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Abstract. We show that the difference between consecutive terms in sequences of
integers whose greatest prime factor grows slowly tends to infinity.

1. Introduction. Let y be a real number with y ≥ 3 and let 1 = n1 <
n2 < · · · be the increasing sequence of positive integers with all prime factors
of size at most y. In 1908 Thue [14] proved that

(1) lim
i→∞

(ni+1 − ni) = ∞;

see also Pólya [11] and Erdős [4]. Thue’s result was ineffective. In particular,
his proof does not allow one to determine, for every positive integer m, an
integer i(m) such that ni+1 − ni exceeds m whenever i is larger than i(m).
Cassels [2] showed how (1) can be made effective by means of estimates due
to Gel’fond [5] for linear forms in two logarithms of algebraic numbers. In
1973 Tijdeman [15] proved, by appealing to work of Baker [1] on estimates for
linear forms in the logarithms of algebraic numbers, that there is a positive
number c, which is effectively computable in terms of y, such that

(2) ni+1 − ni > ni/(log ni)
c

for ni ≥ 3. In addition, Tijdeman showed that there are arbitrarily large
integers ni for which (2) fails to hold when c is less than π(y)− 1; here π(x)
denotes the counting function for the primes up to x.

Now let y = y(x) denote a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. For any integer n
let P (n) denote the greatest prime factor of n with the convention that
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P (0) = P (±1) = 1. Let (ni)
∞
i=1 be the increasing sequence of positive inte-

gers ni for which

(3) P (ni) ≤ y(ni).

For any integer k ≥ 2 let logk denote the kth iterate of the function x 7→
max(1, log x) for x > 0. We shall prove that (1) holds provided that

(4) y(n) = o

(
log2 n log3 n

log4 n

)
.

Furthermore, if we assume the abc conjecture (see §2), then we can prove
that (1) holds provided that

(5) y(n) = o(log n).

For any real number x ≥ 2 put

δ(x) = exp

(
x log2 x

log x

)
.

We shall deduce (4) from the following result.

Theorem 1. Let y = y(x) be a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. Let (n1, n2, . . .) be the
increasing sequence of positive integers ni for which (3) holds. There is an
effectively computable positive number c such that for i ≥ 3,

(6) ni+1 − ni > ni/(log ni)
δ(cy(ni+1)).

Furthermore, there is an effectively computable positive number c1 such that
for infinitely many positive integers i,

(7) ni+1 − ni < ni exp(c1y(ni))/(log ni)
r−1,

where r = π(y(
√
ni)).

Observe that we obtain (1) from (6) when (4) holds on noting that in
this case ni+1 ≤ 2ni and

(log n)δ(cy(n)) = o(n).

In order to establish (6) we shall appeal to an estimate for linear forms in
the logarithms of rational numbers due to Matveev [8, 9]. The upper bound
(7) follows from an averaging argument based on a result of Ennola [3].

We are able to refine the lower bound (6) provided that the abc conjecture
is true.

Theorem 2. Let y = y(x) be a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. Let (n1, n2, . . .) be the
increasing sequence of positive integers ni for which (3) holds and let ε be a
positive real number. If the abc conjecture is true then there exists a positive
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number c1 = c1(ε), which depends on ε, and a positive number c2 such that
for i ≥ 1,

(8) ni+1 − ni > c1(ε)n
1−ε
i /exp(c2y(ni+1)).

We obtain (1) from (8) when (5) holds since in this case

exp(c2y(n)) = no(1).

2. Preliminary lemmas. For any non-zero rational number α we may
write α = a/b with a and b coprime integers and with b positive. We de-
fine H(α), the height of α, by

H(α) = max(|a|, |b|).
Let n be a positive integer and let α1, . . . , αn be positive rational num-
bers with heights at most A1, . . . , An respectively. Suppose that Ai ≥ 3 for
i = 1, . . . , n and that logα1, . . . , logαn are linearly independent over the ra-
tionals, where log denotes the principal value of the logarithm. Let b1, . . . , bn
be non-zero integers of absolute value at most B with B ≥ 3 and put

Λ = b1 logα1 + · · ·+ bn logαn.

Lemma 3. There exists an effectively computable positive number c0 such
that

log |Λ| > −cn0 logA1 . . . logAn logB.

Proof. This follows from Theorem 2.2 of Nesterenko [10], which is a spe-
cial case of the work of Matveev [8, 9].

Let x and y be positive real numbers with y ≥ 2 and let Ψ(x, y) denote
the number of positive integers of size at most x all of whose prime factors
are of size at most y. Let r denote the number of primes of size at most y,
so that r = π(y).

Lemma 4. For 2 ≤ y ≤ (log x)1/2 we have

Ψ(x, y) =
(log x)r∏r
i=1(i log pi)

(
1 +O(y2(log x)−1(log y)−1)

)
.

Proof. This is [3, Theorem 1].

We also recall the abc conjecture of Oesterlé and Masser [6, 7, 13]. Let
x, y and z be positive integers. Denote the greatest square-free factor of xyz
by G = G(x, y, z), so

G =
∏
p|xyz
p prime

p.

Conjecture 5 (abc conjecture). For each positive real number ε there
is a positive number c(ε) such that for all pairwise coprime positive integers
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x, y and z with
x+ y = z

we have
z < c(ε)G1+ε.

For a refinement of the abc conjecture see [12].

3. Proof of Theorem 1. Let c1, c2, . . . denote effectively computable
positive numbers. Following [15], for i ≥ 3 we have ni ≥ 3,

(9) ni+1 − ni = ni

(
ni+1

ni
− 1

)
and, since ez − 1 > z for z positive,

(10)
ni+1

ni
− 1 > log

ni+1

ni
.

Let p1, . . . , pr be the primes of size at most y(ni+1). Notice that r ≥ 2 since
y(ni+1) ≥ 3. Then ni+1/ni = pl11 . . . plrr with l1, . . . , lr integers of absolute
value at most c1 log ni+1 and, since ni+1 ≤ 2ni,

(11) max(|l1|, . . . , |lr|) ≤ c2 log ni.

Since
log

ni+1

ni
= l1 log p1 + · · ·+ lr log pr,

it follows from (11) and Lemma 3 that

(12) log
ni+1

ni
> (log ni)

−cr3 log p1... log pr .

By the arithmetic-geometric mean inequality,

(13)
r∏

i=1

log pi ≤
(
1

r

r∑
i=1

log pi

)r

,

and by the prime number theorem,

(14)
r∑

i=1

log pi < c4r log r.

Thus, from (12)–(14),

(15) log
ni+1

ni
> (log ni)

−(c5 log r)r .

Observe that r ≥ 2 and so

(16) (c5 log r)
r < ec6r log2 r.

Further,
3 ≤ pr ≤ y(ni+1)
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and so

(17) r ≤ c7y(ni+1)/log y(ni+1).

Thus, by (16) and (17),

(18) (c5 log r)
r < δ(c8y(ni+1))

and (6) follows from (9), (10), (15) and (18).
We shall now establish (7). Observe that if ni satisfies (3) then since

y(t) ≥ 3 for all positive real numbers t, P (2ni) ≤ y(ni) ≤ y(2ni) and so
2ni = nj for some integer j with j > i. In particular ni+1 ≤ 2ni, hence
ni+1 − ni ≤ ni and

(19) ni+1 − ni < 2ni.

Suppose that X is a real number with X ≥ 9 and that i is a positive integer
with ni+1 and ni in the interval

(√
X,X

]
. If, in addition,

(20) y
(√

X
)
> (logX)1/4

then, since
√
X < ni ≤ X,

(21) y(ni) > (log ni)
1/4.

Since y is non-decreasing,

(22) π(y(
√
ni))− 1 ≤ π(y(ni)),

and by the prime number theorem,

π(y(ni)) < c9
y(ni)

log y(ni)
.

By (21),

(23) π(y(ni)) < c10
y(ni)

log2 ni
.

Thus by (22) and (23),

(24) (log ni)
π(y(

√
ni))−1 < ec10y(ni).

We may suppose that c1 exceeds 1 + c10 and in this case, by (24),

exp(c1y(ni))/(log ni)
π(y(

√
ni))−1 ≥ exp(y(ni)) ≥ exp(3) ≥ 2,

and therefore (7) follows from (19).
We shall now show that there is a positive number c11 such that if X is

a real number with X > c11, then there is a positive integer i for which ni+1

and ni are in
(√

X,X
]

and satisfy (7). Accordingly, let X be a real number
with X ≥ 9, and put

r = π
(
y
(√

X
))
.
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Notice that r ≥ 2 since y(t) ≥ 3 for all positive real numbers t. By the
preceding paragraph we may suppose that

y
(√

X
)
≤ (logX)1/4.

Let A(X) be the set of integers n with

(25)
√
X < n ≤ X

for which

(26) P (n) ≤ y
(√

X
)
.

Note that the members of A(X) occur as terms in the sequence (n1, n2, . . .).
The cardinality of A(X) is

Ψ
(
X, y

(√
X
))

− Ψ
(√

X, y
(√

X
))
,

and so for X > c12 it is, by Lemma 4, at least

(27)
(logX)r

2
∏r

i=1 i log pi
.

Let j be the positive integer for which
X

2j
<

√
X ≤ X

2j−1

and consider the intervals (X/2k, X/2k−1] for k = 1, . . . , j. Then j ≤ 1 +
logX/(2 log 2) and so, for X > c13,

(28) j ≤ logX.

Thus, by (27) and (28), there is an integer h with 1 ≤ h ≤ j for which the
interval (X/2h, X/2h−1] contains at least

(logX)r−1

2
∏r

i=1 i log pi

integers from A(X). Notice that
r∏

i=1

i log pi ≤
(
r log y

(√
X
))r

.

Thus, since y
(√

X
)
≤ (logX)1/4, and r−1 ≥ r/2 because r ≥ 2, we see that

for X > c14, the interval (X/2h, X/2h−1] contains at least

(logX)r−1

3
(
r log y

(√
X
))r + 1

terms from A(X), hence two of them, say ni+1 and ni, satisfy

ni+1 − ni <
X

2h(logX)r−1
3
(
r log y

(√
X
))r

.



On sequences of integers with small prime factors 7

Since ni > X/2h it follows that

ni+1 − ni < 3
ni

(log ni)r−1

(
r log y

(√
X
))r

.

By (25),
√
ni ≤

√
X ≤ ni and hence, since y is non-decreasing, y(

√
ni) ≤

y
(√

X
)
≤ y(ni). Thus

ni+1 − ni < 3
ni

(log ni)r−1
(r log y(ni))

r

and so

(29) ni+1 − ni < 3
ni

(log ni)r
′−1

(s log y(ni))
s,

where r′ = π(y(
√
ni)) and s = π(y(ni)). By the prime number theorem there

is a positive number c15 such that

(30) 3(s log y(ni))
s < ec15y(ni).

Estimate (7) now follows from (29) and (30). On letting X tend to infinity
we find infinitely many pairs of integers ni+1 and ni which satisfy (7).

4. Proof of Theorem 2. Let i ≥ 1 and put

(31) ni+1 − ni = t.

Let g be the greatest common divisor of ni+1 and ni. Then
ni+1

g
− ni

g
=

t

g
.

Let ε > 0. By the abc conjecture there is a positive number c(ε) such that

ni

g
< c(ε)

(
t

g

∏
p≤y(ni+1)

p

)1+ε

and hence

(32)
(

ni

c(ε)

) 1
1+ε

< t
∏

p≤y(ni+1)

p.

By the prime number theorem, since y(ni+1) ≥ 3, there exists a positive
number c2 such that

(33)
∏

p≤y(ni+1)

p < ec2y(ni+1).

The result follows from (31)–(33).
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