are either of the form 2 (mod 8) or 6 (mod 8), and for
i ∈ {8, 9, 10}, xi’s are of the form 4 (mod 8) and yi’s are of the form 0 or
4 (mod 8). If at least one of the yi’s, say y8, is of the form 4 (mod 8), then
by putting z = y8 in (7), we obtain 211 |C, a contradiction to 28 ∥C. Thus,
we can assume that the yi’s for i ∈ {8, 9, 10} are of the form 0 (mod 8). By
Lemma 2.5, we have

∑10
i=6 xi ≡

∑10
i=6 yi (mod 8). This implies that if both x6

and x7 are in the same congruence class (mod 8), then y6 and y7 cannot be.
Similarly, if both y6 and y7 are in the same congruence class (mod 8), then
x6 and x7 cannot be. Thus, without loss of generality, we have the following
possibilities.

(i) Let y6 be of the form 2 (mod 8) and y7 be of the form 6 (mod 8). If
both x6 and x7 are of the form 6 (mod 8), by putting z = y7 in (7),



12 R. Bera and S. G. Nair

we see that 29 |C. If both x6 and x7 are of the form 2 (mod 8), putting
z = y6 in (7) yields 29 |C, which contradicts 28 ∥C.

(ii) Let x6 be of the form 2 (mod 8) and x7 be of the form 6 (mod 8). If
both y6 and y7 are of the form 2 (mod 8), by putting z = x6 in (7)
we get 29 |C. If both y6 and y7 are of the form 6 (mod 8), by putting
z = x7 in (7), we obtain 29 |C, which is a contradiction to 28 ∥C.

We now know that the rightmost points of NP(f) and NP(g) are at or
above (10, 9). If both rightmost points are at (10, 9) or both are above (10, 9),
then by putting z = 0 in (7), we get 210 |C. Thus, we can assume that NP(f)
has the rightmost point (10, 9), and NP(g) has the rightmost point above
(10, 9). Thus

T1= {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1), (7, 2), (8, 4), (9, 6), (10, 9)}.

For each of NP(f) and NP(g), the edge with slope 1 ends at the point
(7, 2). Recall that the two points (j, ν2(a10−j)) and (j, ν2(b10−j)) agree for
j ∈ {0, 1, . . . , 9}. Since there is an edge of slope 2 joining the vertices (7, 2)
and (9, 6) in T1, we deduce that (9, 6) is in S1 and hence also in S2. Since the
slope of the line joining (5, 0) and (7, 2) in T2 is 1 and k′2 = 2, we have (9, 6) ∈
T2 as well. Thus, we deduce that x6, x7, y6, y7 are of the form 2 (mod 4),
x8, x9, y8, y9 are of the form 4 (mod 8), x10 is of the form 8 (mod 16) and y10
is of the form 0 (mod 16). Putting z = y8 in (7), we get 210 |C as desired.

Case 2.2(iii): k′1 = 4. For each of NP(f) and NP(g), the edge with
slope 1 ends at (7, 3). Thus, the remaining edge(s) to the right have slope at
least 2, and therefore the rightmost point on each of the Newton polygons
must be at or above (10, 9). Therefore, we have the following possibilities.

Let the rightmost points of both NP(f) and NP(g) be (10, 9). Then
exactly three xj ’s and three yj ’s are of the form 4 (mod 8) and so setting
z = 4 in (7) we derive 212 |C, which is a contradiction.

Let NP(f) have the rightmost point (10, 9) and NP(g) have the rightmost
point above (10, 9). Thus

T1= {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 1), (6, 2), (7, 3), (8, 5), (9, 7), (10, 9)}.

Then there are three xj ’s, say x8, x9, x10, of the form 4 (mod 8). Recall that
a1 =

∑10
j=1Xj , where Xi =

∏10
j=1, j ̸=i xj , which implies

a1 = 29 × (even) + 28 × (odd) + 27 × (odd).

Therefore, ν2(a1) = 7 and hence (9, 7) ∈ S1 ∩ S2. Since (7, 3) ∈ T1 ∩ T2 and
the edge with slope 1 ends at (7, 3), we deduce that also (9, 7) ∈ T2. Thus the
line segment joining (7, 3) to (9, 7) is common to both the Newton polygons
of f(z) and g(z). Therefore, at least two yj ’s are of the form 4 (mod 8), say
y8 and y9. By setting z = y8 in (7), we get 212 |C, which is a contradiction.
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If the rightmost endpoints of the Newton polygons of f(z) and g(z) are
at or above (10, 10), then by taking z = 0 in (7), we have 210 |C, as desired.

Case 2.3: k2 = k′2 = 4. Let us consider the following subcases based
on k1.

Case 2.3(i): k1 ≤ 4. By taking z = 2 in (7), we have 210 |C.

Case 2.3(ii): k1 = 5. We translate z to z−2 in (7), and further consider
the equivalent case k1 = k′1 = 5 and k2 = k′2 = 1.

For each of NP(f) and NP(g), the edge with slope 1 ends at (6, 1). Thus,
the remaining edge(s) to the right have slope at least 2, and therefore the
rightmost points on each of the Newton polygons must be at or above (10, 9).
If the rightmost points of both NP(f) and NP(g) are (10, 9) or both are above
(10, 9), then by taking z = 0 in (7), we have 210 |C. Therefore, we can assume
that the rightmost point of NP(f) is (10, 9) and the one of NP(g) is above
(10, 9). By Lemma 2.8, this implies

29 ∥C.(12)

Thus we have established that 9 ≤ ν2(C10) ≤ 11 as stated in Theorem 1.
We are interested in finding more information about the divisibility prop-

erties of xj and yj when there is a possible ideal solution with 29 ∥C. These
divisibility properties can be helpful in finding such an ideal solution, if one
exists. Recall from Remark 1.4 that finding such an example will imply in
Theorem 1 that ν2(C10) = 9.

If there is at least one yj that is exactly divisible by 4, then by taking
z = yj in (7), we get 213 |C, a contradiction. Thus, xi and yi are odd for
1 ≤ i ≤ 5 and

2 ∥x6, 22 ∥x7, x8, x9, x10 and 2 ∥ y6, 8 | y7, y8, y9, y10.(13)

Let us take z = x6 in (7). Then using (12) and (13), we derive x6 ≡
y6 (mod 32). Further, using the vertices of NP(g), we derive

(14)
ν2(b10−j) ≥ 3(j − 6) + 1 for 7 ≤ j ≤ 10,

ν2(a10−j) = ν2(b10−j) for 7 ≤ j ≤ 9.

Define uj and vj ∈ Z by the equations

10∏
i=7

(z − xi) =

4∑
j=0

ujz
j and

10∏
i=7

(z − yi) =

4∑
j=0

vjz
j .
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Also,
∏5

i=1(z − xi) ≡
∏5

i=1(z − yi) ≡ (z − 1)5 (mod 2). Then
10∑
j=0

ajz
j = (z − x6)

5∏
i=1

(z − xi)
4∑

j=0

ujz
j ,

10∑
j=0

bjz
j = (z − y6)

5∏
i=1

(z − yi)

4∑
j=0

vjz
j .

Further, we have ν2(a0) = 9 and ν2(b0) ≥ 13. Therefore,
6∏

i=1

(z − xi) = z6 + · · ·+ z3 × (even) + z2 × (odd) + z × (odd) + x6 × (odd).

Using these equations, we deduce for 1 ≤ j ≤ 3 that

aj = uj×x6×(odd)+uj−1×(odd)+uj−2×(odd)+uj−3×(even),(15)
bj = vj×x6×(odd)+vj−1×(odd)+vj−2×(odd)+vj−3×(even).(16)

Until the end of this subsection, let us assume that j ∈ {7, 8, 9, 10}. Since
4 ∥xj , we write xj = 4x′j , where x′j is of the form 4k + 1 or 4k + 3. Observe
that if x′j is of the form 4k+1, then xj +8 = 4(x′j +2) = 4x′′j , where x′′j is of
the form 4k+3. Therefore, we need to consider only the following subcases.

(i) Assume that there are exactly an even number of x′j of the form 4k+1.
We derive ν2(u1) ≥ 8 and ν2(u2) = 5 and hence ν2(a2) = 6 by (15) for
j = 2 whereas from (14) we get ν2(b2) ≥ 7. Thus, this case does not
arise.

(ii) Assume that there are exactly an odd number of x′j of the form 4k + 1.
Note that if exactly three x′j ’s are of the form 4k + 1, then after trans-
lating z to z − 8 in (7), we can reduce it to the case when exactly one
x′j is of the form 4k + 1. Let us further look at the divisibility of yj in
this case. Recall from (13) that 8 | yj .
(a) If there are exactly an even number of yj of the form 8 (mod 16),

then using (16) for b3, we have ν2(b3) ≥ 5. On the other hand, using
(15) for a3, we derive ν2(a3) = 4, which is a contradiction.

(b) Assume that there are exactly an odd number of yj of the form
8 (mod 16). If exactly three yj ’s are of the form 8 (mod 16), then
we get

(17) ν2(v0) ≥ 13, ν2(v1) = 9, ν2(v2) = 6 =⇒ ν2(b2) = 7 by (16).

If exactly one yj is of the form 8 (mod 16), then we get

(18) ν2(v0) ≥ 15, ν2(v1) = 11, ν2(v2) ≥ 7 =⇒ ν2(b2) ≥ 8 by (16).

Depending on these conditions on b2, we further derive the possible
congruence classes of x′j (mod 8). Recall that we are in the case
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where one x′j is of the form 4k + 1 and the other three x′j ’s are of
the form 4k+3. Now 4k+1 can be written as 8k+1 or 8k+5, and
4k+3 can be written as 8k+3 or 8k+7. Observe that if x′j is of the
form 8k+1, then xj +16 = 4(x′j +4) = 4x′′j , where x′′j is of the form
8k + 5. If x′j is of the form 8k + 3, then xj + 16 = 4(x′j + 4) = 4x′′j ,
where x′′j is of the form 8k+7. Therefore, without loss of generality,
we consider the following subcases. Let exactly one x′j be of the form
8k + 1.
(I) Assume that exactly two x′j ’s are of the form 8k+3 and one x′j

is of the form 8k+7 or all three remaining x′j ’s are of the form
8k+7. In both cases, we deduce that ν2(u1) = 7, ν2(u2) ≥ 7, and
hence ν2(a2) = 7. Therefore, using (14) and (17) we conclude
that in both cases there must be exactly three yj ’s such that
8 ∥ yj .

(II) Assume that exactly two x′j ’s are of the form 8k + 7 and one
x′j is of the form 8k + 3 or all three remaining x′j ’s are of the
form 8k + 3. In both cases, we get ν2(u1) = 7 and ν2(u2) = 6
and therefore ν2(a2) ≥ 8. Using (14) and (18) we conclude that
in both cases there must be exactly one yj such that 8 ∥ yj .

4. Lower bound for ν2(C12). Recall that we already have

8 ≤ ν2(C12) ≤ 12.(19)

In this section we will increase the lower bound by proving that 11 ≤
ν2(C12) ≤ 12.

As before, we consider (6); we set n = 12 and we will be using C for C12.
The earlier notations k1, k′1, k2, k′2 will be followed in this section with n = 12
and we consider multiple subcases depending on the possible values of k′1
and k′2. Using Remark 2.3 with n = 12, we get k′1 + k′2 ≤ 12, k1 = k′1 ≤ 6,
k2 ≤ k′2, k′2 ≥ 3 and k2 ≡ k′2 (mod 4).

4.1. Case 1: k′1 + k′2 = 12. As in Subsection 3.1, no element yj from Y
is divisible by 4, and since k2 ≤ k′2 we know that each point (j, ν2(a10−j))
in S1 is at or above the corresponding point (j, ν2(b10−j)) in S2. Further,
k′1 ≤ 6 will imply k′2 = 12− k′1 ≥ 6. Consider the following subcases.

Case 1.1: k2 = k′2. Since k2 = k′2 ≥ 6, by putting z = 2 in (7) we get
212 |C.

Case 1.2: k2 < k′2. In this case, X must contain at least one xj that
is divisible by 4, but we know that no yj is divisible by 4. We consider the
cases k2 = 0 and k2 ̸= 0 separately.
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Case 1.2(i): k2 ̸= 0. Then at least one xj is of the form 4k + 2, and
hence, by taking z = xj in (7), we see that 22k

′
2 |C. Since k′2 ≥ 6, we get

212 |C.

Case 1.2(ii): k2 = 0. Since k′2 ≥ 6 and k2 ≡ k′2 (mod 4), we get k′2 ∈
{8, 12}. When k′2 = 12, we have k′1 = k1 = 0. Thus, all yj ’s are divisible
by 2 and all xj ’s are divisible by 4. By putting z = 0 in (7), we get 212 |C,
as desired. Thus, it remains to consider k2 = 0, k′2 = 8 and k1 = k′1 = 4. In
this case, the edges of the Newton polygon of f(z) with positive slope have
slope ≥ 2. In particular, this implies

(20)
ν2(a12−j) ≥ 2(j − 4) for 5 ≤ j ≤ 12,

ν2(b12−j) ≥ 2(j − 4) for 5 ≤ j ≤ 11.

We define uj ∈ Z by the equation
12∏
i=5

(z − yi) =
8∑

j=0

ujz
j .(21)

Since (z − y1)(z − y2)(z − y3)(z − y4) ≡ z4 + 1 (mod 2), we have

bj = uj × (odd) + uj−1 × (even) + uj−2 × (even)
+ uj−3 × (even) + uj−4 × (odd) for 1 ≤ j ≤ 7.

(22)

Since ν2(b1) ≥ 14 from (20) and ν2(u0) = 8, using (22) we get ν2(u1) ≥ 9.
Using (20) and (22) successively, we get
(23)
ν2(u2) ≥ 9, ν2(u3) ≥ 9, ν2(u4) ≥ 8, ν2(u5) ≥ 6, ν2(u6) ≥ 4, ν2(u7) ≥ 2.

For 5 ≤ j ≤ 12 we write yj = 2y′j , where y′j is odd. Consider the set
{y′j : 5 ≤ j ≤ 12}. Then y′j is of the form 4k + 1 or 4k + 3. Without loss of
generality, we consider the following subcases.

(i) If all y′j ’s are of the form 4k+3, then it follows from the definition of u4
that u4 = 24T (y′5, . . . , y

′
10). Thus, by Lemma 2.8(i) we have ν2(u4) = 5,

which contradicts ν2(u4) ≥ 8 (see (23)).
(ii) If exactly two (or four) of y′j ’s are of the form 4k + 3, then by Lemma

2.8 we have ν2(u4) = 5, an impossibility because of (23).
(iii) Assume that exactly one y′j is of the form 4k+3. Then u6, the coefficient

of z6 in (21), equals

u6 = 22
∑

5≤i<j<k<l≤12

y′iy
′
j = 22H(y′5, . . . , y

′
10).

Using Lemma 2.8(iv), we have ν2(u6) = 3, which contradicts the fact
that ν2(u6) ≥ 4 by (23).
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(iv) If exactly three y′j ’s are of the form 4k+3, then a similar argument using
Lemma 2.8(v) shows that ν2(u6) = 3, again a contradiction to (23).

4.2. Case 2: k′1+k′2 < 12. In this case, at least one yj is of the form yj ≡
0 (mod 4). Similarly to the arguments given in the introductory paragraph
of Section 3.2, we derive k2 = k′2. Taking into account k′2 ≥ 3 we have
k2 = k′2 ≥ 3. Further, we consider subcases based on the values of k′1.

Case 2.1: k′1 ≤ 5. As k′1+k′2 < 12, at least one xj and at least one yj are
divisible by 4. Furthermore, if k1 = k′1 ≤ 4, then k2 = k′2 ≥ ⌈(n−k′1)/2⌉ = 4.
Thus, in this case, at least four xj and four yj are exactly divisible by 2.
Hence taking z = 2 in (7) we see that 212 |C. If k1 = k′1 = 5, then k2 = k′2 ≥
⌈(n − k′1)/2⌉ = 4. Again taking z = 2 in (7) we get 211 |C. So we are left
with the case when k′1 = 6.

Case 2.2: k′1 = 6. We see that 3 ≤ k′2 ≤ 5.

Case 2.2(i): k′2 = 5. By putting z = 2 in (7) we get 211 |C.

Case 2.2(ii): k′2 = 4. We translate z to z − 2 in (7) and consider the
equivalent case when k2 = k′2 = 2. Thus, we can assume that the xi, yi are
of the form 2 (mod 4) for i ∈ {7, 8} and the xi, yi are of the form 4 (mod 8)
for 9 ≤ i ≤ 12. Thus, we deduce that the rightmost points of NP(f) and of
NP(g) must be at or above (12, 10). If both rightmost points are at (12, 10) or
both are above (12, 10), by putting z = 0 we get 211 |C. Thus, we can assume
that NP(f) has the rightmost point (12, 10), and NP(g) has the rightmost
point above (12, 10). Hence, xj ’s for 9 ≤ j ≤ 12 are of the form 4 (mod 8).
If some yj is of the form 4 (mod 8), then taking z = yj , we get 214 |C, a
contradiction by (19). Thus, we can assume that the yj ’s for 9 ≤ j ≤ 12 are
of the form 8 (mod 16). This gives

ν2(b12−j) ≥ 3(j − 8) + 2 for 9 ≤ j ≤ 12

and thus

(24) ν2(a12−j) ≥ 3(j − 8) + 2 for 9 ≤ j ≤ 11.

Since xj ’s for 1 ≤ j ≤ 6 are odd, we obtain
6∏

j=1

(z − xj) = z6 + · · ·+ z2 × (odd) + z × (even) + (odd).

As in Case 1.2, similarly to (21), we define ũj ∈ Z by the equation
12∏
j=7

(z − xj) =

6∑
j=0

ũjz
j
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and thus

f(z) =

12∑
j=0

ajz
j =

6∏
j=1

(z − xj)

6∑
j=0

ũjz
j .

Hence ν2(ũ0) = 10 and

a1 = ũ0 × (even) + ũ1 × (odd),
a2 = ũ0 × (odd) + ũ1 × (even) + ũ2 × (odd).

As earlier, we write xj = 2x′j for j ∈ {7, 8} and xj = 4x′j for 9 ≤ j ≤ 12,
where the x′j ’s are odd. Consider the set {x′j : 7 ≤ j ≤ 12}. Then the x′j ’s are
of the form 4k+1 or 4k+3 where k is an integer. Without loss of generality,
we consider the following subcases.

(i) If all the x′j ’s are of the form 4k + 1, then ν2(ũ1) ≥ 10 and ν2(ũ2) = 7,
which implies ν2(a2) = 7, contradicting (24).

(ii) Suppose exactly one x′j is of the form 4k + 1. If either x′7 or x′8 is of
the form 4k + 1, we deduce that ν2(ũ2) = 7, ν2(ũ1) ≥ 10 and hence
ν2(a2) = 7, contradicting (24). For 9 ≤ j ≤ 12, if exactly one x′j is
of the form 4k + 1, we deduce that ν2(ũ1) = 9 and hence ν2(a1) = 9,
contradicting (24).

(iii) Assume that exactly two x′j ’s are of the form 4k+1. If x′7 and x′8 are of
the form 4k+1, then ν2(ũ2) = 7 and ν2(ũ1) ≥ 10, implying ν2(a2) = 7,
an impossibility by (24). For 9 ≤ j ≤ 12, if exactly two x′j ’s are of the
form 4k + 1, then ν2(ũ1) ≥ 10 and ν2(ũ2) = 7. Therefore ν2(a2) = 7,
again a contradiction by (24). If either x′7 or x′8, and exactly one of the
x′j ’s (9 ≤ j ≤ 12) are of the form 4k + 1, then ν2(ũ1) = 9. This implies
that ν2(a1) = 9, which contradicts (24).

(iv) Assume that exactly three x′j ’s are of the form 4k + 1. Let x′7, x
′
8 and

exactly one of the x′j ’s (9 ≤ j ≤ 12) be of the form 4k + 1. Then
ν2(ũ1) = 9 and hence ν2(a1) = 9, contradicting (24). If exactly one of
x′7 and x′8, and exactly two x′j ’s (9 ≤ j ≤ 12) are of the form 4k + 1,
then ν2(ũ1) ≥ 10 and ν2(ũ2) = 7. Thus ν2(a2) = 7, contradicting (24).
If exactly three of x′j ’s (9 ≤ j ≤ 12) are of the form 4k + 1, then
ν2(ũ1) = 9, which implies ν2(a1) = 9, a contradiction to (24).

(v) Suppose exactly four x′j ’s are of the form 4k + 1. Let x′7, x
′
8, and ex-

actly two x′j ’s (9 ≤ j ≤ 12) be of the form 4k + 1. Then ν2(ũ1) ≥ 10
and ν2(ũ2) = 7. Hence ν2(a2) = 7, contradicting Equation (24). If ex-
actly one of x′7 and x′8 and exactly three x′j ’s (9 ≤ j ≤ 12) are of the
form 4k + 1, then ν2(ũ1) = 9, which implies that ν2(a1) = 9, contradict-
ing (24). If all x′j ’s (9 ≤ j ≤ 12) are of the form 4k+1, then ν2(ũ1) ≥ 10
and ν2(ũ2) = 7, implying ν2(a2) = 7, which contradicts (24).

(vi) Suppose exactly five x′j ’s are of the form 4k + 1. If both x′7 and x′8,
and exactly three x′j ’s (9 ≤ j ≤ 12) are of the form 4k + 1, then using
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ν2(ũ1) = 9 we derive ν2(a1) = 9. This contradicts (24). If exactly one of
x′7 and x′8 and exactly four x′j ’s (9 ≤ j ≤ 12) are of the form 4k+1, we
see that ν2(ũ1) ≥ 10 and ν2(ũ2) = 7. Thus, ν2(a2) = 7, a contradiction.

Case 2.2(iii): k′2 = 3. Then for each of NP(f) and NP(g), the edge with
slope 1 ends at (9, 3) and the remaining edge(s) to the right have slope at
least 2. Therefore, the rightmost point on each of the Newton polygons must
be at or above (12, 9).

Suppose the rightmost endpoint of NP(f) is on (12, 9). Thus

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 1), (8, 2), (9, 3), (10, 5), (11, 7), (12, 9)}

is the set of vertices of NP(f). Consider a1, the coefficient of z in f(z). As
the xi for 1 ≤ i ≤ 6 are odd, xi ≡ 2 (mod 4) for 7 ≤ i ≤ 9 and xi ≡ 4 (mod 8)
for 10 ≤ i ≤ 12, we derive

a1 = 29 × (even) + 28 × (odd) + 27 × (odd)

and thus ν2(a1) = 7. This implies (11, 7) belongs to S1 and hence also to S2.
Since k2 = k′2 = 3, we know that (9, 3) is a point of S2. Further, we know
the slopes of NP(g) coming from edges joining with vertices (9, 3) onwards
will have slope at least 2. Since the edges of the Newton polygon are joined
in increasing order of slope, we deduce that NP(g) must contain an edge
joining (9, 3) and (11, 7). This implies 4 ∥ y10 and 4 ∥ y11. Now, by substituting
z = y10 in (7), we get 212 |C.

Let the rightmost endpoint of NP(f) be (12, 10). The only possible ver-
tices for NP(f) are

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 1), (8, 2), (9, 3), (10, 5), (11, 7), (12, 10)}.

Since (11, 7) ∈ S1 ∩ S2 and (9, 3) is in T2, we deduce that (11, 7) ∈ T2. Thus
the possibilities for NP(g) are

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 1), (8, 2), (9, 3), (10, 5), (11, 7), (12, r)}

where r ≥ 10.
Let the rightmost endpoint of NP(g) be (12, r) where r ≥ 11. Thus

2 ∥xi, yi for 7 ≤ i ≤ 9, 22 ∥xi, yi for i = 10, 11, 23 ∥x12 and 24 | y12. By
substituting z = x10 in (7), we get 211 |C, but from Lemma 2.7 we derive
210 ∥C, a contradiction. Thus, the rightmost endpoint of NP(g) is (12, 10).
Now, translating z to z − 4 in (7), we can further reduce this possibility to
the case where the rightmost endpoints of NP(f) and NP(g) lie at or above
(12, 11). In that case, if we take z = 0 in (7), we get 211 |C.
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If the rightmost point of NP(f) is (12, 11), then without loss of generality
we can assume that the rightmost point of NP(g) is at or above (12, 11). By
taking z = 0 in (7) we conclude that 211 |C.
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