Newton polygons and the constant associated with the Prouhet-Tarry-Escott problem

by
Ranjan Bera (Bangalore) and Saranya G. Nair (Zuarinagar)

Abstract

In a 2017 article Filaseta and Markovich obtained new information on the lower bounds of 2 -adic valuation of certain constants $\overline{C_{n}}$ associated with the Prouhet-Tarry-Escott (PTE) problem for the cases $n=8$ and $n=9$ by using the classical theory of Newton polygons, and also pointed out that it would be of interest to obtain improved lower bounds in the cases when $10 \leq n \leq 12$. In the present article, we obtain new 2-adic information on the lower bounds of $\overline{C_{n}}$ for the cases $n=10$ and $n=12$.

1. Introduction. Given natural numbers n and k, with $n>k$, the Prouhet-Tarry-Escott (henceforth abbreviated PTE) problem asks about distinct sets of integers, say $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$, such that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{j}=\sum_{i=1}^{n} y_{i}^{j} \quad \text { for } j=1, \ldots, k . \tag{1}
\end{equation*}
$$

If X and Y satisfy (1), then the pair (X, Y) is called a PTE solution and is written as $X={ }_{k} Y$. We call n the size of the solution and k the degree. For example,

$$
[3,6,6,7]={ }_{2}[4,5,5,8]
$$

is a PTE solution of size 4 and degree 2. Dating back to 1750 s, a special case of this problem appeared in the works of Goldbach and Euler. For any integers a, b, c, d,

$$
[a+b+d, a+c+d, b+c+d, d]={ }_{2}[a+d, b+d, c+d, a+b+c+d]
$$

is a family of PTE solutions of size 4 and degree 2 due to Goldbach. In fact, this example was also found by Euler when $d=0$. Prouhet's work in 1851 established that for any given k there is a solution with sufficiently large n.

[^0]Prouhet's contribution to this problem was pointed out by Wright [18]. Tarry and Escott studied the more general problem in the 1910s and hence, nowadays, this problem is referred to as the Prouhet-Tarry-Escott problem. Volume II of L. E. Dickson's "History of the Theory of Numbers" 8] provides an extensive historical account of this problem, encompassing numerous early references.

The maximal non-trivial case of the PTE problem occurs when $k=n-1$. A solution of size n and degree $n-1$ is called an ideal solution. An important open problem in the area is a conjecture of Wright [17] that states that an ideal solution exists for every $n \geq 3$. Wright's conjecture is verified for $3 \leq n \leq 10$ and $n=12$. Even though the problem has been investigated for a long time, ideal solutions for $n=11$ and $n \geq 13$ are hitherto unknown. Ideal solutions are particularly interesting due to their connections with problems in theoretical computer science and graph theory. The following question from graph theory is one such instance. Given any integer $m \geq 4$, does there exist a graph G such that G has a chordless cycle of order m and all roots of the chromatic polynomial of G are integers? In [12], Hernández and Luca established that ideal solutions of the PTE problem of size n can be used to construct such graphs of order $n+1$, thus answering the aforementioned question on graphs affirmatively for $m=8,9,10,11$ and 13 .

Some of the recent developments in the PTE problem are documented in [4, 5, 10, 13, 15]. Interesting works on generalizations of the PTE problem can be found in [1, 6]. For more applications stemming from the PTE problem, we refer to [2, 11, 12, 14, 16].

The following lemma and its corollary related to elementary symmetric functions will help in our further discussion of the PTE problem (see [3, 4]).

LEMMA 1.1. Let n and k be integers with $1 \leq k<n$. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} denote arbitrary integers. The following are equivalent:
(i) $\sum_{i=1}^{n} x_{i}^{l}=\sum_{i=1}^{n} y_{i}^{l}$ for $l \in\{1, \ldots, k\}$,
(ii) $\operatorname{deg}\left(\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)\right) \leq n-k-1$,
(iii) $(z-1)^{k+1} \mid\left(\sum_{i=1}^{n} z^{x_{i}}-\sum_{i=1}^{n} z^{y_{i}}\right)$.

Corollary 1.2. The lists $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ give an ideal PTE solution if and only if

$$
\begin{equation*}
\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)=C \tag{2}
\end{equation*}
$$

for some integer C.

From now on, we will consider ideal PTE solutions as being lists $X=$ $\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ satisfying (2). It has been shown in 4, 5, [7, 15] that the information about C, particularly on the representation of C given in (2), is very useful in deriving examples of ideal PTE solutions. Since C depends on n, X and Y, we define for $X={ }_{n-1} Y$ the constant

$$
C_{n}=C_{n}(X, Y)=\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)
$$

Since C_{n} is the constant term of the polynomial on the right hand side of the above equation, we can alternatively write

$$
C_{n}=(-1)^{n}\left(\prod_{i=1}^{n} x_{i}-\prod_{i=1}^{n} y_{i}\right)
$$

An important divisibility result for C_{n} is that $n!\mid C_{n+1}$ (see [13]). Next, we state a result that follows from Corollary 1.2 and is used throughout this paper.

Corollary 1.3. Let $a \in \mathbb{Z}$. The lists $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ form an ideal PTE solution if and only if the lists $X^{\prime}=\left[x_{1}+a, \ldots, x_{n}+a\right]$ and $Y^{\prime}=\left[y_{1}+a, \ldots, y_{n}+a\right]$ form an ideal PTE solution. Furthermore, if these are ideal solutions, then $C_{n}(X, Y)=C_{n}\left(X^{\prime}, Y^{\prime}\right)$.

Define

$$
\bar{C}_{n}=\prod_{j=1}^{\infty} p_{j}^{e_{j}}
$$

where
$e_{j}=\min \left\{e: p_{j}^{e} \| C_{n}(X, Y)\right.$ for some X and Y as above with $\left.X={ }_{n-1} Y\right\}$.
Thus, \bar{C}_{n} can be viewed as the greatest common divisor over all constants $C_{n}(X, Y)$ where X and Y vary over distinct ordered lists of n integers satisfying $X={ }_{n-1} Y$.

For $3 \leq n \leq 7$, the possible values of \bar{C}_{n} were proved in [5]. For example, $\bar{C}_{7}=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11$. It was also proved in [5] that

$$
\begin{align*}
& \bar{C}_{8}=2^{e_{0}} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \\
& \bar{C}_{9}=2^{e_{1}} \cdot 3^{e_{2}} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17^{e_{3}} \cdot 23^{e_{4}} \cdot 29^{e_{5}} \tag{3}
\end{align*}
$$

where $4 \leq e_{0} \leq 8,7 \leq e_{1} \leq 9,3 \leq e_{2} \leq 4$, and $0 \leq e_{j} \leq 1$ for $j \in\{3,4,5\}$.
For a prime p and a positive integer r, we let $\nu_{p}(r)$ be the maximal power of p dividing r and we define $\nu_{p}(0)=+\infty$. Further we write $\nu(r)=\nu_{p}(r)$ if the prime is clear from the context. Obviously, $\nu_{p}(r)=k$ is equivalent to $p^{k} \| r$. We will also use the standard floor and ceiling notation.

Thus it follows from (3) that

$$
\begin{equation*}
4 \leq \nu_{2}\left(\bar{C}_{8}\right) \leq 8 \quad \text { and } \quad 7 \leq \nu_{2}\left(\bar{C}_{9}\right) \leq 9 \tag{4}
\end{equation*}
$$

Similar divisibility results on C_{n} for $n=10$ and 12 were also proved in [5], and in particular,

$$
\begin{equation*}
7 \leq \nu_{2}\left(\bar{C}_{10}\right) \leq 11 \quad \text { and } \quad 8 \leq \nu_{2}\left(\bar{C}_{12}\right) \leq 12 \tag{5}
\end{equation*}
$$

Using the theory of classical Newton polygons, Filaseta and Markovich 10 improved the existing lower bounds of $\nu_{2}\left(\bar{C}_{8}\right)$ and $\nu_{2}\left(\bar{C}_{9}\right)$, as given in (4), to $6 \leq \nu_{2}\left(\bar{C}_{8}\right) \leq 8$ and $\nu_{2}\left(\bar{C}_{9}\right)=9$. Their results motivated us to investigate whether we can improve the lower bounds for 2-adic values of \bar{C}_{10} and \bar{C}_{12} as given by (5).

The following result is the main contribution of this article:
Theorem 1. With the notations as above,

$$
9 \leq \nu_{2}\left(\bar{C}_{10}\right) \leq 11 \quad \text { and } \quad 11 \leq \nu_{2}\left(\bar{C}_{12}\right) \leq 12
$$

Remark 1.4. The case $n=10$ has been discussed in Section 3. There we show that in all but one cases (see Case $2.3(\mathrm{ii})$) of conditions on $X=$ $\left[x_{1}, \ldots, x_{10}\right]$ and $Y=\left[y_{1}, \ldots, y_{10}\right]$ that we consider, one has $2^{10} \mid C_{10}$. More specifically, only when exactly five x_{j} 's and five y_{j} 's are odd, and exactly one x_{j} and one y_{j} are of the form $2(\bmod 4)$, we obtain $2^{9} \| C_{10}$. Further analysis using this information on C_{10} helped us to deduce 2-adic information on the remaining x_{j} 's and y_{j} 's. For instance, all the remaining x_{j} 's and y_{j} 's must be of the form $4(\bmod 8)$ and $0(\bmod 8)$ respectively. Observe that by analyzing this information, if it is possible to find an example of an ideal solution in this special case, then $\nu_{2}\left(\bar{C}_{10}\right)=9$ in Theorem 1. On the other hand, if one proves that an ideal solution with these divisibility properties does not exist, then the lower bound for $\nu_{2}\left(\bar{C}_{10}\right)$ would be ≥ 10 in Theorem 1 .

We introduce Newton polygons, and state further results based on the Newton polygons required in the proof of Theorem 1, in Section 2. We prove Theorem 1 for $n=10$ in Section 3 and $n=12$ in Section 4.
2. Preliminaries. We write

$$
\begin{equation*}
f(z)=\prod_{j=1}^{n}\left(z-x_{j}\right)=\sum_{j=0}^{n} a_{j} z^{j} \quad \text { and } \quad g(z)=\prod_{j=1}^{n}\left(z-y_{j}\right)=\sum_{j=0}^{n} b_{j} z^{j} \tag{6}
\end{equation*}
$$

where x_{j} and y_{j} are chosen so that

$$
\begin{equation*}
f(z)-g(z)=C_{n} \tag{7}
\end{equation*}
$$

and that the exact power of 2 dividing C_{n} is equal to the exact power of 2 in \bar{C}_{n}. From Corollary 1.2, we see that $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ is an ideal solution. We will write $C=C_{n}$ if n is clear from the context.

Newton polygons. We introduce the definition of a Newton polygon for a polynomial with respect to a prime. Let $h(x)=\sum_{j=0}^{n} c_{j} x^{j} \in \mathbb{Z}[x]$ with $c_{0} c_{n} \neq 0$ and let p be a prime. Let S be the following set of points in the extended plane:

$$
S=\left\{\left(0, \nu\left(c_{n}\right)\right),\left(1, \nu\left(c_{n-1}\right)\right),\left(2, \nu\left(c_{n-2}\right)\right), \ldots,\left(n, \nu\left(c_{0}\right)\right)\right\} .
$$

Consider the lower edges along the convex hull of these points. The leftmost endpoint is $\left(0, \nu\left(c_{n}\right)\right)$ and the rightmost endpoint is $\left(n, \nu\left(c_{0}\right)\right)$. The endpoints of each edge belong to S and the slopes of the edges increase from left to right. When referring to the edges of a Newton polygon, we shall not allow two different edges to have the same slope. The polygonal path formed by these edges is called the Newton polygon of $h(x)$ with respect to the prime p and denoted by $\mathrm{NP}_{p}(h)$. We write $\mathrm{NP}(h)=\mathrm{NP}_{p}(h)$ if p is clear from the context. The endpoints of the edges of $\mathrm{NP}_{p}(h)$ are called the vertices of $\mathrm{NP}_{p}(h)$. Next we state a lemma of Dumas [9] that relates the Newton polygon of the product polynomial $h_{1}(x) h_{2}(x)$ to those of $h_{1}(x)$ and $h_{2}(x)$.

Lemma 2.1. Let $h_{1}(x), h_{2}(x) \in \mathbb{Z}[x]$ with $h_{1}(0) h_{2}(0) \neq 0$ and let p be a prime. Let k be a non-negative integer such that p^{k} divides the leading coefficient of $h_{1}(x) h_{2}(x)$ but p^{k+1} does not. Then the edges of the Newton polygon for $h_{1}(x) h_{2}(x)$ with respect to p can be formed by constructing a polygonal path beginning at $(0, k)$ and using translates of the edges in the Newton polygons for $h_{1}(x)$ and $h_{2}(x)$ with respect to the prime p, using exactly one translate for each edge of the Newton polygons for $h_{1}(x)$ and $h_{2}(x)$. Necessarily, the edges are translated so as to form a polygonal path with increasing slopes.

Let us consider the Newton polygons for the polynomials $f(z)$ and $g(z)$ defined in (6) with respect to the prime $p=2$. We will denote them as $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ as the prime is fixed. For a fixed n, consider the two sets of points

$$
S_{1}=\left\{\left(j, \nu_{2}\left(a_{n-j}\right)\right): 0 \leq j \leq n\right\} \quad \text { and } \quad S_{2}=\left\{\left(j, \nu_{2}\left(b_{n-j}\right)\right): 0 \leq j \leq n\right\} .
$$

Since $f(z)-g(z)=C$, a constant, we see that $a_{n-j}=b_{n-j}$ for $0 \leq j \leq n-1$. Thus, S_{1} and S_{2} have at least n of $n+1$ points in common. Using Corollary 1.2 we may assume that $a_{0} \neq 0$ and $b_{0} \neq 0$, thus ensuring $\nu_{2}\left(a_{0}\right) \neq+\infty$ and $\nu_{2}\left(b_{0}\right) \neq+\infty$. This in turn ensures that the rightmost points in $\operatorname{NP}(f)$ and $\mathrm{NP}(g)$ are in the finite plane. Observe that (7) still holds after this translation. We will be frequently using Corollary 1.2 to reduce the different cases in Sections 3 and 4.

The following lemma derived using Lemma 2.1 is crucial in applying Newton polygons in the study of the PTE problem as given by [10]. It uses the fact that $f(z)$ and $g(z)$ are products of n linear factors.

Lemma 2.2. The Newton polygons of $f(z)$ and $g(z)$ each pass through $n+1$ lattice points (including the endpoints), which we denote respectively as

$$
T_{1}=\left\{\left(j, t_{j}\right): 0 \leq j \leq n\right\} \quad \text { and } \quad T_{2}=\left\{\left(j, t_{j}^{\prime}\right): 0 \leq j \leq n\right\}
$$

After possibly rearranging the x_{j} and y_{j}, we find that $2^{t_{j}-t_{j-1}}$ exactly divides x_{j} and $2^{t_{j}^{\prime}-t_{j-1}^{\prime}}$ exactly divides y_{j} for each $j \in\{1, \ldots, n\}$.

We explain the importance of rearranging. The values of $\nu_{2}\left(x_{j}\right)$ and $\nu_{2}\left(y_{j}\right)$ are increasing as j ranges from 1 to n. We will keep such an ordering throughout the paper. In particular, the values of the x_{j} and the values of the y_{j} are not necessarily increasing. Since the slopes of the edges of the Newton polygons increase from left to right, even though the points in S_{1} and S_{2} are the same except for $\left(n, \nu_{2}\left(a_{0}\right)\right)$ and $\left(n, \nu_{2}\left(b_{0}\right)\right)$, the vertices of the Newton polygons for S_{1} and S_{2}, i.e. the points in T_{1} and T_{2} may not always be the same. We will see that a point in T_{1} may be the same as a point in T_{2}. For example, consider $n=10$ and let

$$
\begin{aligned}
& X=\{9,17,25,33,41,66,68,76,92,108\} \\
& Y=\{101,123,127,135,145,146,162,168,184,216\}
\end{aligned}
$$

In this case, consider $f(z)=\prod_{i=1}^{10}\left(z-x_{i}\right)$ and $g(z)=\prod_{i=1}^{10}\left(z-y_{i}\right)$; the respective sets S_{1} and S_{2} with respect to the prime $p=2$ are

$$
\begin{aligned}
& S_{1}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,1) \\
&(7,4),(8,7),(9,10),(10,9)\} \\
& S_{2}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,1) \\
&(7,4),(8,7),(9,10),(10,14)\}
\end{aligned}
$$

The corresponding vertex sets for the Newton polygons T_{1} and T_{2} with respect to $p=2$ are

$$
\begin{aligned}
& T_{1}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,1) \\
&(7,3),(8,5),(9,7),(10,9)\} \\
& T_{2}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,1) \\
&(7,4),(8,7),(9,10),(10,14)\}
\end{aligned}
$$

This is an example of $f(z)$ and $g(z)$ where S_{1} and S_{2} are the same except for the last point, but T_{1} and T_{2} are different.

Notations. Let us introduce some notations that will be useful in subsequent sections. Let k_{1} be the number of odd x_{j} and k_{1}^{\prime} be the number of odd y_{j}. Therefore $\nu_{2}\left(x_{j}\right)=\nu_{2}\left(y_{j}\right)=0$ for such x_{j} and y_{j}. Let k_{2} be the number of x_{j} that are congruent to $2(\bmod 4)$ and k_{2}^{\prime} be the number of y_{j} that are congruent to $2(\bmod 4)$. Thus, $\nu_{2}\left(x_{j}\right)=\nu_{2}\left(y_{j}\right)=1$ for $\operatorname{such} x_{j}$ and y_{j}.

Remark 2.3. By Corollary 1.3 , translating x_{j} and y_{j} by 1 or any odd number if necessary, we may suppose $k_{1}^{\prime} \leq\lfloor n / 2\rfloor$, and a_{0} and b_{0} are not 0 . Furthermore, we may translate by 2 (or some other number congruent to $2(\bmod 4))$ to obtain $k_{2}^{\prime} \geq\left\lceil\left(n-k_{1}^{\prime}\right) / 2\right\rceil$. This will help us reduce the number of cases to be dealt with, but sometimes we may consider a further translation to get more information about C. Cases that can be obtained through translation will be termed equivalent.

Using the following lemma from [4], we deduce that if C is even, then $k_{1}=k_{1}^{\prime}$.

Lemma 2.4. Let $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$ be two lists of integers that constitute an ideal PTE solution, and suppose that a prime p divides the constant C associated with this solution. Then we can reorder the integers y_{i} so that

$$
x_{j} \equiv y_{j}(\bmod p) \quad \text { for } j \in\{1, \ldots, n\}
$$

From the above lemma, we deduce that the number of odd x_{j} must equal the number of odd y_{j}, i.e., $k_{1}=k_{1}^{\prime}$. Also, we can interchange the roles of $f(z)$ and $g(z)$, if necessary, so that $k_{2}^{\prime} \geq k_{2}$. Since there are n elements in each of the lists X and Y, it must be the case that $k_{1}+k_{2} \leq n$ and $k_{1}^{\prime}+k_{2}^{\prime} \leq n$. Further, we state the following two lemmas and a corollary from [10].

LEMMA 2.5. Let $n \geq 8$ and $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$. Let t be such that x_{1}, \ldots, x_{t} and $y_{1} \ldots, y_{t}$ are odd and the other x_{j} and y_{j} are even. Then

$$
x_{1}^{k}+\cdots+x_{t}^{k} \equiv y_{1}^{k}+\cdots+y_{t}^{k}(\bmod 16) \quad \text { for } k \geq 1
$$

and

$$
x_{t+1}^{k}+\cdots+x_{n}^{k} \equiv y_{t+1}^{k}+\cdots+y_{n}^{k}(\bmod 16) \quad \text { for } k \geq 1
$$

Corollary 2.6. Let $n \geq 8$ and $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$. Let k_{1}, k_{2} and $k_{1}^{\prime}, k_{2}^{\prime}$ be as above. Then $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$.

Lemma 2.7. If the points $\left(n, \nu_{2}\left(a_{0}\right)\right)$ in S_{1} and $\left(n, \nu_{2}\left(b_{0}\right)\right)$ in S_{2} are distinct and

$$
k=\min \left\{\nu_{2}\left(a_{0}\right), \nu_{2}\left(b_{0}\right)\right\}
$$

then $2^{k} \| C$.
Let $n \geq 4$ be an integer. For integers x_{1}, \ldots, x_{n}, define

$$
\begin{array}{ll}
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\prod_{i<j<k<l \leq n} x_{i} x_{j} x_{k} x_{l}\right) & \text { if } n \geq 4 \\
H\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\prod_{i<j \leq n} x_{i} x_{j}\right) & \text { if } n \geq 2
\end{array}
$$

The following simple lemma discusses the divisibility of $T\left(x_{1}, \ldots, x_{n}\right)$ and $H\left(x_{1}, \ldots, x_{n}\right)$ by 2 and 4 when all the x_{i} 's are odd, and will be useful in later calculations. The easy proof is omitted.

Lemma 2.8. With the notations as above, assume that all the x_{i} 's are odd. Let $n \geq 8$ be an integer.
(i) If all the x_{i} 's, $1 \leq i \leq n$, are of the form $4 k+1$ (or $\left.4 k+3\right)$, then

$$
T\left(x_{1}, \ldots, x_{n}\right) \equiv\binom{n}{4}(\bmod 4) .
$$

In particular, when $n=8, T\left(x_{1}, \ldots, x_{8}\right)$ is exactly divisible by 2 .
(ii) If exactly two x_{i} 's $(1 \leq i \leq n)$ are of the form $4 k+3$, then

$$
T\left(x_{1}, \ldots, x_{n}\right) \equiv\binom{n-2}{2}+2\binom{n-2}{3}+\binom{n-2}{4}(\bmod 4) .
$$

In particular, for $n=8$ we have $2 \| T\left(x_{1}, \ldots, x_{8}\right)$.
(iii) If exactly four x_{i} 's $(1 \leq i \leq n)$ are of the form $4 k+3$, then

$$
T\left(x_{1}, \ldots, x_{n}\right) \equiv 1+2\binom{n-4}{2}+\binom{n-4}{4}(\bmod 4) .
$$

In particular, for $n=8$ we have $2 \| T\left(x_{1}, \ldots, x_{8}\right)$.
(iv) If exactly one x_{i} is of the form $4 k+3$, then

$$
H\left(x_{1}, \ldots, x_{n}\right) \equiv 3(n-1)+\binom{n-1}{2}(\bmod 4) .
$$

In particular, for $n=8$ we have $2 \| H\left(x_{1}, \ldots, x_{8}\right)$.
(v) If exactly three x_{i} are of the form $4 k+3$, then

$$
H\left(x_{1}, \ldots, x_{n}\right) \equiv n+\binom{n-3}{2}(\bmod 4) .
$$

In particular, for $n=8$ we have $2 \| H\left(x_{1}, \ldots, x_{8}\right)$.
3. Lower bound for $\nu_{2}\left(\bar{C}_{10}\right)$. Recall from (5) that

$$
7 \leq \nu_{2}\left(\bar{C}_{10}\right) \leq 11 .
$$

Using the results discussed in Section 2, we will increase the lower bound by proving that $9 \leq \nu_{2}\left(\bar{C}_{10}\right) \leq 11$. To facilitate potential future analysis, we show that in all but one cases of conditions on $X=\left[x_{1}, \ldots, x_{10}\right]$ and $Y=\left[y_{1}, \ldots, y_{10}\right]$ that we consider, one has $2^{10} \mid \bar{C}_{10}$ (see Case $2.3(i i)$ where we prove $2^{9} \| C$).

Throughout this section, we write C for \bar{C}_{10}. It follows from Remark 2.3 with $n=10$ that $k_{1}^{\prime}+k_{2}^{\prime} \leq 10, k_{1}=k_{1}^{\prime} \leq 5$ and $k_{2} \leq k_{2}^{\prime}$.
3.1. Case 1: $k_{1}^{\prime}+k_{2}^{\prime}=10$. In this case, no element y_{j} is divisible by 4 . Since $k_{1}=k_{1}^{\prime} \leq 5$, we get $k_{2}^{\prime} \geq 5$. Further, $k_{2} \leq k_{2}^{\prime}$ implies the list X contains at most k_{2}^{\prime} elements that are of the form $2(\bmod 4)$. Therefore, every point $\left(j, \nu_{2}\left(a_{10-j}\right)\right)$ in S_{1} is at or above the corresponding point $\left(j, \nu_{2}\left(b_{10-j}\right)\right)$ in S_{2}. Let us consider the following subcases.

CASE 1.1: $k_{2}=k_{2}^{\prime}$. We have $k_{1}=k_{1}^{\prime} \leq 5$, and $k_{2}=k_{2}^{\prime} \geq 5$. Putting $z=2$ in (6), we obtain

$$
\prod_{j=1}^{10}\left(2-x_{j}\right)-\prod_{j=1}^{10}\left(2-y_{j}\right)=f(2)-g(2)=C
$$

This implies $2^{2 k_{2}} \mid C$. If $k_{2} \geq 6$, this leads to $2^{12} \mid C$, which contradicts $\nu_{2}(C) \leq 11$. Therefore, $k_{2}=5$, and thus $2^{10} \mid C$.

CASE 1.2: $k_{2}<k_{2}^{\prime}$. In this case, X must contain at least one x_{j} that is divisible by 4 , but we know that no y_{j} is divisible by 4 . We consider the cases $k_{2}=0$ and $k_{2} \neq 0$ separately.

CASE 1.2(i): $k_{2}=0$. Since $k_{2}^{\prime} \geq 5$ and $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$, we have $k_{2}^{\prime}=8$, and hence $k_{1}=k_{1}^{\prime}=2$. In this case, eight x_{j} 's are of the form $0(\bmod 4)$ and eight y_{j} 's are of the form $2(\bmod 4)$. Now consider the Newton polygons of $f(z)$ and $g(z)$. Since $k_{2}=0$, the edges of $\mathrm{NP}(f)$ with positive slope have slope ≥ 2. In particular, this implies

$$
\nu_{2}\left(a_{10-j}\right) \geq 2(j-2) \quad \text { for } 3 \leq j \leq 10
$$

As the points $\left(j, \nu_{2}\left(a_{10-j}\right)\right) \in S_{1}$ and $\left(j, \nu_{2}\left(b_{10-j}\right)\right) \in S_{2}$ agree for $0 \leq$ $j \leq 9$, we deduce

$$
\begin{equation*}
\nu_{2}\left(b_{10-j}\right) \geq 2(j-2) \quad \text { for } 3 \leq j \leq 9 \tag{8}
\end{equation*}
$$

Now we define $\tilde{u}_{j} \in \mathbb{Z}$ by the equation

$$
\begin{equation*}
\left(z-y_{3}\right)\left(z-y_{4}\right) \cdots\left(z-y_{10}\right)=\sum_{j=0}^{8} \tilde{u}_{j} z^{j} \tag{9}
\end{equation*}
$$

We consider the 2 -adic valuation of the \tilde{u}_{j} 's. Since $y_{j} \equiv 2(\bmod 4)$ for $3 \leq j \leq 10$, we derive $\nu_{2}\left(\tilde{u}_{0}\right)=8$. As $\left(z-y_{1}\right)\left(z-y_{2}\right) \equiv z^{2}+1(\bmod 2)$, we have

$$
\begin{align*}
b_{1} & =\tilde{u}_{1} \times(\text { odd number })+\tilde{u}_{0} \times(\text { even number }), \\
b_{j} & =\tilde{u}_{j} \times(\text { odd number })+\tilde{u}_{j-1} \times(\text { even number })+\tilde{u}_{j-2} \tag{10}
\end{align*}
$$

for $2 \leq j \leq 7$. We deduce from (8) with $j=9$ that $\nu_{2}\left(b_{1}\right) \geq 14$. Now using the facts $\nu_{2}\left(b_{1}\right) \geq 14$ and $\nu_{2}\left(\tilde{u}_{0}\right)=8$, it follows easily from the first equation of (10) that $\nu_{2}\left(\tilde{u}_{1}\right) \geq 9$. Using this along with $\nu_{2}\left(b_{2}\right) \geq 12$ (from (8)) and $\nu_{2}\left(\tilde{u}_{0}\right)=8$, it follows from the expression for b_{2} as given by with $j=2$
that $\nu_{2}\left(\tilde{u}_{2}\right)=8$. Continuing, we obtain

$$
\begin{equation*}
\nu_{2}\left(\tilde{u}_{3}\right) \geq 9, \quad \nu_{2}\left(\tilde{u}_{4}\right) \geq 8, \quad \nu_{2}\left(\tilde{u}_{5}\right) \geq 6, \quad \nu_{2}\left(\tilde{u}_{6}\right) \geq 4, \quad \nu_{2}\left(\tilde{u}_{7}\right) \geq 2 \tag{11}
\end{equation*}
$$

Since $y_{j} \equiv 2(\bmod 4)$ for $3 \leq j \leq 10$, we can write

$$
y_{j}=2 y_{j}^{\prime} \quad \text { for } 3 \leq j \leq 10, \quad \text { where } y_{j}^{\prime} \text { is odd. }
$$

Then the y_{j}^{\prime} 's are of the form either $4 k+1$ or $4 k+3$. Observe that if y_{j}^{\prime} is of the form $4 k+1$, then $y_{j}+4=2 y_{j}^{\prime}+4=2 y_{j}^{\prime \prime}$, where $y_{j}^{\prime \prime}$ is of the form $4 k+3$. Therefore, translating z by $z-4$ in the definition of C_{n} given by 7) we need to consider only the following equivalent subcases.
(i) If all the y_{j}^{\prime} 's, $3 \leq j \leq 10$, are congruent modulo 4 , then it follows from (9) that

$$
\begin{aligned}
\tilde{u}_{4} & =\text { coefficient of } z^{4} \text { in }\left(z-y_{3}\right) \cdots\left(z-y_{10}\right) \\
& =\sum_{3 \leq i<j<k<l \leq 10} y_{i} y_{j} y_{k} y_{l}=2^{4} \sum_{3 \leq i<j<k<l \leq 10} y_{i}^{\prime} y_{j}^{\prime} y_{k}^{\prime} y_{l}^{\prime} \\
& =2^{4} T\left(y_{3}^{\prime}, \ldots, y_{10}^{\prime}\right) .
\end{aligned}
$$

Therefore, by Lemma $2.8(\mathrm{i})$ we have $\nu_{2}\left(\tilde{u}_{4}\right)=5$, which contradicts $\nu_{2}\left(\tilde{u}_{4}\right) \geq 8$ (see 11).
(ii) If exactly two (or four) y_{j}^{\prime} 's are of the form $4 k+3$, then a similar argument, together with an appeal to Lemma 2.8(ii) (or Lemma 2.8(iii)), yields $\nu_{2}\left(\tilde{u}_{4}\right)=5$, which is a contradiction.
(iii) Assume that exactly one y_{j}^{\prime} is of the form $4 k+3$. Consider u_{2}, the coefficient of z^{2} in $\left(z-y_{3}\right) \cdots\left(z-y_{10}\right)$ (see (9)). Proceeding along the same lines as before, we obtain

$$
\begin{aligned}
\tilde{u}_{6} & =\sum_{3 \leq i<j \leq 10} y_{i} y_{j} \\
& =2^{2} H\left(y_{3}^{\prime}, \ldots, y_{10}^{\prime}\right) \quad \text { (see Section } 2 \text { for notation). }
\end{aligned}
$$

By Lemma 2.8(iv), we have $2 \| H\left(y_{3}^{\prime}, \ldots, y_{10}^{\prime}\right)$, and hence $\nu_{2}\left(\tilde{u}_{2}\right)=3$, which contradicts the fact that $\nu_{2}\left(\tilde{u}_{2}\right)=8$.
(iv) If exactly three y_{j}^{\prime} 's are of the form $4 k+3$, then a similar argument together with an appeal to Lemma 2.8 (v) shows that $\nu_{2}\left(\tilde{u}_{2}\right)=3$, leading to a contradiction.

Thus, if $k_{1}^{\prime}+k_{2}^{\prime}=10$ and $k_{2}<k_{2}^{\prime}$, then k_{2} can never be zero.
CASE 1.2 (ii): $k_{2} \neq 0$. Then there is at least one x_{j} of the form $4 k+2$, and hence, by taking $z=x_{j}$ in (7), we see that $2^{2 k_{2}^{\prime}} \mid C$. Similar arguments to Case 1.1 establish that $k_{2}^{\prime}=5$, and consequently $2^{10} \mid C$.
3.2. Case 2: $k_{1}^{\prime}+k_{2}^{\prime}<10$. Since $k_{1}^{\prime} \leq 5$ and $k_{2}^{\prime} \geq\left\lceil\left(n-k_{1}^{\prime}\right) / 2\right\rceil$, we have $k_{2}^{\prime} \geq 3$. Further $k_{2}^{\prime}<10-k_{1}^{\prime}$. Hence $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ are points in S_{2} with x coordinate <10. Therefore $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ are points
in S_{1}. Since there are exactly $k_{1}=k_{1}^{\prime}$ odd x_{j} and $\mathrm{NP}(f)$ has integer slopes, the segment joining $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ is part of $\mathrm{NP}(f)$. This implies $k_{2} \geq k_{2}^{\prime}$, and by our initial assumption we also have $k_{2} \leq k_{2}^{\prime}$. Thus $k_{2}=k_{2}^{\prime}$. Further $k_{1}^{\prime} \leq 5, k_{1}^{\prime}+k_{2}^{\prime}<10$ and $k_{2}^{\prime} \geq 3$ give the following subcases.

CASE 2.1: $k_{2}=k_{2}^{\prime} \geq 5$. We have $k_{1}=k_{1}^{\prime} \leq 4$. Thus, at least five x_{j} 's and five y_{j} 's are exactly divisible by 2 and at least one x_{j} and one y_{j} are divisible by 4 . By taking $z=2$ in (7), we get $2^{12} \mid C$, which is a contradiction. Thus, this case does not arise.

CASE 2.2: $k_{2}=k_{2}^{\prime}=3$. Let us consider the following subcases.
CASE 2.2(i): $k_{1}^{\prime} \leq 3$. Taking $z=4$ in (7), we see that $2^{11} \mid C$.
CASE 2.2(ii): $k_{1}^{\prime}=5$. We translate z by $z-2$ in the definition of C_{n} given by (7). As this translation will not affect the value of C (Corollary 1.3), let us consider the equivalent case when $k_{1}=k_{1}^{\prime}=5$ and $k_{2}=k_{2}^{\prime}=2$. Without loss of generality, assume that x_{i}, y_{i} for $i \in\{6,7\}$ are of the form $2(\bmod 4)$.

For each of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$, the edge with slope 1 ends at $(7,2)$. Thus the remaining edges to the right have slope at least 2 , and we deduce that the rightmost points on each of the Newton polygons must be at or above $(10,8)$.

Suppose the rightmost points of both $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ are at $(10,8)$. Thus

$$
\begin{aligned}
T_{1}=T_{2}=\{(0,0),(1,0),(2,0),(3,0) & (4,0),(5,0) \\
& (6,1),(7,2),(8,4),(9,6),(10,8)\}
\end{aligned}
$$

Then Lemma 2.2 shows that the remaining x_{i} and y_{i} for $i \in\{8,9,10\}$ must be of the form $4(\bmod 8)$. Substituting $z=y_{8}$ in (7) yields $2^{11} \mid C$.

Now let the rightmost point of $\mathrm{NP}(f)$ be $(10,8)$ and that of $\mathrm{NP}(g)$ be above $(10,8)$. By Lemma 2.8 , we have $2^{8} \| C$. Hence, we deduce that for $i \in\{6,7\}, x_{i}, y_{i}$ are either of the form $2(\bmod 8)$ or $6(\bmod 8)$, and for $i \in\{8,9,10\}, x_{i}$'s are of the form $4(\bmod 8)$ and y_{i} 's are of the form 0 or $4(\bmod 8)$. If at least one of the $y_{i} ' s$, say y_{8}, is of the form $4(\bmod 8)$, then by putting $z=y_{8}$ in (7), we obtain $2^{11} \mid C$, a contradiction to $2^{8} \| C$. Thus, we can assume that the y_{i} 's for $i \in\{8,9,10\}$ are of the form $0(\bmod 8)$. By Lemma 2.5, we have $\sum_{i=6}^{10} x_{i} \equiv \sum_{i=6}^{10} y_{i}(\bmod 8)$. This implies that if both x_{6} and x_{7} are in the same congruence class $(\bmod 8)$, then y_{6} and y_{7} cannot be. Similarly, if both y_{6} and y_{7} are in the same congruence class $(\bmod 8)$, then x_{6} and x_{7} cannot be. Thus, without loss of generality, we have the following possibilities.
(i) Let y_{6} be of the form $2(\bmod 8)$ and y_{7} be of the form $6(\bmod 8)$. If both x_{6} and x_{7} are of the form $6(\bmod 8)$, by putting $z=y_{7}$ in (7),
we see that $2^{9} \mid C$. If both x_{6} and x_{7} are of the form $2(\bmod 8)$, putting $z=y_{6}$ in (7) yields $2^{9} \mid C$, which contradicts $2^{8} \| C$.
(ii) Let x_{6} be of the form $2(\bmod 8)$ and x_{7} be of the form $6(\bmod 8)$. If both y_{6} and y_{7} are of the form $2(\bmod 8)$, by putting $z=x_{6}$ in (7) we get $2^{9} \mid C$. If both y_{6} and y_{7} are of the form $6(\bmod 8)$, by putting $z=x_{7}$ in (7), we obtain $2^{9} \mid C$, which is a contradiction to $2^{8} \| C$.

We now know that the rightmost points of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ are at or above $(10,9)$. If both rightmost points are at $(10,9)$ or both are above $(10,9)$, then by putting $z=0$ in 7), we get $2^{10} \mid C$. Thus, we can assume that $\mathrm{NP}(f)$ has the rightmost point $(10,9)$, and $\mathrm{NP}(g)$ has the rightmost point above $(10,9)$. Thus
$T_{1}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,1),(7,2),(8,4),(9,6),(10,9)\}$.
For each of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$, the edge with slope 1 ends at the point $(7,2)$. Recall that the two points $\left(j, \nu_{2}\left(a_{10-j}\right)\right)$ and $\left(j, \nu_{2}\left(b_{10-j}\right)\right)$ agree for $j \in\{0,1, \ldots, 9\}$. Since there is an edge of slope 2 joining the vertices $(7,2)$ and $(9,6)$ in T_{1}, we deduce that $(9,6)$ is in S_{1} and hence also in S_{2}. Since the slope of the line joining $(5,0)$ and $(7,2)$ in T_{2} is 1 and $k_{2}^{\prime}=2$, we have $(9,6) \in$ T_{2} as well. Thus, we deduce that $x_{6}, x_{7}, y_{6}, y_{7}$ are of the form $2(\bmod 4)$, $x_{8}, x_{9}, y_{8}, y_{9}$ are of the form $4(\bmod 8), x_{10}$ is of the form $8(\bmod 16)$ and y_{10} is of the form $0(\bmod 16)$. Putting $z=y_{8}$ in 7), we get $2^{10} \mid C$ as desired.

CASE 2.2(iii): $k_{1}^{\prime}=4$. For each of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$, the edge with slope 1 ends at $(7,3)$. Thus, the remaining edge(s) to the right have slope at least 2, and therefore the rightmost point on each of the Newton polygons must be at or above $(10,9)$. Therefore, we have the following possibilities.

Let the rightmost points of both $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ be $(10,9)$. Then exactly three x_{j} 's and three y_{j} 's are of the form $4(\bmod 8)$ and so setting $z=4$ in (7) we derive $2^{12} \mid C$, which is a contradiction.

Let $\mathrm{NP}(f)$ have the rightmost point $(10,9)$ and $\mathrm{NP}(g)$ have the rightmost point above $(10,9)$. Thus
$T_{1}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,1),(6,2),(7,3),(8,5),(9,7),(10,9)\}$.
Then there are three x_{j} 's, say x_{8}, x_{9}, x_{10}, of the form $4(\bmod 8)$. Recall that $a_{1}=\sum_{j=1}^{10} X_{j}$, where $X_{i}=\prod_{j=1, j \neq i}^{10} x_{j}$, which implies

$$
a_{1}=2^{9} \times(\text { even })+2^{8} \times(\text { odd })+2^{7} \times(\text { odd })
$$

Therefore, $\nu_{2}\left(a_{1}\right)=7$ and hence $(9,7) \in S_{1} \cap S_{2}$. Since $(7,3) \in T_{1} \cap T_{2}$ and the edge with slope 1 ends at $(7,3)$, we deduce that also $(9,7) \in T_{2}$. Thus the line segment joining $(7,3)$ to $(9,7)$ is common to both the Newton polygons of $f(z)$ and $g(z)$. Therefore, at least two y_{j} 's are of the form $4(\bmod 8)$, say y_{8} and y_{9}. By setting $z=y_{8}$ in (7), we get $2^{12} \mid C$, which is a contradiction.

If the rightmost endpoints of the Newton polygons of $f(z)$ and $g(z)$ are at or above $(10,10)$, then by taking $z=0$ in (7), we have $2^{10} \mid C$, as desired.

CASE 2.3: $k_{2}=k_{2}^{\prime}=4$. Let us consider the following subcases based on k_{1}.

CASE 2.3(i): $k_{1} \leq 4$. By taking $z=2$ in (7), we have $2^{10} \mid C$.
CASE 2.3(ii): $k_{1}=5$. We translate z to $z-2$ in (7), and further consider the equivalent case $k_{1}=k_{1}^{\prime}=5$ and $k_{2}=k_{2}^{\prime}=1$.

For each of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$, the edge with slope 1 ends at $(6,1)$. Thus, the remaining edge(s) to the right have slope at least 2 , and therefore the rightmost points on each of the Newton polygons must be at or above $(10,9)$. If the rightmost points of both $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ are $(10,9)$ or both are above $(10,9)$, then by taking $z=0$ in (7), we have $2^{10} \mid C$. Therefore, we can assume that the rightmost point of $\mathrm{NP}(f)$ is $(10,9)$ and the one of $\mathrm{NP}(g)$ is above $(10,9)$. By Lemma 2.8 , this implies

$$
\begin{equation*}
2^{9} \| C \tag{12}
\end{equation*}
$$

Thus we have established that $9 \leq \nu_{2}\left(\bar{C}_{10}\right) \leq 11$ as stated in Theorem 1 .
We are interested in finding more information about the divisibility properties of x_{j} and y_{j} when there is a possible ideal solution with $2^{9} \| C$. These divisibility properties can be helpful in finding such an ideal solution, if one exists. Recall from Remark 1.4 that finding such an example will imply in Theorem 1 that $\nu_{2}\left(\bar{C}_{10}\right)=9$.

If there is at least one y_{j} that is exactly divisible by 4 , then by taking $z=y_{j}$ in (7), we get $2^{13} \mid C$, a contradiction. Thus, x_{i} and y_{i} are odd for $1 \leq i \leq 5$ and

$$
\begin{equation*}
2\left\|x_{6}, \quad 2^{2}\right\| x_{7}, x_{8}, x_{9}, x_{10} \quad \text { and } \quad 2 \| y_{6}, \quad 8 \mid y_{7}, y_{8}, y_{9}, y_{10} \tag{13}
\end{equation*}
$$

Let us take $z=x_{6}$ in (7). Then using (12) and (13), we derive $x_{6} \equiv$ $y_{6}(\bmod 32)$. Further, using the vertices of $\mathrm{NP}(g)$, we derive

$$
\begin{array}{ll}
\nu_{2}\left(b_{10-j}\right) \geq 3(j-6)+1 & \text { for } 7 \leq j \leq 10 \tag{14}\\
\nu_{2}\left(a_{10-j}\right)=\nu_{2}\left(b_{10-j}\right) & \text { for } 7 \leq j \leq 9
\end{array}
$$

Define u_{j} and $v_{j} \in \mathbb{Z}$ by the equations

$$
\prod_{i=7}^{10}\left(z-x_{i}\right)=\sum_{j=0}^{4} u_{j} z^{j} \quad \text { and } \quad \prod_{i=7}^{10}\left(z-y_{i}\right)=\sum_{j=0}^{4} v_{j} z^{j}
$$

Also, $\prod_{i=1}^{5}\left(z-x_{i}\right) \equiv \prod_{i=1}^{5}\left(z-y_{i}\right) \equiv(z-1)^{5}(\bmod 2)$. Then

$$
\begin{aligned}
& \sum_{j=0}^{10} a_{j} z^{j}=\left(z-x_{6}\right) \prod_{i=1}^{5}\left(z-x_{i}\right) \sum_{j=0}^{4} u_{j} z^{j} \\
& \sum_{j=0}^{10} b_{j} z^{j}=\left(z-y_{6}\right) \prod_{i=1}^{5}\left(z-y_{i}\right) \sum_{j=0}^{4} v_{j} z^{j}
\end{aligned}
$$

Further, we have $\nu_{2}\left(a_{0}\right)=9$ and $\nu_{2}\left(b_{0}\right) \geq 13$. Therefore,
$\prod_{i=1}^{6}\left(z-x_{i}\right)=z^{6}+\cdots+z^{3} \times($ even $)+z^{2} \times($ odd $)+z \times($ odd $)+x_{6} \times($ odd $)$.
Using these equations, we deduce for $1 \leq j \leq 3$ that

$$
\begin{align*}
a_{j} & =u_{j} \times x_{6} \times(\text { odd })+u_{j-1} \times(\text { odd })+u_{j-2} \times(\text { odd })+u_{j-3} \times(\text { even }) \tag{15}\\
b_{j} & =v_{j} \times x_{6} \times(\text { odd })+v_{j-1} \times(\text { odd })+v_{j-2} \times(\text { odd })+v_{j-3} \times(\text { even }) \tag{16}
\end{align*}
$$

Until the end of this subsection, let us assume that $j \in\{7,8,9,10\}$. Since $4 \| x_{j}$, we write $x_{j}=4 x_{j}^{\prime}$, where x_{j}^{\prime} is of the form $4 k+1$ or $4 k+3$. Observe that if x_{j}^{\prime} is of the form $4 k+1$, then $x_{j}+8=4\left(x_{j}^{\prime}+2\right)=4 x_{j}^{\prime \prime}$, where $x_{j}^{\prime \prime}$ is of the form $4 k+3$. Therefore, we need to consider only the following subcases.
(i) Assume that there are exactly an even number of x_{j}^{\prime} of the form $4 k+1$. We derive $\nu_{2}\left(u_{1}\right) \geq 8$ and $\nu_{2}\left(u_{2}\right)=5$ and hence $\nu_{2}\left(a_{2}\right)=6$ by for $j=2$ whereas from (14) we get $\nu_{2}\left(b_{2}\right) \geq 7$. Thus, this case does not arise.
(ii) Assume that there are exactly an odd number of x_{j}^{\prime} of the form $4 k+1$. Note that if exactly three x_{j}^{\prime} 's are of the form $4 k+1$, then after translating z to $z-8$ in (7), we can reduce it to the case when exactly one x_{j}^{\prime} is of the form $4 k+1$. Let us further look at the divisibility of y_{j} in this case. Recall from (13) that $8 \mid y_{j}$.
(a) If there are exactly an even number of y_{j} of the form $8(\bmod 16)$, then using $\sqrt{16}$ for b_{3}, we have $\nu_{2}\left(b_{3}\right) \geq 5$. On the other hand, using (15) for a_{3}, we derive $\nu_{2}\left(a_{3}\right)=4$, which is a contradiction.
(b) Assume that there are exactly an odd number of y_{j} of the form $8(\bmod 16)$. If exactly three y_{j} 's are of the form $8(\bmod 16)$, then we get

$$
\begin{equation*}
\nu_{2}\left(v_{0}\right) \geq 13, \nu_{2}\left(v_{1}\right)=9, \nu_{2}\left(v_{2}\right)=6 \Longrightarrow \nu_{2}\left(b_{2}\right)=7 \quad \text { by } 16 . \tag{17}
\end{equation*}
$$

If exactly one y_{j} is of the form $8(\bmod 16)$, then we get

$$
\begin{equation*}
\left.\nu_{2}\left(v_{0}\right) \geq 15, \nu_{2}\left(v_{1}\right)=11, \nu_{2}\left(v_{2}\right) \geq 7 \Longrightarrow \nu_{2}\left(b_{2}\right) \geq 8 \quad \text { by } 16\right) . \tag{18}
\end{equation*}
$$

Depending on these conditions on b_{2}, we further derive the possible congruence classes of $x_{j}^{\prime}(\bmod 8)$. Recall that we are in the case
where one x_{j}^{\prime} is of the form $4 k+1$ and the other three x_{j}^{\prime} 's are of the form $4 k+3$. Now $4 k+1$ can be written as $8 k+1$ or $8 k+5$, and $4 k+3$ can be written as $8 k+3$ or $8 k+7$. Observe that if x_{j}^{\prime} is of the form $8 k+1$, then $x_{j}+16=4\left(x_{j}^{\prime}+4\right)=4 x_{j}^{\prime \prime}$, where $x_{j}^{\prime \prime}$ is of the form $8 k+5$. If x_{j}^{\prime} is of the form $8 k+3$, then $x_{j}+16=4\left(x_{j}^{\prime}+4\right)=4 x_{j}^{\prime \prime}$, where $x_{j}^{\prime \prime}$ is of the form $8 k+7$. Therefore, without loss of generality, we consider the following subcases. Let exactly one x_{j}^{\prime} be of the form $8 k+1$.
(I) Assume that exactly two x_{j}^{\prime} 's are of the form $8 k+3$ and one x_{j}^{\prime} is of the form $8 k+7$ or all three remaining x_{j}^{\prime} 's are of the form $8 k+7$. In both cases, we deduce that $\nu_{2}\left(u_{1}\right)=7, \nu_{2}\left(u_{2}\right) \geq 7$, and hence $\nu_{2}\left(a_{2}\right)=7$. Therefore, using (14) and 17 we conclude that in both cases there must be exactly three y_{j} 's such that $8 \| y_{j}$.
(II) Assume that exactly two x_{j}^{\prime} 's are of the form $8 k+7$ and one x_{j}^{\prime} is of the form $8 k+3$ or all three remaining x_{j}^{\prime} 's are of the form $8 k+3$. In both cases, we get $\nu_{2}\left(u_{1}\right)=7$ and $\nu_{2}\left(u_{2}\right)=6$ and therefore $\nu_{2}\left(a_{2}\right) \geq 8$. Using (14) and 18 we conclude that in both cases there must be exactly one y_{j} such that $8 \| y_{j}$.
4. Lower bound for $\nu_{2}\left(\bar{C}_{12}\right)$. Recall that we already have

$$
\begin{equation*}
8 \leq \nu_{2}\left(\bar{C}_{12}\right) \leq 12 \tag{19}
\end{equation*}
$$

In this section we will increase the lower bound by proving that $11 \leq$ $\nu_{2}\left(\bar{C}_{12}\right) \leq 12$.

As before, we consider (6); we set $n=12$ and we will be using C for \bar{C}_{12}. The earlier notations $k_{1}, k_{1}^{\prime}, k_{2}, k_{2}^{\prime}$ will be followed in this section with $n=12$ and we consider multiple subcases depending on the possible values of k_{1}^{\prime} and k_{2}^{\prime}. Using Remark 2.3 with $n=12$, we get $k_{1}^{\prime}+k_{2}^{\prime} \leq 12, k_{1}=k_{1}^{\prime} \leq 6$, $k_{2} \leq k_{2}^{\prime}, k_{2}^{\prime} \geq 3$ and $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$.
4.1. Case 1: $k_{1}^{\prime}+k_{2}^{\prime}=12$. As in Subsection 3.1, no element y_{j} from Y is divisible by 4 , and since $k_{2} \leq k_{2}^{\prime}$ we know that each point $\left(j, \nu_{2}\left(a_{10-j}\right)\right)$ in S_{1} is at or above the corresponding point $\left(j, \nu_{2}\left(b_{10-j}\right)\right)$ in S_{2}. Further, $k_{1}^{\prime} \leq 6$ will imply $k_{2}^{\prime}=12-k_{1}^{\prime} \geq 6$. Consider the following subcases.

CASE 1.1: $k_{2}=k_{2}^{\prime}$. Since $k_{2}=k_{2}^{\prime} \geq 6$, by putting $z=2$ in (7) we get $2^{12} \mid C$.

CASE 1.2: $k_{2}<k_{2}^{\prime}$. In this case, X must contain at least one x_{j} that is divisible by 4 , but we know that no y_{j} is divisible by 4 . We consider the cases $k_{2}=0$ and $k_{2} \neq 0$ separately.

CASE 1.2(i): $k_{2} \neq 0$. Then at least one x_{j} is of the form $4 k+2$, and hence, by taking $z=x_{j}$ in (7), we see that $2^{2 k_{2}^{\prime}} \mid C$. Since $k_{2}^{\prime} \geq 6$, we get $2^{12} \mid C$.

CASE 1.2(ii): $k_{2}=0$. Since $k_{2}^{\prime} \geq 6$ and $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$, we get $k_{2}^{\prime} \in$ $\{8,12\}$. When $k_{2}^{\prime}=12$, we have $k_{1}^{\prime}=k_{1}=0$. Thus, all y_{j} 's are divisible by 2 and all x_{j} 's are divisible by 4 . By putting $z=0$ in 77 , we get $2^{12} \mid C$, as desired. Thus, it remains to consider $k_{2}=0, k_{2}^{\prime}=8$ and $k_{1}=k_{1}^{\prime}=4$. In this case, the edges of the Newton polygon of $f(z)$ with positive slope have slope ≥ 2. In particular, this implies

$$
\begin{array}{ll}
\nu_{2}\left(a_{12-j}\right) \geq 2(j-4) & \text { for } 5 \leq j \leq 12, \\
\nu_{2}\left(b_{12-j}\right) \geq 2(j-4) & \text { for } 5 \leq j \leq 11 . \tag{20}
\end{array}
$$

We define $u_{j} \in \mathbb{Z}$ by the equation

$$
\begin{equation*}
\prod_{i=5}^{12}\left(z-y_{i}\right)=\sum_{j=0}^{8} u_{j} z^{j} \tag{21}
\end{equation*}
$$

Since $\left(z-y_{1}\right)\left(z-y_{2}\right)\left(z-y_{3}\right)\left(z-y_{4}\right) \equiv z^{4}+1(\bmod 2)$, we have

$$
\begin{align*}
b_{j}= & u_{j} \times(\text { odd })+u_{j-1} \times(\text { even })+u_{j-2} \times(\text { even }) \tag{22}\\
& +u_{j-3} \times(\text { even })+u_{j-4} \times(\text { odd }) \quad \text { for } 1 \leq j \leq 7 .
\end{align*}
$$

Since $\nu_{2}\left(b_{1}\right) \geq 14$ from (20) and $\nu_{2}\left(u_{0}\right)=8$, using (22) we get $\nu_{2}\left(u_{1}\right) \geq 9$. Using (20) and (22) successively, we get

$$
\begin{equation*}
\nu_{2}\left(u_{2}\right) \geq 9, \nu_{2}\left(u_{3}\right) \geq 9, \nu_{2}\left(u_{4}\right) \geq 8, \nu_{2}\left(u_{5}\right) \geq 6, \nu_{2}\left(u_{6}\right) \geq 4, \nu_{2}\left(u_{7}\right) \geq 2 . \tag{23}
\end{equation*}
$$

For $5 \leq j \leq 12$ we write $y_{j}=2 y_{j}^{\prime}$, where y_{j}^{\prime} is odd. Consider the set $\left\{y_{j}^{\prime}: 5 \leq j \leq 12\right\}$. Then y_{j}^{\prime} is of the form $4 k+1$ or $4 k+3$. Without loss of generality, we consider the following subcases.
(i) If all y_{j}^{\prime} 's are of the form $4 k+3$, then it follows from the definition of u_{4} that $u_{4}=2^{4} T\left(y_{5}^{\prime}, \ldots, y_{10}^{\prime}\right)$. Thus, by Lemma $2.8(\mathrm{i})$ we have $\nu_{2}\left(u_{4}\right)=5$, which contradicts $\nu_{2}\left(u_{4}\right) \geq 8$ (see 23).
(ii) If exactly two (or four) of y_{j}^{\prime} 's are of the form $4 k+3$, then by Lemma 2.8 we have $\nu_{2}\left(u_{4}\right)=5$, an impossibility because of (23).
(iii) Assume that exactly one y_{j}^{\prime} is of the form $4 k+3$. Then u_{6}, the coefficient of z^{6} in (21), equals

$$
u_{6}=2^{2} \sum_{5 \leq i<j<k<l \leq 12} y_{i}^{\prime} y_{j}^{\prime}=2^{2} H\left(y_{5}^{\prime}, \ldots, y_{10}^{\prime}\right) .
$$

Using Lemma 2.8 (iv), we have $\nu_{2}\left(u_{6}\right)=3$, which contradicts the fact that $\nu_{2}\left(u_{6}\right) \geq 4$ by (23).
(iv) If exactly three y_{j}^{\prime} 's are of the form $4 k+3$, then a similar argument using

Lemma 2.8(v) shows that $\nu_{2}\left(u_{6}\right)=3$, again a contradiction to 23 .
4.2. Case 2: $k_{1}^{\prime}+k_{2}^{\prime}<12$. In this case, at least one y_{j} is of the form $y_{j} \equiv$ $0(\bmod 4)$. Similarly to the arguments given in the introductory paragraph of Section 3.2, we derive $k_{2}=k_{2}^{\prime}$. Taking into account $k_{2}^{\prime} \geq 3$ we have $k_{2}=k_{2}^{\prime} \geq 3$. Further, we consider subcases based on the values of k_{1}^{\prime}.

Case 2.1: $k_{1}^{\prime} \leq 5$. As $k_{1}^{\prime}+k_{2}^{\prime}<12$, at least one x_{j} and at least one y_{j} are divisible by 4 . Furthermore, if $k_{1}=k_{1}^{\prime} \leq 4$, then $k_{2}=k_{2}^{\prime} \geq\left\lceil\left(n-k_{1}^{\prime}\right) / 2\right\rceil=4$. Thus, in this case, at least four x_{j} and four y_{j} are exactly divisible by 2 . Hence taking $z=2$ in (7) we see that $2^{12} \mid C$. If $k_{1}=k_{1}^{\prime}=5$, then $k_{2}=k_{2}^{\prime} \geq$ $\left\lceil\left(n-k_{1}^{\prime}\right) / 2\right\rceil=4$. Again taking $z=2$ in (7) we get $2^{11} \mid C$. So we are left with the case when $k_{1}^{\prime}=6$.

CASE 2.2: $k_{1}^{\prime}=6$. We see that $3 \leq k_{2}^{\prime} \leq 5$.
CASE 2.2(i): $k_{2}^{\prime}=5$. By putting $z=2$ in (7) we get $2^{11} \mid C$.
CASE 2.2(ii): $k_{2}^{\prime}=4$. We translate z to $z-2$ in (7) and consider the equivalent case when $k_{2}=k_{2}^{\prime}=2$. Thus, we can assume that the x_{i}, y_{i} are of the form $2(\bmod 4)$ for $i \in\{7,8\}$ and the x_{i}, y_{i} are of the form $4(\bmod 8)$ for $9 \leq i \leq 12$. Thus, we deduce that the rightmost points of $\mathrm{NP}(f)$ and of $\mathrm{NP}(g)$ must be at or above $(12,10)$. If both rightmost points are at $(12,10)$ or both are above $(12,10)$, by putting $z=0$ we get $2^{11} \mid C$. Thus, we can assume that $\mathrm{NP}(f)$ has the rightmost point $(12,10)$, and $\mathrm{NP}(g)$ has the rightmost point above $(12,10)$. Hence, x_{j} 's for $9 \leq j \leq 12$ are of the form $4(\bmod 8)$. If some y_{j} is of the form $4(\bmod 8)$, then taking $z=y_{j}$, we get $2^{14} \mid C$, a contradiction by 19 . Thus, we can assume that the y_{j} 's for $9 \leq j \leq 12$ are of the form $8(\bmod 16)$. This gives

$$
\nu_{2}\left(b_{12-j}\right) \geq 3(j-8)+2 \quad \text { for } 9 \leq j \leq 12
$$

and thus

$$
\begin{equation*}
\nu_{2}\left(a_{12-j}\right) \geq 3(j-8)+2 \quad \text { for } 9 \leq j \leq 11 \tag{24}
\end{equation*}
$$

Since x_{j} 's for $1 \leq j \leq 6$ are odd, we obtain

$$
\prod_{j=1}^{6}\left(z-x_{j}\right)=z^{6}+\cdots+z^{2} \times(\text { odd })+z \times(\text { even })+(\text { odd })
$$

As in Case 1.2 , similarly to 21 , we define $\tilde{u}_{j} \in \mathbb{Z}$ by the equation

$$
\prod_{j=7}^{12}\left(z-x_{j}\right)=\sum_{j=0}^{6} \tilde{u}_{j} z^{j}
$$

and thus

$$
f(z)=\sum_{j=0}^{12} a_{j} z^{j}=\prod_{j=1}^{6}\left(z-x_{j}\right) \sum_{j=0}^{6} \tilde{u}_{j} z^{j}
$$

Hence $\nu_{2}\left(\tilde{u}_{0}\right)=10$ and

$$
\begin{aligned}
& a_{1}=\tilde{u}_{0} \times(\text { even })+\tilde{u}_{1} \times(\text { odd }) \\
& a_{2}=\tilde{u}_{0} \times(\text { odd })+\tilde{u}_{1} \times(\text { even })+\tilde{u}_{2} \times(\text { odd }) .
\end{aligned}
$$

As earlier, we write $x_{j}=2 x_{j}^{\prime}$ for $j \in\{7,8\}$ and $x_{j}=4 x_{j}^{\prime}$ for $9 \leq j \leq 12$, where the x_{j}^{\prime} 's are odd. Consider the set $\left\{x_{j}^{\prime}: 7 \leq j \leq 12\right\}$. Then the x_{j}^{\prime} 's are of the form $4 k+1$ or $4 k+3$ where k is an integer. Without loss of generality, we consider the following subcases.
(i) If all the x_{j}^{\prime} 's are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$, which implies $\nu_{2}\left(a_{2}\right)=7$, contradicting (24).
(ii) Suppose exactly one x_{j}^{\prime} is of the form $4 k+1$. If either x_{7}^{\prime} or x_{8}^{\prime} is of the form $4 k+1$, we deduce that $\nu_{2}\left(\tilde{u}_{2}\right)=7, \nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and hence $\nu_{2}\left(a_{2}\right)=7$, contradicting (24). For $9 \leq j \leq 12$, if exactly one x_{j}^{\prime} is of the form $4 k+1$, we deduce that $\nu_{2}\left(\tilde{u}_{1}\right)=9$ and hence $\nu_{2}\left(a_{1}\right)=9$, contradicting (24).
(iii) Assume that exactly two x_{j}^{\prime} 's are of the form $4 k+1$. If x_{7}^{\prime} and x_{8}^{\prime} are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{2}\right)=7$ and $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$, implying $\nu_{2}\left(a_{2}\right)=7$, an impossibility by 24 . For $9 \leq j \leq 12$, if exactly two x_{j}^{\prime} 's are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$. Therefore $\nu_{2}\left(a_{2}\right)=7$, again a contradiction by 24 . If either x_{7}^{\prime} or x_{8}^{\prime}, and exactly one of the x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right)=9$. This implies that $\nu_{2}\left(a_{1}\right)=9$, which contradicts 24 .
(iv) Assume that exactly three x_{j}^{\prime} 's are of the form $4 k+1$. Let $x_{7}^{\prime}, x_{8}^{\prime}$ and exactly one of the x_{j}^{\prime} 's $(9 \leq j \leq 12)$ be of the form $4 k+1$. Then $\nu_{2}\left(\tilde{u}_{1}\right)=9$ and hence $\nu_{2}\left(a_{1}\right)=9$, contradicting 24). If exactly one of x_{7}^{\prime} and x_{8}^{\prime}, and exactly two x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$. Thus $\nu_{2}\left(a_{2}\right)=7$, contradicting (24). If exactly three of x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right)=9$, which implies $\nu_{2}\left(a_{1}\right)=9$, a contradiction to 24 .
(v) Suppose exactly four x_{j}^{\prime} 's are of the form $4 k+1$. Let $x_{7}^{\prime}, x_{8}^{\prime}$, and exactly two x_{j}^{\prime} 's $(9 \leq j \leq 12)$ be of the form $4 k+1$. Then $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$. Hence $\nu_{2}\left(a_{2}\right)=7$, contradicting Equation (24). If exactly one of x_{7}^{\prime} and x_{8}^{\prime} and exactly three x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right)=9$, which implies that $\nu_{2}\left(a_{1}\right)=9$, contradicting 24 . If all x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$, implying $\nu_{2}\left(a_{2}\right)=7$, which contradicts (24).
(vi) Suppose exactly five x_{j}^{\prime} 's are of the form $4 k+1$. If both x_{7}^{\prime} and x_{8}^{\prime}, and exactly three x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, then using
$\nu_{2}\left(\tilde{u}_{1}\right)=9$ we derive $\nu_{2}\left(a_{1}\right)=9$. This contradicts 24 . If exactly one of x_{7}^{\prime} and x_{8}^{\prime} and exactly four x_{j}^{\prime} 's $(9 \leq j \leq 12)$ are of the form $4 k+1$, we see that $\nu_{2}\left(\tilde{u}_{1}\right) \geq 10$ and $\nu_{2}\left(\tilde{u}_{2}\right)=7$. Thus, $\nu_{2}\left(a_{2}\right)=7$, a contradiction.

CASE 2.2 (iii): $k_{2}^{\prime}=3$. Then for each of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$, the edge with slope 1 ends at $(9,3)$ and the remaining edge(s) to the right have slope at least 2. Therefore, the rightmost point on each of the Newton polygons must be at or above $(12,9)$.

Suppose the rightmost endpoint of $\mathrm{NP}(f)$ is on $(12,9)$. Thus

$$
\begin{aligned}
& \{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0) \\
& \quad(7,1),(8,2),(9,3),(10,5),(11,7),(12,9)\}
\end{aligned}
$$

is the set of vertices of $\operatorname{NP}(f)$. Consider a_{1}, the coefficient of z in $f(z)$. As the x_{i} for $1 \leq i \leq 6$ are odd, $x_{i} \equiv 2(\bmod 4)$ for $7 \leq i \leq 9$ and $x_{i} \equiv 4(\bmod 8)$ for $10 \leq i \leq 12$, we derive

$$
a_{1}=2^{9} \times(\text { even })+2^{8} \times(\text { odd })+2^{7} \times(\text { odd })
$$

and thus $\nu_{2}\left(a_{1}\right)=7$. This implies $(11,7)$ belongs to S_{1} and hence also to S_{2}. Since $k_{2}=k_{2}^{\prime}=3$, we know that $(9,3)$ is a point of S_{2}. Further, we know the slopes of $\mathrm{NP}(g)$ coming from edges joining with vertices $(9,3)$ onwards will have slope at least 2 . Since the edges of the Newton polygon are joined in increasing order of slope, we deduce that $\mathrm{NP}(g)$ must contain an edge joining $(9,3)$ and $(11,7)$. This implies $4 \| y_{10}$ and $4 \| y_{11}$. Now, by substituting $z=y_{10}$ in (7), we get $2^{12} \mid C$.

Let the rightmost endpoint of $\mathrm{NP}(f)$ be $(12,10)$. The only possible vertices for $\mathrm{NP}(f)$ are

$$
\begin{aligned}
\{(0,0),(1,0),(2,0),(3,0), & (4,0),(5,0),(6,0) \\
& (7,1),(8,2),(9,3),(10,5),(11,7),(12,10)\}
\end{aligned}
$$

Since $(11,7) \in S_{1} \cap S_{2}$ and $(9,3)$ is in T_{2}, we deduce that $(11,7) \in T_{2}$. Thus the possibilities for $\mathrm{NP}(g)$ are

$$
\begin{aligned}
& \{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0) \\
& \quad(7,1),(8,2),(9,3),(10,5),(11,7),(12, r)\}
\end{aligned}
$$

where $r \geq 10$.
Let the rightmost endpoint of $\mathrm{NP}(g)$ be $(12, r)$ where $r \geq 11$. Thus $2 \| x_{i}, y_{i}$ for $7 \leq i \leq 9,2^{2} \| x_{i}, y_{i}$ for $i=10,11,2^{3} \| x_{12}$ and $2^{4} \mid y_{12}$. By substituting $z=x_{10}$ in (7), we get $2^{11} \mid C$, but from Lemma 2.7 we derive $2^{10} \| C$, a contradiction. Thus, the rightmost endpoint of $\mathrm{NP}(g)$ is $(12,10)$. Now, translating z to $z-4$ in (7), we can further reduce this possibility to the case where the rightmost endpoints of $\mathrm{NP}(f)$ and $\mathrm{NP}(g)$ lie at or above $(12,11)$. In that case, if we take $z=0$ in (7), we get $2^{11} \mid C$.

If the rightmost point of $\mathrm{NP}(f)$ is $(12,11)$, then without loss of generality we can assume that the rightmost point of $\operatorname{NP}(g)$ is at or above $(12,11)$. By taking $z=0$ in (7) we conclude that $2^{11} \mid C$.

Acknowledgements. This work was initiated when the second author was visiting the Stat-Math Unit, Indian Statistical Institute, Bangalore, in July 2022. Both authors are grateful to Professor B. Sury for arranging the visit. The first and second authors express their gratitude to NBHM and SERB MATRICS Grant MTR/2022/000864, respectively, for the financial support of this work.

References

[1] A. Alpers and R. Tijdeman, The two-dimensional Prouhet-Tarry-Escott problem, J. Number Theory 123 (2007), 403-412.
[2] B. Borchert, P. McKenzie, and K. Reinhardt, Few product gates but many zeros, in: Mathematical Foundations of Computer Science 2009, Lecture Notes in Computer Sci. 5734, Springer, Berlin, 2009, 162-174.
[3] P. Borwein, Computational Excursions in Analysis and Number Theory, CMS Books Math./Ouvrages Math. SMC 10, Springer, New York, 2002.
[4] P. Borwein, P. Lisoněk, and C. Percival, Computational investigations of the Prouhet-Tarry-Escott problem, Math. Comp. 72 (2003), 2063-2070.
[5] T. Caley, The Prouhet-Tarry-Escott problem, Ph.D. thesis, Waterloo, ON, 2012.
[6] T. Caley, The Prouhet-Tarry-Escott problem for Gaussian integers, Math. Comp. 82 (2013), 1121-1137.
[7] D. Coppersmith, M. J. Mossinghoff, D. Scheinerman, and J. M. VanderKam, Ideal solutions in the Prouhet-Tarry-Escott problem, Math. Comp. (online, 2023).
[8] L. E. Dickson, History of the Theory of Numbers. Vol. II. Diophantine Analysis, Chelsea, New York, 1971.
[9] G. Dumas, Sur quelques cas d'irréductibilité des polynomes à coefficients rationnels, J. Math. Pures Appl. 2 (1906), 191-258.
[10] M. Filaseta and M. Markovich, Newton polygons and the Prouhet-Tarry-Escott problem, J. Number Theory 174 (2017), 384-400.
[11] K. Győry, L. Hajdu and R. Tijdeman, Irreducibility criteria of Schur-type and Pólyatype, Monatsh. Math. 163 (2011), 415-443.
[12] S. Hernández and F. Luca, Integer roots chromatic polynomials of non-chordal graphs and the Prouhet-Tarry-Escott problem, Graphs Combin. 21 (2005), 319-323.
[13] H. Kleiman, A note on the Tarry-Escott problem, J. Reine Angew. Math. 278/279 (1975), 48-51.
[14] R. Maltby, Pure product polynomials and the Prouhet-Tarry-Escott Problem, Math. Comp. 66 (1997), 1323-1340.
[15] E. Rees and C. Smyth, On the constant in the Tarry-Escott Problem, in: Cinquante Ans de Polynômes (Paris, 1988), Lecture Notes in Math. 1415, Springer, Berlin, 1990, 196-208.
[16] A. Salomaa, Subword balance, position indices and power sums, J. Comput. System Sci. 76 (2010), 861-871.
[17] E. M. Wright, On Tarry's problem (I), Quart. J. Math. 6 (1935), 261-267.
[18] E. M. Wright, Prouhet's 1851 solution of the Tarry-Escott problem of 1910, Amer. Math. Monthly 66 (1959), 199-201.

Ranjan Bera
Stat-Math Unit
ISI Bangalore
Bangalore, Karnataka, 560059, India
E-mail: ranjan.math.rb@gmail.com
Saranya G. Nair
Department of Mathematics
BITS Pilani
Zuarinagar, Goa, 403726, India
E-mail: saranyan@goa.bits-pilani.ac.in

[^0]: 2020 Mathematics Subject Classification: Primary 11D72; Secondary 11B75, 11D41, 11P05.
 Key words and phrases: primes, Prouhet-Tarry-Escott problem, p-adic, Newton polygons. Received 10 August 2023; revised 15 December 2023.
 Published online 11 April 2024.

