A new explicit formula in the additive theory of primes with applications I. The explicit formula for the Goldbach problem and the Generalized Twin Prime Problem

by

JÁNOS PINTZ (Budapest)

To the memory of Andrzej Schinzel

1. Introduction. The well-known explicit formula of Riemann–von Mangoldt for the number of primes up to x ($\rho = \beta + i\gamma$ denotes non-trivial zeros of Riemann’s zeta-function, $x > 2$, $T \leq x$),

$$
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{|\gamma| \leq T} \frac{x^\rho}{\rho} + O\left(\frac{x}{T \log^2 x}\right),
$$

and the analogous ones for $\psi(x, \chi)$ [3, §19], play an important role in many problems about primes. For example, when investigating the distribution of primes in short intervals $(x, x + y)$, we can subtract the two formulas for x and $x + y$ and thereby reduce the problem to the density of zeros of $\zeta(s)$.

The aim of the present work is to show that the same approach, that is, to establish an explicit formula for the most famous additive problems about primes (Goldbach problem, Generalized Twin Prime Problem), is possible. The explicit formulas, once established, either lead directly to new results, or, in other cases, help to reach new results by using other methods. Another advantage of the explicit formula is that, apart from the size of the possible exceptional set in Goldbach’s problem, for example, we obtain information about the possible candidates n for Goldbach-exceptional numbers. (We will call an even number n a Goldbach number if it can be written as a sum of two primes, otherwise we will call it a Goldbach-exceptional number.) The
same reasoning is also valid for the previously mentioned problems. We will now discuss the case of the Goldbach problem in detail.

Let \(E(X) \) denote the number of Goldbach-exceptional numbers up to \(X \). Then Goldbach’s conjecture is equivalent to \(E(X) = 1 \) for \(X \geq 2 \). Any non-trivial upper estimate for \(E(X) \) can be considered as an approximation to solving Goldbach’s problem. After Vinogradov \([26]\) proved his famous three primes theorem in 1937, Chudakov \([2]\), Estermann \([5]\) and van der Corput \([24]\) observed simultaneously and independently (in 1937–38) that Vinogradov’s method can also yield

\[
E(X) \ll X \log^{-A} X \quad \text{for any } A > 0.
\]

An important step was made by Vaughan \([25]\) in 1972 with the proof of

\[
E(X) \ll X \exp(-c \sqrt{\log X}).
\]

Later, in their pioneering work of 1975, Montgomery and Vaughan \([17]\) established the estimate

\[
E(X) \ll X^{1-\delta} \quad \text{for } X > X_0(\delta),
\]

with a small (theoretically explicitly calculable) \(\delta \) and an effective \(X_0(\delta) \).

It turned out to be a very difficult problem to prove (1.4) with some reasonable (not too small) explicit value of \(\delta \) (even with \(X_0(\delta) \) ineffective). In 1989 J. R. Chen and J. M. Liu \([1]\) proved (1.4) with \(\delta = 0.05 \). This was improved by Hongze Li in 1999 \([12]\) to \(\delta = 0.079 \), and in 2000 \([13]\) to

\[
E(X) \ll X^{0.914} \quad \text{for } X > X', \text{ an ineffective constant.}
\]

This further was improved by Wen Chao Lu \([14]\) in 2010 to

\[
E(X) \ll X^{0.879} \quad \text{for } X > X'', \text{ an ineffective constant.}
\]

In order to illustrate the differences in the methods of proof of (1.2) and (1.4), we define

\[
S(\alpha) = \sum_{X_1 < p \leq X} \log p \cdot e(\alpha p), \quad e(u) = e^{2 \pi i u}, \quad X_1 = X^{1-\varepsilon_0}, \quad \mathcal{L} = \log X,
\]

with \(\varepsilon_0 \) an arbitrary small positive constant. \(C, c, C_i, c_i \) and \(\varepsilon \) will denote generic positive absolute constants whose values might be different at different occurrences, and \(c_\varepsilon \) will denote a similar generic constant which may depend on \(\varepsilon \).

To dissect the unit interval, we will choose a \(P \) with

\[
\mathcal{L}^c \leq P \leq \sqrt{X}, \quad Q = X/P, \quad \vartheta = \frac{\log P}{\log X},
\]

and define the major arcs \(\mathcal{M} \) as the union of the non-overlapping arcs

\[\mathcal{M}(q,a) = [a/q - 1/(qQ), a/q + 1/(qQ)] \] for \(q \leq P \). Let

\[
\mathcal{M} = \bigcup_{q \leq P} \bigcup_{(a,q)=1} \mathcal{M}(q,a),
\]
and denote the minor arcs by \(m = \left[1/Q, 1 + 1/Q \right] \setminus \mathcal{M} \). Then for any even \(m \in [LX_1, X] \) we can write
\[
R(m) = \sum_{p + p' = m \atop p, p' > X_1} \log p \cdot \log p' = R_1(m) + R_2(m),
\]
where
\[
R_1(m) = \int \mathcal{S}^2(\alpha) e(-m\alpha) \, d\alpha, \quad R_2(m) = \int \mathcal{S}^2(\alpha) e(-m\alpha) \, d\alpha.
\]

We will suppose \(m \in [X/2, X] \) for convenience. In general, in the circle method, \(P \) is chosen to be as large as possible, with the condition that the contribution \(R_1(m) \) can be evaluated asymptotically, yielding the expected main term
\[
R_1(m) \sim \mathcal{S}(m) \cdot I(m), \quad I(m) = \sum_{k + \ell = m \atop k, \ell \in [X_1, X]} 1 = m - 2X_1 + O(1),
\]
where
\[
\mathcal{S}(m) = \prod_{p|m} \left(1 + \frac{1}{p-1} \right) \prod_{p \nmid m} \left(1 - \frac{1}{(p-1)^2} \right).
\]

In order to show (1.12), we usually require that primes should be uniformly distributed in all arithmetic progressions modulo \(q \) for all \(q \leq P \). Such a result, the famous Siegel–Walfisz theorem (established in 1936), played a crucial role in the proof of (1.2), and in the Goldbach–Vinogradov theorem as well. By this theorem one can choose \(P = \mathcal{L}^A \) (\(A \) an arbitrarily large constant). Then Vinogradov's famous estimate for \(\mathcal{S}(\alpha) \) on the minor arcs (see Lemma 4.10), combined with Parseval’s identity, leads to the fact that \(R_2(m) = o(\mathcal{S}(m)m) \) for all but \(\mathcal{L}^C X/P \) even integers \(m \leq X \) (see Section 5).

Montgomery–Vaughan’s ingenious idea is to choose a larger value, \(P = X^\delta \). In this case possible zeros of Dirichlet \(L \)-functions near the line \(\sigma = 1 \) may destroy the uniform distribution of primes with respect to moduli less than \(P \). If there is no Siegel zero (see (4.13)–(4.14)), then we have a statistically good distribution of primes in arithmetic progressions, the famous Gallagher prime number theorem [6, Theorem 6]. This substitutes for the uniform distribution of primes in all arithmetic progressions, therefore we may prove the (still sufficient) inequality
\[
R_1(m) \gg \mathcal{S}(m)m
\]
in place of (1.12).

If there is a Siegel zero, this might completely destroy the picture. This can be seen very easily, without the circle method, in the following way. Suppose, for simplicity, that we have a character \(\chi_1 \mod q \), where \(\chi_1(-1) = -1 \),
and $L(1 - \delta_1, \chi_1) = 0$ for a very small δ_1. Let us consider $R(m)$ (see (1.10)) for $q \mid m$. If $p + p' = m$, $p \nmid q$, then $\chi_1(p) = 1$ or $\chi_1(p') = 1$, and so using the notation $b(m) = m \exp(-c\sqrt{\log m})$, we have

\begin{equation}
(1.15) \quad R_1(m) \ll \log m \cdot \sum_{\substack{p \leq m \\chi_1(p) = 1}} \log p \ll \log m \cdot \left(m - \frac{m^{1-\delta_1}}{1 - \delta_1} + b(m) \right) \ll \delta_1 m \log^2 m + b(m) \log m,
\end{equation}

which might be very small, since we can assume only $\delta_1 \gg m^{-c}$.

Thus in the case of existence of a Siegel zero, Montgomery and Vaughan evaluate exactly the effect of the Siegel zero for $R_1(m)$, and they obtain for it an additional term

\begin{equation}
(1.16) \quad \tilde{S}(m)\tilde{I}(m),
\end{equation}

which may almost cancel the effect of the main term $S(m)m$ for many values of m (for example, for the multiples of q). But the cancellation cannot be complete, since [17, §6]

\begin{equation}
(1.17) \quad |\tilde{S}(m)| \leq S(m) \quad \text{(with equality possible)}
\end{equation}

and

\begin{equation}
(1.18) \quad \tilde{I}(m) = \sum_{X_1 < k < X - X_1} (k(m - k))^{-\delta_1} \leq I(m) - c\delta_1 m \log m.
\end{equation}

Now, in the case of existence of a Siegel zero, other L-functions are free from zeros near $\sigma = 1$ by the Deuring–Heilbronn phenomenon (see Lemma 4.22). Therefore, one can prove the still sufficient inequality

\begin{equation}
(1.19) \quad R_1(m) \geq (1 + o(1))S(m)(I(m) - \tilde{I}(m)) \gg \delta_1 S(m)m \log m.
\end{equation}

Our method is a generalization of the Montgomery–Vaughan method. We will choose a P less than $X^{4/9 - \eta}$, $\eta > 0$ arbitrary. We will introduce singular series $\mathcal{S}(\chi_1, \chi_2, m)$ for every pair of primitive characters $\chi_1, \chi_2 \mod r_1, r_2$ with $[r_1, r_2] \leq P$. (We consider the trivial character $\chi_0(n) = 1$ as a primitive character mod 1.) We can evaluate these singular series and show an explicit formula for it, which implies

\begin{equation}
(1.20) \quad |\mathcal{S}(\chi_1, \chi_2, m)| \leq \mathcal{S}(m),
\end{equation}

and further

\begin{equation}
(1.21) \quad |\mathcal{S}(\chi_1, \chi_2, m)| \leq \frac{\mathcal{S}(m)}{\sqrt{U}} \log_2^2 U,
\end{equation}

where $\log_\nu X$ denotes the ν-fold iterated logarithm and

\begin{equation}
(1.22) \quad U = U(\chi_1, \chi_2, m) = \max\left(\frac{r_1^2}{(r_1, r_2)^2}, \frac{r_2^2}{(r_1, r_2)^2}, \frac{r_1}{(|m|, r_1)}, \frac{r_2}{(|m|, r_2)}, \text{cond } \chi_1 \chi_2 \right).
\end{equation}
This is proved in our Main Lemma in Section 7. Further, it is shown there that the sum of the absolute values of the elements in the singular series of $\mathcal{S}(\chi_1, \chi_2, m)$ will be $\leq c|\mathcal{S}(\chi_1, \chi_2, m)|$ (not just $\leq c\mathcal{S}(m)$, as in [17, Lemma 5.5]).

In the same way as for $\tilde{I}(m)$, one can evaluate the effect of any pair of zeros:

\[(1.23) \quad I(\varrho_1, \varrho_2, m) := \sum_{m=k+\ell, X_1<k, \ell \leq X} k^{\varrho_1-1} \ell^{\varrho_2-1} \]

\[= \frac{\Gamma(\varrho_1)\Gamma(\varrho_2)}{\Gamma(\varrho_1 + \varrho_2)} m^{\varrho_1+\varrho_2-1} + O(X_1) \]

when $|\gamma_i| \leq X^{1-\varepsilon_0}$, for example (see Lemma 4.9).

In such a way we will obtain both the main term $\mathcal{S}(m)I(m)$ and a uniformly bounded number of “supplementary main terms” which have the form

\[(1.24) \quad \mathcal{S}(\chi_1, \chi_2, m)I(\varrho_1, \varrho_2, m) \]

with a bounded number of possible generalized exceptional zeros ϱ_ν belonging to $L(s, \chi_\nu)$ with $\chi_\nu, \nu = 1, \ldots, K, 0 \leq K \leq K_0$,

\[(1.25) \quad \varrho_\nu = 1 - \delta_\nu + i\gamma_\nu, \quad \delta_\nu \leq H/L, \quad |\gamma_\nu| \leq U, \]

where H, U are large constants and $K_0 = K_0(H, U)$.

Using the convention that the pole $\varrho_0 = 1$ of $L(s, \chi_0)$ is included together with the possibly existing zeros, with the notation

\[(1.26) \quad A(\varrho) = 1 \quad \text{if } \varrho = \varrho_0 = 1, \chi = \chi_0 \mod 1, \]

\[(1.27) \quad A(\varrho_\nu) = -1 \quad \text{if } L(\varrho_\nu, \chi_\nu) = 0 \quad (\nu = 1, \ldots, K), \]

we obtain the explicit formula for the contribution of the major arcs:

\[(1.28) \quad R_1(m) = \sum_{\nu=0}^{K+1} \sum_{\mu=0}^{K+1} A(\varrho_\nu)A(\varrho_\mu)\mathcal{S}(\chi_\nu, \chi_\mu, m)I(\varrho_\nu, \varrho_\mu, m) \]

\[+ O(Xe^{-cH}) + O(XU^{-1/2}). \]

This formula and the above mentioned information (cf. (1.20)–(1.22)) about the properties of the generalized singular series $\mathcal{S}(\chi_\nu, \chi_\mu, m)$, together with its analogue for the Generalized Twin Prime Problem, will have a number of arithmetic consequences, to be proven in later works. For example, we will show in later parts of this series the following:

Theorem A. We have

\[\int_{\mathbb{N}} |S(\alpha)|^2 e(-m\alpha) \, d\alpha = (1 + o(1))\mathcal{S}(m)X, \]

if m is fixed, as $X \to \infty$.

Theorem B. All but $O(X^{3/5} \log^{10} X)$ odd numbers can be written as the sum of three primes with one prime less than C, a given absolute constant.

About the gaps between consecutive Goldbach numbers, we can show

Theorem C.

$$\sum_{g_n \leq x} (g_{n+1} - g_n)^\gamma = 2^{\gamma-1}X + O(X^{1-\delta}) \quad \text{for } \gamma < \frac{341}{21},$$

where g_n is the nth Goldbach number.

We remark that Mikawa [15] proved the above, but just for $\gamma < 3$.

Descartes (1596–1650) expressed a conjecture similar to Goldbach’s already in the 17th century, which however appeared in print as late as 1908 [4].

Descartes conjecture. Every even integer can be expressed as a sum of at most three primes.

Since in this case one of the summands has to be 2, at first sight we might think this is equivalent to the Goldbach conjecture. However, it is in fact equivalent to the assertion that for every even N at least one of N and $N+2$ is a Goldbach number (i.e. the sum of two primes). Our new methods are able to handle such problems more efficiently than Goldbach’s problem (in contrast to earlier methods).

We can show for example that our present results imply

Theorem D. For every $\varepsilon > 0$, all but $O_\varepsilon(X^{3/5+\varepsilon})$ positive integers $m \leq X$ can be written as a sum of at most three primes or prime-powers.

Theorem D will be an easy consequence of

Theorem E. There are explicitly calculable absolute constants K and C_3 such that for all but $C_3X^{3/5} \log^{12} X$ numbers $n \leq X$ we have

(1.29) $$E(n + \log^2 n) - E(n) \leq K.$$

The following results will also be based on the explicit formula, but their proof will require still many further ideas.

Theorem F. For every $\varepsilon > 0$, all but $O_\varepsilon(X^{3/5+\varepsilon})$ positive integers $m \leq X$ can be written as a sum of at most three primes.

Theorem G. $E(X) < X^{3/4}$ for $X > C$.

A few years ago we proved, using our explicit formula and many other ideas:

Theorem H (J. Pintz–I. Ruzsa [20]). Every sufficiently large even integer can be written as the sum of two primes and eight powers of 2.

The earlier best unconditional result was due to Heath-Brown and Puchta [9] with 13 powers of 2.
2. Statement of results. In order to state the explicit formula we need some more notation. For any $\chi \mod q$ let

$$c_\chi(m) = \sum_{h=1}^{q} \chi(h) e\left(\frac{hm}{q}\right), \quad \tau(\chi) = c_\chi(1).$$

Further for primitive characters $\chi_i \mod r_i$ ($r_i = 1$ is possible) with $r_i | q$ $(i = 1, 2)$ let

$$c(\chi_1, \chi_2, q, m) = \varphi^{-2}(q)c_{\chi_1\chi_2\chi_0,q}(-m)\tau(\overline{\chi_1}\chi_0,q)\tau(\overline{\chi_2}\chi_0,q),$$

$$\mathcal{G}(\chi_1, \chi_2, m) = \sum_{q=1}^{\infty} c(\chi_1, \chi_2, q, m),$$

where $\chi_{0,q}$ is the principal character mod q. Let $\text{cond } \chi$ denote the conductor of a character χ.

In the case of the Generalized Twin Prime Problem we need the new notations (cf. also (1.11) and (1.23)):

$$c'(\chi_1, \chi_2, q, m) = \varphi^{-2}(q)c_{\chi_1\chi_2\chi_0,q}(-m)\tau(\overline{\chi_1}\chi_0,q)\tau(\overline{\chi_2}\chi_0,q),$$

$$\mathcal{G}'(\chi_1, \chi_2, m) = \sum_{q=1}^{\infty} c'(\chi_1, \chi_2, q, m),$$

$$R'_1(m) = \int_{\mathbb{R}} |S^2(\alpha)|e(-m\alpha) \, d\alpha,$$

$$I'(\varrho_1, \varrho_2, m) = \sum_{k,\ell \in [X_1,X]} k^{\gamma_0-1} \ell^{\beta_0-1}.$$

Let us define the set $\mathcal{E} = \mathcal{E}(H, P, X)$ of generalized exceptional singularities of the functions L'/L for all primitive L-functions mod r, $r \leq P$, as follows ($\chi_0 = \chi_0 \mod 1$ corresponds to $\zeta(s)$):

$$(\varrho_0, \chi_0) \in \mathcal{E} \quad \text{with } \varrho_0 = 1,$$

$$(\varrho_{\nu}, \chi_{\nu}) \in \mathcal{E} \quad \text{if } \exists \chi_{\nu} \ (\nu \geq 0), \ \text{cond } \chi_{\nu} = r_{\nu} \leq P, \ L(\varrho_{\nu}, \chi_{\nu}) = 0,$$

$$\beta_{\nu} \geq 1 - H/L, \ |\gamma_{\nu}| \leq \sqrt{X},$$

where H will be a sufficiently large constant to be chosen later. We remark that the best known zero-free regions for $\zeta(s)$ exclude the possibility that $\zeta(s)$ would have additional exceptional singularities beyond $\varrho_0 = 1$ for sufficiently large values of X.

Further, let

$$\mathcal{E}_T = \{ \varrho \in \mathcal{E} : |\text{Im } \varrho| \leq T \}.$$
Let us consider a \(P_0 \leq X^{4/9-\eta_0} \) where \(\eta_0 \) is any positive number. Every further constant or parameter, as well as \(\varepsilon_0 \) in the definition of \(X_1 \) in (1.6), may depend on \(\eta_0 \). We suppose that \(X \) exceeds some effective constant \(X_0(\eta_0) \).

We can fix a sufficiently small \(h = h_0 \) (depending also on \(\eta_0 \), and \(c_1 \) in (4.14)) and introduce

Definition. We call \(\varrho_1 = 1 - \delta_1 \), a real zero of \(L(s, \chi_1) \) with a real character \(\chi_1 \), a Siegel zero (with respect to \(h, P \) and \(X \)) if

\[
(2.9) \quad \delta_1 \leq h/L, \quad \text{cond} \chi_1 \leq P.
\]

Remark. If we have chosen \(h = h_0 \) small enough, then in view of Lemma [4.13] we have at most one, simple Siegel zero belonging to one primitive character \((h_0 \leq c_1 L/\log P)\).

With the notation of (1.7–1.9), (1.26–1.27) and (2.1)–(2.9) we have

Theorem 1. For every \(P_0 \leq X^{4/9-\varepsilon} \) we can choose a \(P \in [P_0 X^{-\varepsilon}, P_0] \) with the following properties. For all \(m \leq X \) we have the explicit formulas

\[
(2.10) \quad R_1(m) = \sum_{(\varrho_i, \chi_i) \in E} \sum_{(\varrho_j, \chi_j) \in E} A(\varrho_i) A(\varrho_j) \mathcal{G}(\chi_i, \chi_j, m) \frac{\Gamma(\varrho_i) \Gamma(\varrho_j)}{\Gamma(\varrho_i + \varrho_j)} m^{\varrho_i + \varrho_j - 1} + O_\varepsilon(\mathcal{G}(m) X e^{-c_\varepsilon H}) + O_\varepsilon(X^{1-\varepsilon_0}),
\]

\[
(2.11) \quad R'_1(m) = \sum_{(\varrho_i, \chi_i) \in E} \sum_{(\varrho_j, \chi_j) \in E} A(\varrho_i) A(\varrho_j) \mathcal{G}'(\chi_i, \chi_j, m) I'(\varrho_i, \varrho_j, m)
\]

\[
+ O_\varepsilon(\mathcal{G}(m) X e^{-c_\varepsilon H}) + O_\varepsilon(X^{1-\varepsilon_0}).
\]

Suppose additionally \(m \in [X/4, X/2] \). Then, replacing the summation condition in (2.10)–(2.11) by

\[
(2.12) \quad \sum_{(\varrho_i, \chi_i) \in E} \sum_{|\gamma_i| \leq U} \sum_{|r_1, r_2| \leq P} U(\chi_1, \chi_2, m)
\]

\[
(\text{in } (2.11), \text{U(} \chi_1, \chi_2, m) \text{ should be replaced by } U(\chi_1, \chi_2, m)), \text{ we obtain}
\]

(2.10)–(2.11) with an additional error term

\[O(\mathcal{G}(m) X \log U/\sqrt{U}). \]

Formulae (2.10) and (2.11) are quite satisfactory with respect to the error terms if there is no Siegel zero (in this case one can choose \(H \) and \(U \) to be large constants). However, this is not the case if we have a Siegel zero.

The following theorem overcomes this difficulty.

Further, in the case of (2.13), for all but \(O(X^{3/5+\varepsilon}) \) values of \(m \in [X/2, X] \) we have \(R_1(m) \gg_\varepsilon m^{1-\varepsilon}, R'_1(m) \gg_\varepsilon m^{1-\varepsilon}. \)
Theorem 2. Let $\varepsilon > 0$ be arbitrary. If $X > X(\varepsilon)$, an ineffective constant, and there exists a Siegel zero β_1 of $L(s, \chi_1)$ with

$$\beta_1 > 1 - h/\log X, \quad \text{cond} \chi_1 \leq X^{4/9 - \varepsilon},$$

where h is a sufficiently small constant, depending on ε, then

$$E(X) < X^{3/5 + \varepsilon}$$

and similarly

$$E'(X) = |\{m \leq X : 2|m, m \neq p - p'\}| < X^{3/5 + \varepsilon}.$$

In view of the zero-free region for L-functions in Lemma 4.12, Theorems 1 and 2 immediately imply

Theorem 3. There are explicitly calculable positive constants C_1, c_2, C_3 with the following property. If $L(s, \chi) \neq 0$ for

$$1 - \frac{C_1}{\log q} \leq \sigma \leq 1 - \frac{c_2}{\log q}, \quad |t| \leq C_3,$$

then the estimates (2.14)–(2.15) hold for every $\varepsilon > 0$ in the case of $X > X'(\varepsilon)$.

The reason for the implication is the following. If there exists a zero with $\sigma \geq 1 - c_2/\log q, |t| \leq C_3, q \leq X^{4/9}$, then by Lemma 4.12 this has to be a Siegel zero. Consequently, (2.15) follows from Theorem 2. If, on the other hand, the whole range $1 - C_1/\log q \leq \sigma \leq 1, |t| \leq C_3, q \leq X^{4/9}$ is zero-free, then the crucial sums in (2.10)–(2.12) contain only the main term if the constants $C_1 = H, C_3 = U$ were chosen sufficiently large.

In comparison we note that under the assumption of the Generalized Riemann Hypothesis (in place of the much weaker condition (2.16)) Hardy–Littlewood [7] proved in 1924 the estimate $E(X) \ll X^{1/2 + \varepsilon}$.

We remark further that one can show that Theorems 1 and 2 also imply Montgomery–Vaughan’s estimate (1.4).

3. Notation. Beyond the notation of Sections 1 and 2 (see (1.7)–(1.13), (1.18), (1.22), (1.23), (1.25), (1.26)–(1.27), (2.2), (2.8), (2.15)) we will use the following notation. The symbol $\varrho = \varrho_\chi$ will denote a zero or a pole of $L(s, \chi)$, where χ will denote mostly primitive characters. Let

$$\varrho = \beta + i\gamma = 1 - \delta + i\gamma,$$

$$N(\alpha, T, \chi) = \sum_{\varrho = \varrho_\chi, \beta \geq \alpha, |\gamma| \leq T} 1,$$

$$N^*(\alpha, T, Q) = \sum_{q \leq Q} \sum^* N(\alpha, T, \chi),$$
where \(\sum^*_{\chi(q)} \) means summation over primitive characters mod \(q \). Further, \(\sum'_{a(q)} \) will denote summation over all reduced residue classes. Let

\[
T(q, \eta) = \sum_{\chi \leq X} n^{e-1} e(n\eta).
\]

Further, \(r \sim R \) will denote \(R \leq r < 2R \).

Lemma 4.1. If \(\chi \) is a primitive character mod \(q \) then \(|\tau(\chi)| = q^{1/2} \).

Lemma 4.2. Let \(\chi \) be a character mod \(k \), induced by a primitive character \(\chi^* \) mod \(r \). Then \(r | k \) and

\[
\tau(\chi) = \mu \left(\frac{k}{r} \right) \chi^* \left(\frac{k}{r} \right) \tau(\chi^*).
\]

Lemma 4.3. Suppose the above hypotheses hold, and \((m, k) = 1 \). Then

\[
c_\chi(m) = \overline{\chi^*}(m) \mu \left(\frac{k}{r} \right) \chi^* \left(\frac{k}{r} \right) \tau(\chi^*).
\]

Lemma 4.4. Let \(\chi \) be a character mod \(q \), induced by a primitive character \(\chi^* \) mod \(r \). For an arbitrary integer \(m \) put \(q_1 = q/(q, |m|) \). If \(r \nmid q_1 \) then \(c_\chi(m) = 0 \). If \(r \mid q_1 \) then

\[
c_\chi(m) = \chi^* \left(\frac{m}{(q, |m|)} \right) \frac{\varphi(q)}{\varphi(q_1)} \mu \left(\frac{q_1}{r} \right) \chi^* \left(\frac{q_1}{r} \right) \tau(\chi^*).
\]

We will use the following (mostly) well-known results from the theory of exponential sums.

Lemma 4.5 (Titchmarsh [23, Lemma 4.2]). Let \(F(x) \) be a real differentiable function such that \(F'(x) \) is monotonic and either \(F'(x) \geq m > 0 \), or \(F'(x) \leq -m < 0 \), in \((a, b) \). Then

\[
\left| \int_a^b e^{iF(x)} \, dx \right| \leq \frac{4}{m}.
\]

Lemma 4.6 (Titchmarsh [23, Lemma 4.8]). Let \(f(x) \) be a real differentiable function in \((a, b) \), with \(f'(x) \) monotonic, \(|f'(x)| \leq \theta < 1 \). Then

\[
\sum_{a < n \leq b} e(f(n)) = \int_a^b e(f(x)) \, dx + O(1).
\]

Lemma 4.7. Let \(0 \leq \sigma \leq 1 \) and \(|t| \leq x \). Then uniformly

\[
\sum_{x < n \leq N} n^{-s} = \int_x^N u^{-s} \, du + O(x^{-\sigma}),
\]

with an absolute implicit constant (independent of \(s \)).
Proof. This relation is contained in [23, proof of Theorem 4.11]. However, for this part we may allow \(0 \leq \sigma \leq 1 \), since the proof follows from [23, Lemma 4.10]. ■

Lemma 4.8 ([11, Chapter 3]). The Euler beta function \(B(u, v) \), defined below for \(\Re s > 0, \Re w > 0 \), satisfies the equation

\[
B(s, w) := \int_0^1 x^{s-1}(1-x)^{w-1} dx = \frac{\Gamma(s)\Gamma(w)}{\Gamma(s+w)}.
\]

The following lemma may be well known, but we have not found any exact references:

Lemma 4.9. Let \(s = \sigma + it, w = \lambda + iv, 0 < \sigma, \lambda \leq 1, Y \geq 1, \max(|t|, |v|) \leq Y \). Then for any integer \(m \geq 2Y \),

\[
\sum_{Y < k \leq m-Y} k^{s-1}(m-k)^{w-1} = \frac{\Gamma(s)\Gamma(w)}{\Gamma(s+w)}m^{s+w-1} + O(Y).
\]

Proof. Let us suppose by symmetry \(|w| \leq |s| \) and denote

\[
K(x) = \sum_{Y < k \leq x} k^{s-1}, \quad J(x) = \int_x^Y y^{s-1} dy.
\]

Then by partial summation and integration, for the sum \(S \) in (4.8) we obtain, by (4.6)–(4.7),

\[
S = K(m - Y)Y^{w-1} - \int_Y^{m-Y} K(u)((m - u)^{w-1})' du
\]

\[=
J(m - Y)Y^{w-1} - \int_Y^{m-Y} J(u)((m - u)^{w-1})' du + O(1)
\]

\[=
\int_Y^{m} J'(u)(m - u)^{w-1} du + O(1)
\]

\[=
\int_0^{m} u^{s-1}(m - u)^{w-1} du + O(Y)
\]

\[=
\frac{\Gamma(s)\Gamma(w)}{\Gamma(s+w)}m^{s+w-1} + O(Y). \quad ■
\]

Vinogradov’s famous estimate on the minor arcs was substantially simplified by Vaughan (for the proof see [3, Chapter 25]).

Lemma 4.10. For \(|\alpha - a/q| \leq q^{-2} \) with \((a, q) = 1\) we have

\[
\sum_{p \leq N} \log p \cdot e(p\alpha) \ll (Nq^{-1/2} + N^{4/5} + (Nq)^{1/2}) \log^4 N.
\]
The following lemma makes possible the estimation of integrals for $|S_i^2(\alpha)|$ (see (6.3)–(6.4)) via density theorems for zeros of L-functions.

Lemma 4.11 (Gallagher [6, Lemma 1]). Let u_1, \ldots, u_N be arbitrary real numbers. Then for any $\kappa > 0$,

$$\kappa \left| \int_{-\kappa}^{\kappa} \sum_{n=1}^{N} u_n e(n\eta) \, d\eta \right|^2 \ll \int_{-\kappa}^{\kappa} \left| \sum_{n=x}^{x+(2\kappa)^{-1}} u_n \right|^2 \, dx.$$

The zero-free region for L-functions can be given by

Lemma 4.12 ([21, Chapter VIII, Satz 6.2]). Let $q \geq 1$ be any integer. There exists an absolute constant c_0 such that

$$L(s, \chi) \neq 0 \quad \text{for } \sigma > 1 - \frac{c_0}{\max(\log q, \log^{3/4}(|t| + 2))}$$

with the possible exception of at most one, simple real zero β_1 of an L-function corresponding to a real exceptional character $\chi_1 \mod q$.

The possibly existing exceptional zeros are often called *Siegel zeros*. The following result is a reformulation of a theorem of Landau.

Lemma 4.13 (see [3, §14]). There is a constant $c_1 > 0$ such that there is at most one real primitive χ to a modulus $\leq z$ for which $L(s, \chi)$ has a real zero β satisfying

$$\beta > 1 - \frac{c_1}{\log z}.$$

We remark that for z large enough, $c_1 = 1/2 + o(1)$ can be chosen [19].

Siegel’s theorem gives an upper estimate for β:

Lemma 4.14 (see [3, §14]). For any $\varepsilon > 0$ there exists a positive ineffective constant $c(\varepsilon)$ such that if χ is a real character mod q, $L(\beta, \chi) = 0$, β real, then

$$\beta < 1 - c(\varepsilon)q^{-\varepsilon}.$$

We will use the explicit formula for $\psi(x, \chi)$ in the following form.

Lemma 4.15. Let χ be any character mod q, $T \geq \sqrt{x}$, $x \geq 2$. Let $E(\chi) = 1$ if $\chi = \chi_0$, and $E(\chi) = 0$ otherwise. Then

$$\psi(x, \chi) := \sum_{p \leq x} \chi(p) \log p = E(\chi)x - \sum_{|\gamma| \leq T, \beta \geq 1/2} \frac{x^q}{q} + O(\sqrt{x} \log^2 qx).$$

Proof. This follows from formulas (7)–(8) of [3, §19], after a trivial estimate for the contribution of prime-powers to $\psi(x, \chi)$.

The following zero-density estimates for L-functions will be used. Here $Q \geq 1$, $T \geq 2$, $1/2 \leq \alpha \leq 1$, and $\varepsilon > 0$ is an arbitrary positive number.
Lemma 4.16 (Montgomery [16] Theorem 12.2]).
\[N^*(\alpha, T, Q) \ll (Q^2T)^{3(1-\alpha)/2-\alpha} \log^9 QT. \]

Lemma 4.17 (Heath-Brown [8] Theorem 2]).
\[N^*(\alpha, T, Q) \ll \varepsilon (Q^2T^{6/5})^{20/9}(1-\alpha)+\varepsilon. \]

Lemma 4.18 (Jutila [10] Theorem 1]).
\[N^*(\alpha, T, Q) \ll \varepsilon (Q^2T^{6/5}) (2+\varepsilon)(1-\alpha) \quad \text{for} \quad \alpha \geq \frac{4}{5}. \]

Lemmas 4.17 and 4.18 clearly imply, for \(1/2 \leq \alpha \leq 1\),

Lemma 4.19.
\[N^*(\alpha, T, Q) \ll (Q^2T^{6/5})^{20/9+\varepsilon}(1-\alpha). \]

The following two “log-free” density theorems were proved in [19].

Lemma 4.20 ([19, Corollary 1]). For \(h < 1/5\) we have
\[(4.17) \quad N^*(1-h, T, Q) \ll \varepsilon (Q^{3+\varepsilon}(1-3h)(1-2h) T^{3+\varepsilon})^h. \]

Lemma 4.21 ([19 Theorem 2]). Let \(\mathcal{H}\) be a set of primitive characters \(\chi\) with moduli \(\leq M\), such that \(\text{cond} \chi_i \chi_j \leq K\) for any pair \(\chi_i, \chi_j\) belonging to \(\mathcal{H}\). Let \(\mathcal{S}\) be a set of distinct pairs \((\chi_j, \varrho_j)\) with \(L(\varrho_j, \chi_j) = 0\) where \(\chi_j \in \mathcal{H}\), \(\beta_j \geq 1 - h\), \(|\gamma_j| \leq T\). (\(\chi_i = \chi_j\) is possible if \(\varrho_i \neq \varrho_j\).) If \(\varepsilon\) is a sufficiently small positive constant and \(h < \varepsilon^3\) then for any \(K \geq 1\), \(M \geq 1\), \(T \geq 2\),
\[(4.18) \quad |\mathcal{S}| \ll \varepsilon (K^2(MT)^{3/4})^{(1+\varepsilon)}h, \]
\[(4.19) \quad |\mathcal{S}| \ll \varepsilon (K^2M^2T^\varepsilon)^{(1+\varepsilon)}h. \]

Finally, the following version of the Deuring–Heilbronn phenomenon will be needed in the case of existence of a Siegel zero (see Section 11).

Lemma 4.22 ([19 Theorem 4]). Let \(\chi_1\) and \(\chi_2\) be primitive characters mod \(q_1\) and \(q_2\), resp., with \(L(1-\delta_1, \chi_1) = L(1-\delta+i\gamma, \chi_2) = 0\), where \(\chi_1, \delta_1\) are real, \(\delta_1 < \delta < 1/7\). Let \(k = \text{cond} \chi_1 \chi_2\), \(\varepsilon > 0\) arbitrary, and
\[(4.20) \quad Y = (q_1^2q_2^2(|\gamma| + 2)^2)^{3/8} \geq Y_0(\varepsilon) \]
sufficiently large. Then
\[(4.21) \quad \delta_1 \geq (1-\varepsilon)(1-6\delta) \log 2 \cdot Y^{-(1+\varepsilon)\delta/(1-6\delta)}/\log Y. \]

5. Minor arcs. The treatment of the minor arcs is completely standard. We will use the estimate of Vaughan (Lemma 4.10) on the minor arcs. This determines the value 3/5 in our Theorems 2 and 3.
Using Parseval’s identity, from (1.11) and Lemma 4.10 we obtain
\[
\sum_{m} R^2(m) = \int_{m} |S^4(\alpha)| d\alpha \\
\leq \left(\max_{m} |S(\alpha)| \right)^2 \int_{0}^{1} |S(\alpha)|^2 d\alpha \\
\ll \max(X^2/P, X^{8/5}) X \mathcal{L}^{9}.
\]
This result shows that for \(m \leq X \) we have
\[
|R_2(m)| \leq X/\sqrt{\mathcal{L}} \quad \text{with} \quad \ll \mathcal{L}^{10} \max(X/P, X^{3/5}) \text{ exceptions},
\]
\[
|R_2(m)| \leq X^{1-\varepsilon} \quad \text{with} \quad \ll_{\varepsilon} \max(X^{1+3\varepsilon}/P, X^{3/5+3\varepsilon}) \text{ exceptions}.
\]

The first inequality will be used if we have no Siegel zero, the second if we have one. As we can see, the exact choice of \(P \) will be irrelevant in (5.2)–(5.3) if we can choose \(P \geq X^{2/5} \) (which will be the case in many applications).

6. Basic results about major arcs. Dissection of \(S(\alpha) \). We will follow [17] but extend their arguments beyond the Siegel zero to zeros near \(\sigma = 1 \) as well. For \(\alpha \in \mathbb{M}(q,a) \) let \(\alpha = a/q + \eta \). Since \(P < X \) we have
\[
S(\alpha) = \frac{1}{\varphi(q)} \sum_{\chi(q)} \chi(a) \tau(\chi) S(\chi, \eta) = \frac{1}{\varphi(q)} \sum_{\chi(q)} \chi(a) \tau(\chi) S(\chi^*, \eta)
\]
where \(\chi \mod q, q \leq P \), is induced by the primitive character \(\chi^* \), and \(S(\chi, \eta) \) is defined by
\[
S(\chi, \eta) = \frac{1}{\varphi(q)} \sum_{\chi_1 \ll p \leq X} \chi(p) \log p \cdot e(\eta p).
\]

Using the (unusual) notation of Section 1, we can separate from \(S(\chi^*, \eta) \) the effect of the main term \(T_0(\eta) \) ‘caused’ by the pole of \(L(s, \chi_0) = \zeta(s) \) at \(s = 1 \) and that of the zeros \(\varrho \) lying near \(\sigma = 1 \) (for all \(L(s, \chi) \)). Up to the different sign \(A(\varrho) \) (see (1.26)–(1.27)) their treatment will be the same. Accordingly we write
\[
S_1(\alpha) = S(\alpha) - S_0(\alpha), \quad S_0(\alpha) = S_2(\alpha) + S_3(\alpha),
\]
where we define \(S_2(\alpha) \) and \(S_3(\alpha) \) (and thus \(S_1(\alpha) \) and \(S_0(\alpha) \)) through (6.1) and \(S_i(\chi, \eta) \) \((0 \leq i \leq 3)\) by
\[
S_2(\chi^*, \eta) = \sum_{\varrho = \varrho_\chi} A(\varrho) T(\varrho, \eta),
\]
\[
S_3(\chi^*, \eta) = \sum_{\varrho = \varrho_\chi} A(\varrho) T(\varrho, \eta),
\]
where in the case of the principal character the pole $q = 1$ with $A(q) = 1$ is included, $b = b(\eta_0)$ is a small constant, and for a zero q we have $A(q) = -1$. We remark that $S_i(\chi, \eta) = S_i(\chi^*, \eta)$. Then we have

$$
\sum_{q \leq P} \sum_{a(q)} \sum_{\chi} \sum_{\chi'} S^2(\alpha) e(-m\alpha) d\alpha
= \sum_{q \leq P} \sum_{a(q)} \sum_{\chi} \sum_{\chi'} \frac{\chi \chi'(a)\tau(\chi)\tau(\chi') e(-am/q)}{\varphi^2(q)} S(\chi, \eta) S(\chi', \eta) e(-mnq) d\eta
= \sum_{q \leq P} \sum_{\chi} \sum_{\chi'} \frac{c\chi \chi'(a)\tau(\chi)\tau(\chi') e(-am/q)}{\varphi^2(q)} S(\chi, \eta) S(\chi', \eta) e(-mnq) d\eta
=: \sum_{r(\chi) \leq P} \sum_{r(\chi')} \sum_{q \leq P} c(\chi, \chi', q, m) S(\chi, \eta) S(\chi', \eta) e(-mnq) d\eta.
$$

Naturally the same formula holds if we replace $S(\alpha)$ and $S(\chi, \eta)$ by $S_i(\alpha)$ and $S_i(\chi, \eta)$, respectively ($0 \leq i \leq 3$).

The estimate of these integrals will be performed with the aid of Gallagher’s Lemma 4.11 through the estimates of the quantities $(\chi$ primitive mod $r)$

$$
W_i(\chi) := \left(\int_{-1/(rQ)}^{1/(rQ)} |S_i(\chi, \eta)|^2 d\eta \right)^{1/2}.
$$

7. Main Lemma. Supplementary singular series. Using the notation of Sections 2 and 3 we can formulate and prove our

Main Lemma 1. Suppose we have two primitive characters $\chi_1 \text{ mod } r_1$, $\chi_2 \text{ mod } r_2$, $q_0 = [r_1, r_2]$, $q_1 = q_0/(q_0, |m|)$, $\ell_i = r_i/(r_1, r_2)$, $e = (m, (r_1, r_2))$. Let $\chi^* = (\chi_1\chi_2)^*$, cond $\chi_1\chi_2 = r^* = r'\ell_1\ell_2$, $b(q) = c(\chi_1, \chi_2, q, m)$, and

$$
f = \prod_{p^a \mid (r_1, r_2)} p^a, \quad d = \prod_{p^a \mid (r_1, r_2)} p^a, \quad \mathcal{G}(\chi_1, \chi_2, m) = \sum_{t=1}^{\infty} b(q_0t), \quad A(\chi_1, \chi_2, m) = \sum_{t=1}^{\infty} |b(q_0t)|.
$$
Suppose $A(\chi_1, \chi_2, m) \neq 0$. Then

$$b(q_0) \neq 0, \quad r' \mid \frac{df}{e} = \frac{(r_1, r_2)}{e},$$

(7.3)

$$b(q_0) = \frac{\tau(\chi_1)\tau(\chi_2)\tau(\chi^*)\chi^*(\frac{-m}{(q_0, [m])})\mu(\frac{q_1}{r_1})\chi^*(\frac{q_1}{m})\mu(\ell_1)\mu(\ell_2)\chi_1(\ell_1)\chi_2(\ell_2)}{\varphi^2(\ell_1)\varphi^2(\ell_2)\varphi(d)\varphi(f)\varphi(df/e)},$$

(7.4)

$$|b(q_0)| = \frac{\ell_1}{\varphi^2(\ell_1)} \cdot \frac{\ell_2}{\varphi^2(\ell_2)} \cdot \frac{d}{\varphi(d)} \cdot \frac{f}{\varphi(f)} \cdot \frac{\sqrt{r'}}{\varphi(df/e)},$$

(7.5)

$$\mathcal{G}(\chi_1, \chi_2, m) = b(q_0) \prod_{p \mid \text{im} \neq \text{irr}[r_1, r_2]} \left(1 - \frac{1}{(p - 1)^2}\right) \prod_{p \mid \text{irr}[r_1, r_2]} \left(1 + \frac{1}{p - 1}\right),$$

(7.6)

$$|\mathcal{G}(\chi_1, \chi_2, m)| \leq \mathcal{G}(m), \quad |A(\chi_1, \chi_2, m)| \leq B \cdot |\mathcal{G}(\chi_1, \chi_2, m)|$$

with the constant $B = \prod_{p>2} (1 + 2/(p(p - 2)))$. Further

$$|\mathcal{G}(\chi_1, \chi_2, m)| \leq (\sqrt{3}/2)\mathcal{G}(m)$$

unless the following five relations all hold:

$$\frac{r_i}{(r_i, m)} \mid 36 \ (i = 1, 2), \quad \frac{r_i}{(r_1, r_2)} \mid 3 \ (i = 1, 2), \quad r^* \mid 36.$$

(7.8)

In the case of the Generalized Twin Prime Problem (see (2.4)–(2.5)) nearly everything remains unchanged.

Main Lemma 1'. If we replace the series $\mathcal{G}(\chi_1, \chi_2, m)$ by $\mathcal{G}'(\chi_1, \chi_2, m)$, $A(\chi_1, \chi_2, m)$ by the analogous $A'(\chi_1, \chi_2, m)$, and $\chi^* = (\chi_1\chi_2)^*$ by $(\chi_1\chi_2^*)^*$, then the results of Main Lemma 1 hold with the only change that $\tau(\chi_2)$ and $\chi_2(\ell_1)$ in (7.4) are to be replaced by $\tau(\chi_2)$ and $\chi_2(\ell)$, respectively.

Corollary to Main Lemma 1. For the singular series $\mathcal{G}(\chi_1, \chi_2, m)$ inequality (1.21) holds.

Corollary to Main Lemma 1'. Let us replace $\mathcal{G}(\chi_1, \chi_2, m)$ by $\mathcal{G}'(\chi_1, \chi_2, m)$ in (1.21) and $\text{cond } \chi_1\chi_2$ by $\text{cond } \chi_1\chi_2^*$ in (1.22). Then inequality (1.21) remains valid.

The corollaries easily follow by (7.5) from Main Lemmas 1 and 1'. Since the proof of Main Lemma 1' goes mutatis mutandis, we will restrict ourselves to the proof of Main Lemma 1.

Remark. For $r_1 = r_2 = 1$, we clearly have the classical singular series

$$\mathcal{G}(\chi_0, \chi_0, m) = \mathcal{G}'(\chi_0, \chi_0, m) = \mathcal{G}(m)$$

from (7.4) and (7.6).
Proof of Main Lemma 1. Let us investigate an arbitrary non-zero term belonging to \(q = q_0 t = df \ell_1 \ell_2 t \) (with \(\chi_0 = \chi_{0,q} \))

\[
(7.9) \quad b(q_0 t) = \varphi^{-2}(q) c_{\alpha_1 \alpha_2 \alpha_0}(-m) \tau(\alpha_1 \alpha_0) \tau(\alpha_2 \alpha_0) \neq 0.
\]

Let \(o_p(n) = \alpha \) if \(p^\alpha \| n \). By Lemma 4.2 \(\tau(\alpha_i \alpha_0) \neq 0 \) implies \(p \nmid (q/r_i) \) for \(p \mid r_i \). Thus \(o_p(r_i) = o_p(q) \). Hence \((t, [r_1, r_2]) = 1 \). For \(p \mid (r_1, r_2) \) we have by the above \(o_p(r_1) = o_p(r_2) = o_p([r_1, r_2]) = o_p(q) \).

If \(p \mid r_i \) and \(p \nmid r_j \) (equivalently \(p \mid \ell_i \)) then \(\tau(\alpha_j \alpha_0) \neq 0 \) implies by Lemma 4.2 that by the \(\mu \)-factor, \(1 = o_p(q/r_j) = o_p(q) = o_p(r_i) \). Similarly we have \(|\mu(t)| = 1 \). Summarizing the above yields

\[
(7.10) \quad |\mu(\ell_1)| = |\mu(\ell_2)| = |\mu(t)| = 1, \quad (t, q_0) = 1.
\]

If \(p \mid \ell_i \) then \(o_p(q) = 1 \) and \(p \mid r^* \). This implies, in view of \((7.9) \), that by Lemma 4.4 we have \(p \mid r^* \mid (q/|m|) \) and so \(p \nmid m \), that is, \((m, \ell_i) = 1 \) \((i = 1, 2) \). Hence, using the definitions of \(d, e, f \), we have

\[
(7.11) \quad (m, r_1) = (m, r_2) = (m, [r_1, r_2]) = (m, (r_1, r_2)) = (m, df) = (m, f) = e.
\]

Suppose \(A(\alpha_1, \alpha_2, m) \neq 0 \), equivalently there exists a \(t \) with \((7.9) \). Then, in view of \((t, r^*) = 1 \) and Lemma 4.4, the equivalent assertions

\[
(7.12) \quad r^* \mid \frac{q_0 t}{(q_0 t, |m|)} \iff r^* \mid \frac{q_0}{(q_0, |m|)} = \ell_1 \ell_2 d f e
\]

are both true, thus \(r' \mid df/e \). Let \(j(q) = \tilde{j}(q) = \frac{q}{(q, |m|)} \). Then, by Lemmas 4.2 and 4.4 we have

\[
(7.13) \quad b(q) = \frac{1}{\varphi(q)} \cdot \frac{1}{\varphi(j(q))} \chi^\star\left(\frac{-m}{(q, |m|)}\right) \mu\left(\frac{j(q)}{r^*}\right) \chi^\star\left(\frac{j(q)}{r^*}\right) \tau(\chi^\star)
\]

\[
\cdot \mu(t \ell_2) \chi_1(t \ell_2) \tau(\chi_1) \mu(t \ell_1) \chi_2(t \ell_1) \tau(\chi_2),
\]

where \(q = q_0 t = q_0 h k ; h = \prod_{p \mid t, p \mid m} p ; k = \prod_{p \mid t, p \mid m} t \). Taking \(q = q_0 \), that is, \(t = 1 \), we obtain \((7.4) \). Since \((q_0 h k, |m|) = h(q_0, |m|) \) we have \(j(q_0 h k) = kj(q_0) = k q_1 \). Taking into account \((7.10) \), in the case of \(b(q_0 t) \neq 0 \) we have, from \((7.13) \),

\[
(7.14) \quad b(q_0 t) = b(q_0) \chi^\star(h) \mu(k) \chi^\star(k) \chi_1(k h) \chi_2(k h) \frac{\varphi^2(k) \varphi(h)}{\varphi^2(k) \varphi(h)}
\]

\[
= b(q_0) \frac{\mu(k)}{\varphi^2(k)} \cdot \frac{1}{\varphi(h)}.
\]
Now (7.14) shows (7.6). Further,

\[(7.15) \quad \sum_{t=1}^{\infty} |b(q_0 t)| = |b(q_0)| \prod_{p|q_0, p|m} \left(1 + \frac{1}{(p-1)^2}\right) \prod_{p|q_0, p|m} \left(1 + \frac{1}{p - 1}\right) \leq |\mathcal{S}(\chi_1, \chi_2, m)| \cdot \prod_{p>2} \left(\left(1 + \frac{1}{(p-1)^2}\right)/\left(1 - \frac{1}{(p-1)^2}\right)\right) = B|\mathcal{S}(\chi_1, \chi_2, m)|.\]

The first equality in (7.15) shows \(b(q_0) \neq 0\) when \(A(\chi_1, \chi_2, m) \neq 0\), and so by (7.4) we also have (7.5). Thus it remains to prove \(|\mathcal{S}(\chi_1, \chi_2, m)| \leq \mathcal{S}(m)\) and (7.8).

Let us investigate the ratio \(\xi\) of the two sides \(|\mathcal{S}(\chi_1, \chi_2, m)|\) and \(\mathcal{S}(m)\) separately for each prime. If \(p \nmid \{r_1, r_2\}\) we clearly have the same factor on both sides. So we have to study the following cases:

(i) If \(p \mid \ell_i\), then by \((m, \ell_i) = 1\) (see (7.11)) we have \(p \nmid m\), thus \(p > 2\). Now clearly

\[(7.16) \quad \xi(p) = \frac{p}{(p-1)^2} : \frac{p(p-2)}{(p-1)^2} = \frac{1}{p-2} \leq 1.\]

Equality holds if and only if \(\ell_i = 3\); otherwise \(\xi \leq 1/3\).

(ii) Suppose \(p \mid d\); then by definition \(p \nmid m\), so \(p > 2\). Let \(p^\alpha \parallel d\) \((\alpha \geq 1)\), \(p^\beta \parallel r^*\). Then \(r^* \mid df/e\) implies \(0 \leq \beta \leq \alpha\). Thus, writing \(\xi\) for \(\xi(p)\),

\[(7.17) \quad \xi = \frac{p}{p-1} \cdot \frac{p^{\beta/2}}{p^{\alpha-1}(p-1)} : \frac{p(p-2)}{(p-1)^2} = \frac{p^{1+\beta/2-\alpha}}{p-2} \leq \frac{p^{1-\alpha/2}}{p-2}.\]

Now, if \(p \geq 5\) we have \(\xi \leq \sqrt{5}/3\) for every \(\alpha \geq 1\). Let \(p = 3\). Then for \(\alpha \geq 3\) we have \(\xi \leq 1/\sqrt{3}\). For \(\alpha = 2\), \(\beta \leq 1\) we have \(\xi \leq 1/\sqrt{3}\). In the case of \(\alpha = \beta = 2\) we have \(\xi = 1\).

For \(\alpha = 1\) \((p = 3)\) we have \(3^1 \parallel r_1, 3^1 \parallel r_2\), so the mod 3 component of both \(\chi_1\) and \(\chi_2\) is \(\chi_1|3 = \chi_2|3 = \chi'\), the only real non-principal character mod 3. Thus \(\chi'|3 = \chi_1 \chi_2|3 = \chi_0\), and consequently \(3 \nmid r^*, \beta = 0\). In this case we again have equality in (7.17). Summarizing, we have equality in (7.17) if and only if either \(d = 3, 3^1 \parallel r_1, 3^1 \parallel r_2\), or \(d = 9\) and \(3^2 \parallel r^* \iff 3^2 \parallel r^*\).

Otherwise \(\xi \leq \sqrt{5}/3\).

(iii) Finally, if \(p \mid f\), then by definition \(p \mid e, p \mid m\). Let \(p^{\alpha} \parallel f/e, p^{\beta} \parallel r^*\) \((0 \leq \beta \leq \alpha)\). Then

\[(7.18) \quad \xi = \frac{p}{p-1} \cdot \frac{p^{\beta/2}}{\varphi(p^{\alpha})} : \frac{p}{p-1} = \frac{p^{\beta/2}}{\varphi(p^{\alpha})} \leq \frac{p^{\alpha/2}}{\varphi(p^{\alpha})}.\]
If $\alpha = 0$ then clearly $\beta = 0$ and $\xi = 1$ (for every p). Let us suppose $\alpha \geq 1$. If $p \geq 3$ then $\xi \leq \sqrt{3}/2$. Let $p = 2$. Then for $\alpha \geq 3$ we have $\xi \leq 1/\sqrt{2}$. For $\alpha = 2$, $\beta \leq 1$ we have $\xi \leq 1/\sqrt{2}$. In the case of $\alpha = \beta = 2$ we have $\xi = 1$.

If $\alpha = 1$ there is no non-principal character mod 2, so $\beta = 0$ and $\xi = 1$.

Summarizing, $\xi = 1$ holds if and only if either $\alpha = \beta = 0$, p arbitrary, that is, $p \nmid f/e$, or

$$p = 2, \ \alpha = 1, \ \beta = 0 \quad \text{or} \quad p = 2, \ \alpha = \beta = 2,$$

that is,

$$2 \mid f/e, \ 2 \nmid r' \iff 2 \nmid r^* \quad \text{or} \quad 2^2 \mid f/e, \ 2^2 \mid r' \iff 2^2 \mid r^*.$$

Otherwise $\xi \leq \sqrt{3}/2$.

The considerations in (i)-(iii) really show that we always have

$$|\mathcal{S}(\chi_1, \chi_2, m)| \leq \mathcal{S}(m).$$

Further,

$$|\mathcal{S}(\chi_1, \chi_2, m)| \leq (\sqrt{3}/2)\mathcal{S}(m)$$

unless (7.8) holds. ■

8. Reduction for zeros near $\sigma = 1$. In this section we will show (using the notation of Section 6) that error terms arising from S_1^2 and $S_1 S_0$ make a contribution of

$$O(L^8 X^{1-b/82})$$

to $R_1(m)$. Thus, further on, it is enough to study the integral containing S_1^2.

First we estimate the term with S_1^2. Using the notation from Sections 1, 3 and 6, by Lemmas 4.1–4.2 and (6.1) we have, with the definition of $W_1(\chi)$ in (6.6),

$$\left| \sum_{q \leq P} \sum_{a(q,a)} S_1^2(\alpha) e(-m\alpha) d\alpha \right|$$

$$\leq \sum_{q \leq P} \sum_{a(q)} \left| S_1^2(\alpha) \right| d\alpha$$

$$= \sum_{q \leq P} \sum_{a(q)} \frac{1}{\phi(q)} \frac{1}{\varphi^2(q)} \left| \frac{1}{\varphi(q)} \sum_{\chi(a)} \chi(\alpha) \tau(\overline{\chi}) S_1(\chi, \eta) \right|^2 d\eta$$

$$= \sum_{q \leq P} \frac{1}{\varphi^2(q)} \sum_{\chi(q)} \sum_{\chi'(q)} \tau(\overline{\chi}) \overline{\tau(\chi')} \sum_{a(q)} \chi(a) \overline{\chi'(a)} \frac{1}{\varphi(q)} \sum_{\chi(a)} \chi(\alpha) S_1(\chi, \eta) S_1(\chi', \overline{\eta}) d\eta$$
\[= \sum_{q \leq P} \frac{1}{\varphi(q)} \sum_{\chi(q)} |\tau(\chi)|^2 \int \iota_{1/(qQ)} |S_1(\chi, \eta)|^2 \, d\eta \]

\[= \sum_{q \leq P} \frac{1}{\varphi(q)} \sum_{\chi(q)} |\tau(\chi)|^2 \int \iota_{1/(qQ)} |S_1(\chi^*, \eta)|^2 \, d\eta \]

\[\leq \sum_{r \leq P} \sum_{\chi(r)}^* r \int \iota_{1/(rQ)} |S_1(\chi)\eta|^2 \, d\eta \sum_{\ell \leq P/r, (\ell, r) = 1} \frac{1}{\varphi(r\ell)} \]

\[\leq \sum_{r \leq P} \frac{r}{\varphi(r)} \sum_{\chi(r)}^* (W_1(\chi))^2 \sum_{\ell \leq P/r} \frac{1}{\varphi(\ell)} \ll L^2 \sum_{r \leq P} \sum_{\chi(r)}^* W_1^2(\chi). \]

As we can see, at the cost of a logarithm we could get rid of all cross-products \(S_1(\chi, \eta)S_1(\chi', \eta)\) with \(\chi \neq \chi'\). The loss of the logarithm would be crucial near \(\sigma = 1\) but not here. We can estimate \(W_1(\chi)\) (\(\chi\) primitive mod \(r\), \(1 \leq r \leq P\)) by means of Gallagher’s lemma (Lemma 4.11) as follows:

\[(8.3) \quad W_1^2(\chi) \ll \int X_{X_1-Y} Y \sum_{n \leq n \leq X_1+Y} a_n^2 \, dx \leq I_1(\chi) + I_2(\chi) + I_3(\chi), \]

where \(X_2 = \max(X_1, 6Y)\),

\[(8.4) \quad Y = rQ/2 \quad (\leq X/2), \quad I_1 = \int_{X_1-Y}^{X_2} \quad I_2 = \int_{\min(X_2, X-Y)}^{X} \quad I_3 = \int_{X-Y}^{X} \]

(\(I_2\) is missing if \(Y \geq X/7\), and with the notation \([1.26] - [1.27]\),

\[(8.5) \quad a_n = \begin{cases} \chi(p) \log p - b_n & \text{if } n = p, \\ -b_n & \text{if } n \neq p, \end{cases} \quad b_n = \sum_{\ell \leq \ell, |\gamma| \leq \sqrt{X}} A(\ell) c^{-1} \]

The primed summation sign means that the summation is extended to \(\ell = 1\) in the case of \(\chi\) mod 1.

The treatment of the two tails, \(I_1\) and \(I_3\), is simpler and basically the same. Using the explicit form of \(\psi(x, \chi)\) (see \([4.16]\)), for any \(x \in [X - Y, X]\) we obtain, in view of Lemma 4.15,

\[(8.6) \quad \frac{1}{Y} \sum_{x \leq n \leq X} a_n = \frac{1}{Y} \sum_{\ell \leq \ell, |\gamma| \leq \sqrt{X}} B_{\ell, \gamma}(x, \chi) + O\left(\frac{\sqrt{X}}{Y} L^2\right) \]

\[\ll \sum_{\ell \leq \ell, |\gamma| \leq \sqrt{X}} \min\left(\frac{X^{1-\delta}}{Y(|\gamma| + 1)}, X^{-\delta}\right) + O\left(\frac{\sqrt{X}}{Y} L^2\right). \]
The effect of the last error terms of the form $L^2 \sqrt{X/Y}$ is, after squaring, integrating and summing for all characters,

$$
\ll L^4 \sum_{r \leq P} r \frac{XrQ}{(rQ)^2} = \frac{L^4 XP}{Q} = L^4 P^2.
$$

We divide the remaining zeros into $\ll L^3$ classes according to their real and imaginary parts and the conductor r of the relevant primitive character as follows:

$$
r \sim R, \quad (2^\mu - 1) \frac{X}{RQ} \leq |\gamma| \leq (2^{\mu+1} - 1) \frac{X}{RQ}, \quad h \nu - \frac{1}{\mathcal{L}} \leq \delta \leq h \nu, \quad h \nu = \frac{\nu}{\mathcal{L}},
$$

where

$$
2^k = R \leq P/2, \quad \mu = 0, 1, \ldots, \lfloor \log \sqrt{X}/\log 2 \rfloor, \quad b\mathcal{L} \leq \nu \leq \lfloor \mathcal{L}/2 \rfloor.
$$

Let us denote by $J_3(R, M, h)$ the contribution of any given class (R, μ, ν) to $\sum_r \sum_{\chi(r)}^* I_3(\chi)$ (with the notation $2^\mu = M$). Then by the Cauchy–Schwarz inequality and $X/Y = 2P/r$ we have (the conditions $R \geq 1$, $M \geq 1$ will be omitted)

$$
\sum_r \sum_{\chi(r)}^* I_3(\chi) \ll L^6 \max_{R \leq P, M \leq X} \frac{J_3(R, M, h)}{b \leq h \leq 1/2}
$$

\[\ll L^6 \max_{R \leq P, M \leq X} \frac{XM}{RQ} \mathcal{L} \frac{RQ}{M} \cdot M^{-1} N^* \left(1 - h, \frac{XM}{RQ}, 2R\right) \cdot X^{-2h},\]

\[= XL^7 \max_{R \leq P, M \leq X} \frac{M^{-1} N^* \left(1 - h, \frac{XM}{RQ}, 2R\right) \cdot X^{-2h}}{b \leq h \leq 1/2}.\]

If $h \leq 3/8 - \varepsilon$ we apply the imperfect density theorem of Heath-Brown (Lemma 4.19) to obtain

$$
M^{-1} N^* \left(1 - h, \frac{XM}{RQ}, 2R\right) X^{-2h}
$$

\[\ll \left(R^2 \frac{P^{6/5}}{R^{6/5}}\right)^{(20/9+\varepsilon)h} M^{(8/3+6\varepsilon/5)h} X^{-2h},\]

\[\ll (X^{-1} P^{20/9+\varepsilon})^{2h} \ll X^{-(1-(20/9+\varepsilon)\varepsilon)2h} \ll X^{-b/41}.
$$

If $3/8 - \varepsilon \leq h \leq 1/2$ we will use Lemma 4.16. Then since $3h \leq 1 + h$ we have
(8.12) \[M^{-1}N^\ast \left(1 - h, \frac{XM}{RQ}, R \right) X^{-2h} \]
\[\ll L^9 \left(R^2 \cdot \frac{P}{R} \right)^{\frac{3h}{1+\varepsilon}} M^{3h-1} X^{-2h} \]
\[\ll L^9 (P^{\frac{3}{1+\varepsilon}} X^{-1})^{2h} \ll L^9 \cdot X^{((24/11+2\varepsilon)\vartheta-1)(3/4-2\varepsilon)} \ll X^{-1/45}. \]

Since the estimation of \(I_1 \) runs completely analogously, we get

\[\sum_{r \leq P} \sum_{\chi(r)}^\ast (I_1(\chi) + I_3(\chi)) \ll L^7 X^{1-\varepsilon/41}. \]

Suppose now that \(X_2 < X - Y \), that is, \(Y < X/7 \), otherwise we are ready. If \(x \in (X_2, X - Y) \), then \(x \geq 6Y \) and

\[[x, x + Y] \subset [X_1, X]. \]

Thus the condition \(X_1 < n \leq X \) can be omitted in (8.3). So let us suppose that \(Y \leq x/6 \) and consider, with the notation (8.5),

\[I_2'(\chi, x) = Y^{-2} \int_x^{2x} |\vartheta(u + Y) - \vartheta(u)|^2 du, \quad \vartheta(u) = \sum_{n \leq u} a_n. \]

For this integral we can apply the idea of Saffari and Vaughan [22] to replace \(u + Y \) by \(u + \theta u \). Although the proof runs completely analogously to [22, Lemma 6], for the sake of completeness we will present their arguments here, since our function \(\vartheta(u) \) is different.

Suppose that \(2Y \leq v \leq 3Y \) and \(x \leq u \leq 2x \). In this case we have \(Y \leq v - Y \leq 2Y \) and \(x \leq u + Y \leq u + v \leq 3x \). Further,

\[|\vartheta(u + Y) - \vartheta(u)|^2 \]
\[\leq 2(|\vartheta(u + v) - \vartheta(u)|^2 + |\vartheta(u + Y + v - Y) - \vartheta(u + Y)|^2). \]

Thus on the right-hand side the starting points of the intervals are in \([x, 3x] \) and the length is in \([Y, 3Y] \). So we can write (8.16) for all possible values of \(v \in (2Y, 3Y) \) for any \(u \) to obtain

\[Y \int_x^{2x} |\vartheta(u + Y) - \vartheta(u)|^2 du \]
\[\leq 4 \int_x^{3x} \int_y^{3Y} |\vartheta(u + v') - \vartheta(u)|^2 dv' du \]
\[= 4 \int_x^{3x} \int_{3Y/u}^{3Y/u} |\vartheta(u + \theta u) - \vartheta(u)|^2 u d\theta du \]
Goldbach problem and the Generalized Twin Prime Problem

\[
\frac{3x}{Y/x} \leq 4 \cdot 3x \int_{x}^{3x} \left| \vartheta(u + \theta u) - \vartheta(u) \right|^2 d\theta \, du
\]

\[
= 12x \int_{Y/(2x)}^{3x} \left(\int_{x}^{3x} \left| \vartheta(u + \theta u) - \vartheta(u) \right|^2 d\theta \right) \, du
\]

\[
\leq 30Y \max_{Y/(2x) \leq \theta \leq 3Y/x} \int_{x}^{3x} \left| \vartheta(u + \theta u) - \vartheta(u) \right|^2 du.
\]

Hence,

(8.18) \(I'_2(\chi, x) \leq 30Y^{-2} \max_{Y/(2x) \leq \theta \leq 3Y/x} \int_{x}^{3x} \left| \vartheta(u + \theta u) - \vartheta(u) \right|^2 du. \)

Similarly to (8.6) we have

(8.19) \(\vartheta(u + \theta u) - \vartheta(u) = \sum_{\theta = \theta_x}^{u} \frac{u^\theta((1 + \theta)^\theta - 1)}{\theta} + O\left(\frac{\sqrt{X} L^2}{Y} \right). \)

The contribution coming from the term \(L^2 \sqrt{x}/Y \) towards the final value of \(\sum_{r \leq P} \sum_{\chi(r)} I_2(x) \) will be similar to (8.7):

(8.20) \(\ll L^4 \sum_{x = 2^\nu}^{x \leq X} \sum_{r \leq P} \frac{x \cdot X}{r^2 Q^2} \ll \frac{L^5 X^2}{Q^2} = L^5 P^2. \)

Using the trivial inequality, for \(0 \leq \theta \leq 1, \)

(8.21) \(\frac{(1 + \theta)^\theta - 1}{\theta} \ll \min\left(\theta, \frac{1}{|\theta|} \right) \)

after squaring and integration in (8.19), abbreviating the summation conditions by \(\sum'' \), for the term \(I''_2(\chi, x) \) containing the zeros we obtain the following inequality:

(8.22) \(I''_2(\chi, x) \ll Y^{-2} \sum_{\theta} \sum_{\theta'} \sum_{\gamma} \frac{|x^{\theta + \theta' + 1}|}{|\theta + \theta' + 1|} \min\left(\theta, \frac{1}{|\theta|} \right) \min\left(\theta, \frac{1}{|\theta'|} \right) \)

\(\ll Y^{-2} \sum_{\theta} \sum_{\theta'} \sum_{\gamma} \frac{\theta x^{3-\delta-\delta'}}{1 + |\gamma - \gamma'|} \min\left(\theta, \frac{1}{|\theta|} \right) \)

\(\ll Y^{-1} \sum_{\theta} \sum_{\theta'} \sum_{\gamma} L^2 x^{2-2\delta} \min\left(\theta, \frac{1}{|\theta|} \right). \)
Using the same classification of moduli and zeros as in (8.9) (with \(x \) in place of \(X \)), by (8.11) and (8.12) we obtain

\[
\sum_{r \leq x/Q} \sum^* I''_2(\chi, x) \ll \mathcal{L}^5 \max_{x \leq M \leq X} \left(1 - h, \frac{xM}{RQ}, 2R \right) x^{2-2h}
\]

\[
\ll \mathcal{L}^5 \max_{R \leq P, 1 \leq M \leq X} \min_{b \leq h \leq 1/2} M^{-1} N^* \left(1 - h, \frac{X}{RQ}, 2R \right) X^{1-2h}
\]

\[
\ll \mathcal{L}^5 X^{1-b/41}.
\]

Summing over \(x = 2^{\nu} \), \(X/2 \leq 2^{\nu} \leq X \), from (8.20)–(8.23) we finally have

\[
\sum_{r \leq P} \sum^* I_2(\chi) \ll \mathcal{L}^6 X^{1-b/41} + \mathcal{L}^5 P^2 \ll \mathcal{L}^6 X^{1-b/41}.
\]

This together with (8.2)–(8.4) and (8.13) gives the estimate

\[
\int_{\mathbb{R}} |S_2^0(\alpha)|^2 \, d\alpha \ll \mathcal{L} \sum_{r \leq P} \sum^* W_1^2(\chi) \ll \mathcal{L}^8 X^{1-b/41}.
\]

Since the above arguments were valid for any \(b \geq 0 \), mutatis mutandis we have

\[
\int_{\mathbb{R}} |S_0(\alpha)|^2 \, d\alpha \ll \mathcal{L}^8 X.
\]

Thus, together with (8.25), by the Cauchy–Schwarz inequality we obtain

\[
\int_{\mathbb{R}} |S_0(\alpha)S_1(\alpha)| \, d\alpha \ll \mathcal{L}^8 X^{1-b/82}.
\]

Summarizing, we have proved

\[
R_1(m) = \int_{\mathbb{R}} S^2(\alpha)e(-m\alpha) \, d\alpha
\]

\[
= \int_{\mathbb{R}} S_0^2(\alpha)e(-m\alpha) \, d\alpha + O(\mathcal{L}^8 X^{1-b/82}).
\]

9. Reduction to generalized exceptional zeros. We will continue with the investigation of \(S_0^2 = (S_2 + S_3)^2 \) and show that the contributions of \(S_2^2 \) and \(S_2S_3 \) to \(R_1(m) \) are both

\[
O_{\eta_0}(\mathbb{G}(m)e^{-c(\eta_0)H X}).
\]

If there is no Siegel zero, then (8.1) and (9.1) will imply that the study of \(S(\alpha) \) on the major arcs can be restricted to that of \(S_3(\alpha) \). Note that \(S_3(\alpha) \) contains only a bounded number of terms, since by Lemma 4.18 there are
only \(c(\eta_0)e^{CH} \) zeros in the definition of \(S_3(\alpha) \). If there is a Siegel zero then we need an estimate sharper than (9.1). This will be made possible by the Deuring–Heilbronn phenomenon (Lemma 4.22). This shows that a part of the region associated with the definition of \(S_2(\alpha) \) will be free of zeros of any \(L \)-functions with a primitive character modulo any \(r \leq P \).

Now we have to be more careful than in Section 8, because we are not allowed to loose any logarithms. First we consider \(S_2^2(\alpha) \). By Main Lemma 1, with the notation of Section 2 and \(r(\chi) = \text{cond} \chi, r(\chi') = r', B = \prod_{p>2} (1 + 2/p(p - 2)) \), similarly to (6.5), with \(W_2(\chi) \) defined by (6.6), we have

\[
(9.2) \quad \left| \sum_{q \leq P} \sum_{\alpha} S_2^2(\alpha)e(-m\alpha) d\alpha \right| \leq \sum_{[r(\chi),r(\chi')]} |c(\chi,\chi',q,m)| \int \frac{S_2(\chi,\eta)S_2(\chi',\eta)e(-mn\eta) d\eta}{1/(q\eta)} \leq \sum_{[r(\chi),r(\chi')]} |c(\chi,\chi',q,m)| \int \frac{|S_2(\chi,\eta)||S_2(\chi',\eta)| d\eta}{1/Q[r,r']} \leq B \mathcal{S}(m) \left(\sum_{r(\chi)} \sum_{r(\chi')} W_2(\chi) \right)^2,
\]

in view of (7.7).

We will treat \(W_2(\chi) \) similarly, but it is somewhat simpler than \(W_1(\chi) \) in Section 8. For example, the tails will be estimated in the same way as the essential part. The Dirichlet series appearing in the definition of \(S_2(\chi,\eta) \) is now (cf. (6.1)–(6.4))

\[
(9.3) \quad b_n' = \sum^+ A(\rho) n^{\rho - 1},
\]

where \(\sum^+ \) has summation conditions

\[
\rho = \rho_\chi, \quad H/L < \delta \leq b, \quad |\gamma| \leq \sqrt{X},
\]

where \(H \) is a large constant to be chosen later.

In order to estimate \(\sum \sum^* W_2(\chi) \) by Gallagher’s lemma (Lemma 4.11) let us consider first, for a fixed \(\chi \), an arbitrary interval of type \((x,x+y)\), where

\[
(9.4) \quad 1 \leq x \leq X, \quad 1 \leq y \leq Y = rQ/2,
\]
and again apply Gallagher’s lemma (Lemma 4.11). Then for any \(\chi \), by Lemma 4.7,
\[
\frac{1}{Y} \sum_{n=x}^{x+y} b_n' = \sum_{\varrho} \frac{1}{Y} \left\{ \frac{(x+y)^{\varrho} - x^{\varrho}}{\varrho Y} + O\left(\frac{1}{Y} \right) \right\} \ll \sum_{\varrho} x^{-\delta} \min\left(\frac{y}{Y}, \frac{X}{|\varrho|Y} \right) + Y^{-1} N(1 - b, \sqrt{X}, \chi).
\]

The total contribution of the last error term to \(\sum_{r \leq P} \sum_{\chi(r)} W_2(\chi) \) after squaring, summing and integrating will be, by Lemma 4.16, for any \(b \leq 1/4 \),
\[
\ll \sqrt{X} L^C \max_{R \leq P} (RQ)^{-1} N^* \left(\frac{3}{4}, \sqrt{X}, R \right) \ll \frac{\sqrt{X} L^C P^{1/5} X^{3/10}}{Q}
\]
\[
\ll L^C X^{1/3},
\]
which is negligible.

Denoting by \(W_2'(\chi) \) the contribution of zeros to \(W_2(\chi) \) after squaring, integrating and summing, let us define the positive coefficients
\[
a_{\varrho} = \min\left(1, \frac{X}{QR|\varrho|} \right) = \min\left(1, \frac{P}{R|\varrho|} \right) \quad \text{for } r \in [R, RX^\varepsilon].
\]

Then if \(b \leq 1/4 \) we have \(\delta \leq 1/4 \) and so
\[
(W_2'(\chi))^2 \ll \int_1^X \left(\sum_{\varrho} a_{\varrho} x^{-\delta} \right)^2 \, dx = \sum_{\varrho} \sum_{\varrho'} a_{\varrho} a_{\varrho'} \int_1^X x^{-\delta-\delta'} \, dx.
\]
Hence
\[
W_2'(\chi) \ll \left(\sum_{\varrho} \sum_{\varrho'} a_{\varrho} a_{\varrho'} X^{1-\delta-\delta'} \right)^{1/2} = X^{1/2} \sum a_{\varrho} X^{-\delta}.
\]

Let us now consider the contribution to \(\sum \sum W_2'(\chi) \) of all zeros \(\varrho = \varrho_\chi \) with \(\cond \chi = r \) and
\[
(2^\mu - 1) \frac{P}{R_\nu} \leq |\gamma| \leq (2^{\mu+1} - 1) \frac{P}{R_\nu}, \quad r \in [R_\nu, R_\nu X^\varepsilon], \quad R_\nu = X^{\nu \varepsilon} \leq P,
\]
where \(\varepsilon \) is a small absolute constant, to be chosen later, depending on \(\eta \). Let \(M_\mu = (2^{\mu+1} - 1) = [2\sqrt{X} R_\nu / P] \). Let us now fix the constant \(b = b(\eta_0) \leq 1/6 \) in such a way that with the notation
\[
c_2(\delta) = \frac{3}{2(1 - 4\delta)}
\]
\[
< \frac{3}{4} \left(\frac{2}{1 - 4\delta} + \frac{1}{(1 - 2\delta)(1 - 4\delta)} \right)
\]
\[
= \frac{3(3 - 4\delta)}{4(1 - 4\delta)(1 - 2\delta)} = c_1(\delta),
\]
the relation
\[c_3(\delta) = 1 - \left(\frac{4}{9} - \eta \right) c_1(\delta) > 0 \]
should hold for \(0 \leq \delta \leq b \) (that is, for \(\delta = b \)), and apply Lemma 4.20. From (9.7)–(9.11), in view of \(\delta c_2(\delta) \leq b c_2(b) \leq 3/4 \), by partial integration with respect to \(\delta \) we obtain
\[
(9.12) \quad X^{-1/2} \sum_{r \leq P} \sum' W'_2(\chi) \leq \sum_{R_\nu \leq P} \sum_{M_\mu \leq X} M_\mu^{-1} \int_{H/L}^b X^{-\delta} d_\delta N^* \left(1 - \delta, \frac{PM_\mu}{R_\nu}, R_\nu, X^\varepsilon \right) d\delta
\]
\[
\leq \varepsilon \max_{R_\nu \leq P} \sum_{M_\mu \leq X} M_\mu^{-1} \left\{ X^{-b} N^* \left(1 - b, \frac{PM_\mu}{R_\nu}, R_\nu, X^\varepsilon \right) \right. \left. + L \int_{H/L}^b N^* \left(1 - \delta, \frac{PM_\mu}{R_\nu}, R_\nu, X^\varepsilon \right) X^{-\delta} d\delta \right\}
\]
\[
\leq \varepsilon \max_{R_\nu < P} \sum_{M_\mu \leq X} M_\mu^{-1+bc_2(b)(1+\varepsilon)} \left(\frac{R_\nu^{c_1(b)} P^{c_2(b)}}{R_\nu^{c_2(b)}} X^{-1+3\varepsilon} \right)^b
\]
\[
+ L \int_{H/L}^b \left(\frac{R_\nu^{c_1(\delta)} P^{c_2(\delta)}}{R_\nu^{c_2(\delta)}} X^{-1+3\varepsilon} \delta \right) d\delta
\]
\[
\leq \varepsilon \left(P^{c_1(b)} X^{-1+3\varepsilon} \right)^b + L \int_{H/L}^b \left(P^{c_1(\delta)} X^{-1+3\varepsilon} \right)^\delta d\delta
\]
\[
\leq \varepsilon X^{-(c_3(b)-3\varepsilon)b} + L \int_{H/L}^b X^{-(c_3(b)-3\varepsilon)\delta} d\delta
\]
\[
\leq \varepsilon \frac{1}{c_3(b) - 3\varepsilon} e^{-(c_3(b)-3\varepsilon)H} \leq \eta_0 e^{-c_4(\eta_0)H}.
\]

Hence, from (9.2) we get
\[
(9.13) \quad \int_{2N} S_2^2(\alpha) e(-m\alpha) \, d\alpha \leq \eta_0 X \mathcal{S}(m) e^{-2c_4(\eta_0)H}.
\]

We can repeat the same procedure as above for \(S_3(\alpha) \) in place of \(S_2(\alpha) \) to obtain the same result with \(H = 0 \), that is,
\[
(9.14) \quad X^{-1/2} \sum_{r \leq P} \sum' W_3(\chi) \leq \eta_0 \mathcal{S}(m).
\]
Analogously to (9.2) we can estimate
\begin{equation}
S_2(\alpha)S_3(\alpha)e(-m\alpha) d\alpha \ll \mathcal{G}(m) \left(\sum_{\chi(r) \leq P}^* W_2(\chi) \right) \left(\sum_{\chi(r) \leq P}^* W_3(\chi) \right)
\end{equation}
\[
\ll \eta_0 \mathcal{G}(m)e^{-c_4(\eta_0)H}X.
\]

Summarizing, from (9.13) and (9.15) we have
\begin{equation}
M_2 S_2^2(\alpha) e(-m\alpha) d\alpha = M_3 S_3^2(\alpha) e(-m\alpha) d\alpha + O_{\eta_0}(\mathcal{G}(m)e^{-c(\eta_0)H}X).
\end{equation}

10. Effect of the generalized exceptional zeros. Finally, we examine the crucial part of the contribution of the major arcs, namely
\begin{equation}
\int_{\mathfrak{M}} S_2^2(\alpha) e(-m\alpha) d\alpha.
\end{equation}
As already mentioned in the previous section, $S_3(\alpha)$ consists of only a bounded number of terms if H is bounded: the main term, corresponding to the pole at $s = 1$, and possibly those arising from the generalized exceptional zeros ϱ with
\begin{equation}
\delta \leq H/L, \quad |\gamma| \leq \sqrt{X}.
\end{equation}

By Lemma 4.18 the number of generalized exceptional zeros in (10.2) is
\begin{equation}
\leq C e^{3H}
\end{equation}
with an absolute constant C, where H will be chosen to be a large constant ($H = H(\eta_0)$) depending on η_0. (The value of H will be determined later in the next section.) In the following we will omit the dependence of constants on η_0 in our notation. At any rate, if $\vartheta \leq 0.44$, that is, $\eta_0 = 4/9 - 0.44$ for example, then all constants will be absolute.

Let $\varrho_0 = 1$ and ϱ_ν ($\nu = 1, \ldots, M$) denote the possible generalized exceptional zeros of $L(s, \chi_\nu)$ with primitive characters χ_ν, possibly equal, belonging to conductors r_ν. Here $M = 0$ is naturally possible, in which case we only have the main term corresponding to $\varrho_0 = 1$. We list multiple zeros according to their multiplicity. Similarly to (6.5) we obtain
\begin{equation}
\sum_{\varrho_0=0} \sum_{\varrho_\nu=0} \sum_{q \leq P} \int_{\mathfrak{M}(q,a)} S_2^2(\alpha) e(-m\alpha) d\alpha
\end{equation}
\[
= \sum_{\nu=0}^M \sum_{\mu=0}^M \sum_{q \leq P} A(\varrho_\nu)A(\varrho_\mu) c(\chi_\nu, \chi_\mu, q, m) \int_{-1/(qQ)}^{1/(qQ)} T_{\varrho_\nu}(\eta)T_{\varrho_\mu}(\eta) e(-m\eta) d\eta.
\]

Until now the value of P could be arbitrary. However, if a $P_0 = X^{\vartheta_0}$ ($\vartheta_0 = 4/9 - \eta_0, \eta_0 > 0$) is given, we will choose P suitably within the range
Goldbach problem and the Generalized Twin Prime Problem

\[P \in [P_0 X^{-\varepsilon'}, P_0] \]

(\varepsilon' > 0, sufficiently small) so as to satisfy the following conditions (with \(\varepsilon_0 = \varepsilon'/10(M + 1)^2 \)):

1. If \([r_\mu, r_\nu] \leq P\) then \([r_\mu, r_\nu] \leq P X^{-\varepsilon_0}\) (\(\mu, \nu \in [0, M]\)),

2. If \(|\gamma_\nu| \leq \frac{P}{r_\nu} X^{\varepsilon_0}\) then \(|\gamma_\nu| \leq \frac{P}{r_\nu} X^{-4\varepsilon_0}\) (\(\nu \in [0, M]\)).

First we will show that the effect of singularity pairs \(\ell, \mu\) satisfying

\[P \frac{X^{\varepsilon_0}}{r_\ell} \leq |\gamma_\ell| \leq \sqrt{X} \]

will be negligible, namely

\[\ll \mathcal{S}(m) X^{1-\varepsilon_0} \]

for any pair \((\ell, \mu)\) \((\mu = 0, 1, \ldots, M)\). Similarly to (9.4)–(9.5), by Gallagher’s lemma (Lemma 4.11) we obtain

\[\frac{1}{(r_\ell Q)} \int_{-1/(r_\ell Q)}^{1/(r_\ell Q)} |T_{\varrho_\ell}^2(\eta)| \, d\eta \ll \int_{-r_\ell Q/2}^{r_\ell Q/2} \left| \frac{1}{r_\ell Q} \sum_{n=X_1}^{X} n^{\varrho_\ell-1} \right|^2 \, dx \]

\[\ll X \cdot \left(\frac{X^{1-\delta_\ell}}{r_\ell Q |\varrho_\ell|} \right)^2 \ll X^{1-2\delta_\ell - 2\varepsilon_0} \ll X^{1-2\varepsilon_0}. \]

Since by Parseval’s identity for any \(\mu\) and any \(r \geq 1\) we have trivially

\[\frac{1}{(r Q)} \int_{-1/(r Q)}^{1/(r Q)} |T_{\varrho_\mu}^2(\eta)| \, d\eta \leq \frac{1}{0} \int_{0}^{1} |T_{\varrho_\mu}^2(\eta)| \, d\eta = \sum_{n=X_1}^{X} n^{-2\delta_\mu} \leq X, \]

the Cauchy–Schwarz inequality yields, for all \(q\) with any \(\varrho_\ell\) in (10.7) and \([r_\ell, r_\mu] \mid q, \)

\[\frac{1}{(q Q)} \int_{-1/(q Q)}^{1/(q Q)} |T_{\varrho_\mu}(\eta)T_{\varrho_\ell}(\eta)| \, d\eta \ll X^{1-\varepsilon_0}. \]

This, together with (10.3), shows (10.8).

So we can reduce our attention to zeros \(\varrho_\nu\) satisfying

\[|\gamma_\nu| \leq \frac{P}{r_\nu} X^{-4\varepsilon_0} \]

and we can delete all others with an error of \(O(\mathcal{S}(m) X^{1-\varepsilon_0})\). Let us denote the remaining zeros (satisfying (10.12)) by \(\varrho_\nu\), \(\nu = 1, \ldots, K\). Now (10.12) implies immediately

\[\left| \frac{\gamma_\nu}{X_1} \right| = \frac{|\gamma_\nu|X^{\varepsilon_0}}{X} \leq \frac{X^{-3\varepsilon_0}}{r_\nu Q} \leq \frac{1}{qQ} \quad \text{if} \ q \leq X^{3\varepsilon_0 r_\nu}. \]
We will show the following

Proposition. Let ϱ_ν satisfy (10.13). Then

\[(10.14) \quad T_{\varrho_\nu}(\eta) \ll (X_1^{\delta_\nu} \eta)^{-1} \ll |\eta|^{-1} \quad \text{if} \quad |\gamma_\nu|/X_1 \leq |\eta| \leq 1/2.\]

Proof. Let us consider the trigonometric sum

\[(10.15) \quad U(\gamma_\nu, \eta, y) = \sum_{X_1 < n \leq y} n^{i\gamma_\nu} e(n \eta) = \sum_{X_1 < n \leq y} e(f(n)), \quad X_1 < y \leq X,
\]

where

\[(10.16) \quad f(u) = \frac{\gamma_\nu}{2\pi} \log u + \eta u.\]

For $u \in [X_1, X]$ we clearly have $f'(u) = \eta + \gamma_\nu/(2\pi u)$ monotonic, of the same sign as η, and since $|\gamma_\nu|/u \leq |\gamma_\nu|/X_1 \leq |\eta|$ we also have

\[(10.17) \quad |\eta|/2 < |f'(u)| < 3|\eta|/2.\]

Thus Lemmas 4.5 and 4.6 give

\[(10.18) \quad U(\gamma_\nu, \eta, y) \ll |\eta|^{-1}.\]

Now (10.14) follows by partial summation. □

The above proposition implies (with $\kappa = \pm 1$) that for any pair of remaining singularities ϱ_ν, ϱ_μ of $L'/L(s, \chi)$ $(\nu, \mu \in [0, K], q_0 = [r_\nu, r_\mu] \leq P)$ by (10.6), (10.12)–(10.13), and Main Lemma 1 (cf. (7.7) and (7.14, $t = hk$)) we have

\[(10.19) \quad \sum_{q \leq X^{3\varepsilon_0} \min(r_\nu, r_\mu), q \leq P \atop [r_\nu, r_\mu] |q} |c(\chi_\nu, \chi_\mu, q, m)| \cdot \int_{\kappa/(qQ)}^{\kappa/2} |T_{\varrho_\nu}(\eta)| |T_{\varrho_\mu}(\eta)| d\eta
\]

\[\ll Q \sum_{h \leq P/q_0} \sum_{k \leq P/hq_0} \mathcal{G}(m) \cdot \frac{q_0hk}{\varphi(h)\varphi^2(k)}
\]

\[\ll Q[r_\nu, r_\mu]X^{\varepsilon_0/2} \ll X^{1-\varepsilon_0/2}.\]

Using the trivial estimate

\[(10.20) \quad \int_0^1 |T_{\varrho}(\eta)T_{\varrho'}(\eta)| d\eta \leq \left(\int_0^1 |T_{\varrho}^2(\eta)| d\eta\right)^{1/2} \left(\int_0^1 |T_{\varrho'}^2(\eta)| d\eta\right)^{1/2} \leq X,
\]

for the contribution of the terms with

\[q > [r_\nu, r_\mu]X^{\varepsilon_0} = q_0X^{\varepsilon_0} \]
by (7.14), similarly to (10.19), we obtain the following bound:

\[(10.21) \quad X \sum_{t > X^{\varepsilon_0}} |c(\chi_\nu, \chi_\mu, q_0 t, m)| \ll X \mathcal{S}(m) \sum_{h|m} \frac{1}{\varphi(h)} \sum_{k \geq X^{\varepsilon_0}/h} \frac{1}{\varphi^2(k)} \]

\[\ll X \mathcal{S}(m) \sum_{h|m} \frac{h}{\varphi(h)} X^{-\varepsilon_0} \ll \mathcal{S}(m) X^{1-\varepsilon_0/2},\]

which is negligible.

However, if

\[X^3 \varepsilon_0 \min(r_\nu, r_\mu) \leq [r_\nu, r_\mu] X^{\varepsilon_0}\]

then in (1.22) we have

\[\sqrt{U} \geq \max\left(\frac{r_\nu}{r_\nu, r_\mu}, \frac{r_\mu}{r_\nu, r_\mu}\right) \geq X^{2\varepsilon_0}\]

and consequently by the Corollary to Main Lemma 1 (cf. (1.21)) we have

\[|\mathcal{S}(\chi_\nu, \chi_\mu, m)| \leq \mathcal{S}(m) X^{-\varepsilon_0}.\]

This implies, for the possible contribution of the intermediate terms with

\[X^3 \varepsilon_0 \min(r_\nu, r_\mu) \leq q \leq [r_\nu, r_\mu] X^{\varepsilon_0}\]

similarly to (10.19), the estimate (cf. (7.2) and (7.7) in Main Lemma 1)

\[O(X \mathcal{S}(m) X^{-\varepsilon_0}) \ll \mathcal{S}(m) X^{1-\varepsilon_0}.\]

Summarizing, for all pairs \(\nu, \mu \in [0, K]\) we have

\[(10.22) \quad \sum_{q \leq P} \left| c(\chi_\nu, \chi_\mu, q, m) \right| \left\lfloor \frac{k}{q} \right\rfloor^{\kappa/2} |T_{\vartheta_\nu}(\eta)T_{\vartheta_\mu}(\eta)| d\eta \ll \mathcal{S}(m) X^{1-\varepsilon_0/2}.\]

Now (10.22) means that we can extend the integration on the right-hand side of (10.4), for the remaining singularities \(\vartheta_\nu, \vartheta_\mu (\nu, \mu = 0, 1, \ldots, K)\) over the entire interval \([0, 1]\) in place of \([-1/(qQ), 1/(qQ)]\), with an error of size \(O(\mathcal{S}(m) X^{1-\varepsilon_0/2})\). Here the full integral can be expressed by the \(\Gamma\)-function (cf. Lemmas 4.8–4.9) as follows:

\[(10.23) \quad \int_{0}^{1} T_{\vartheta_\nu}(\eta)T_{\vartheta_\mu}(\eta)e(-m\eta) d\eta = \frac{\Gamma(e_\nu)\Gamma(e_\mu)}{\Gamma(e_\nu + e_\mu)} m^{e_\nu + e_\mu - 1} + O(X_1).\]

Further, as \([r_\nu, r_\mu] < P\) implies \([r_\nu, r_\mu] X^{\varepsilon_0} < P\), the effect of all terms with \(q \geq P\) is by (10.21) negligible. So, from (10.1), (10.4), (10.8), (10.19),...
and (10.22), (10.23) we have

\[(10.24)\quad \int_{\mathbb{R}} S_3^2(\alpha)e(-m\alpha)\,d\alpha \]

\[= \sum_{\nu=0}^{K} \sum_{\mu=0}^{K} \mathfrak{S}(\chi_\nu, \chi_\mu, m)A(\varrho_\nu)A(\varrho_\mu) \frac{\Gamma(\varrho_\nu)\Gamma(\varrho_\mu)}{\Gamma(\varrho_\nu + \varrho_\mu)}m^{\varrho_\nu + \varrho_\mu - 1} + O(X^{1-\varepsilon_0/2}).\]

Since for the generalized exceptional singularities we have

\[(10.25)\quad \frac{\Gamma(\varrho_\nu)\Gamma(\varrho_\mu)}{\Gamma(\varrho_\nu + \varrho_\mu)} \ll (\max(|\gamma_\nu|, |\gamma_\mu|))^{-1/2}\]

we can further learn from (10.24) that up to an error of \(O(\mathfrak{S}(m)X/\sqrt{T_0})\), zeros of height

\[(10.26)\quad |\gamma| \geq T_0\]

may be neglected as well. If we have no Siegel zero, the error \(\mathfrak{S}(m)X/\sqrt{T_0}\) will be admissible if we choose \(T_0\) large. This can be seen from (10.24) since we have our main term corresponding to \((\varrho_0, \varrho_0) = (1, 1)\) in the sum – which yields \(\mathfrak{S}(m)m\). Therefore, in addition to (10.24) the following formula summarizes the results of this section:

\[(10.27)\quad \int_{\mathbb{R}} S_3^2(\alpha)e(-m\alpha)\,d\alpha \]

\[= \sum_{\nu=0}^{K} \sum_{\mu=0}^{K} \mathfrak{S}(\chi_\nu, \chi_\mu, m)A(\varrho_\nu)A(\varrho_\mu) \frac{\Gamma(\varrho_\nu)\Gamma(\varrho_\mu)}{\Gamma(\varrho_\nu + \varrho_\mu)}m^{\varrho_\nu + \varrho_\mu - 1} + O(\mathfrak{S}(m)X/\sqrt{T_0}) + O(X^{1-\varepsilon_0/2}).\]

Relations (10.24), (10.27) actually prove the explicit formula (2.10) if we take into account (1.21)–(1.22), which follows from Main Lemma 1. Therefore our Theorem 1 is proved.

\[\text{11. Proof of Theorem 2.}\] Suppose that after choosing \(P\) suitably in (10.5)–(10.6) we have the following case:

There is a unique real primitive character \(\chi_1 \mod r_1\) with \(r_1 \leq P\) such that \(L(s, \chi_1)\) has a real zero \(\varrho_1 = \beta_1 = 1 - \delta_1\) with

\[(11.1)\quad \delta_1 \leq h/\log X = h/L,

where \(h\) is a constant, to be chosen at the end of the section, which may depend on \(\eta_0\).
We remark here that the constant h will be small and the constant H (see (2.8), (10.2)) will be large depending on h. We also remark that by the procedure in (10.5)–(10.6) we will actually have $r_1 = [1, r_1] \leq PX^{-\varepsilon_0}$.

In this case we will show, using the Deuring–Heilbronn phenomenon (Lemma 4.22), that $S_3(\alpha)$ consists of exactly two terms: corresponding to $\varrho_0 = 1$ and the Siegel zero ϱ_1 above. Further, some part of the region

$$\mathcal{R} = \{s : \sigma \geq 1 - b, |t| \leq \sqrt{X}\}$$

associated with the definition of terms in $S_2(\alpha)$ will be free of zeros of $L(s, \chi, r)$ if $r \leq P$. The size of the actual zero-free part of \mathcal{R} will depend on δ_1, that is, how close the real zero $\varrho_1 = \beta_1$ lies to 1.

We remark first that for an arbitrary primitive character $\chi_2 \mod r_2 \leq P$ and $\varrho_2 = 1 - \delta_2 + i\gamma_2$ with

$$(11.2) \quad \delta_2 \leq H/L, \quad |\gamma_2| \leq \sqrt{X},$$

in Lemma 4.22 we have the “trivial” estimate

$$(11.3) \quad Y = (r_1^2 r_2 k(|\gamma| + 2)^2/3) \leq (P^5 X)^3/8 \leq X^{29/24},$$

where $k = \text{cond } \chi_1 \chi_2$. If $\delta_2 < 1/200$ then by (4.20) this implies

$$(11.4) \quad h \geq \mathcal{L} \delta_1 \geq \frac{24}{29} \delta_1 \log Y \geq \frac{1}{2} \left(Y^{-\frac{1+\varepsilon}{1-6\delta_2}} \delta_2 \right) > \frac{1}{2} X^{-\frac{5}{4} \delta_2}.$$

From this we obtain

$$(11.5) \quad \delta_2 \mathcal{L} > \frac{4}{5} \log \frac{1}{2h} = H_0(h).$$

This means that choosing $H = H_0(h)$, the existence of a Siegel zero will really imply that there are no other zeros in the region (11.2).

Since $Y \geq r_1^{3/4}$, the ineffective theorem of Siegel (Lemma 4.14) implies, for any ε_1,

$$(11.6) \quad \delta_1 \geq \max(P^{-\varepsilon_1}, Y^{-\varepsilon_1}) \quad \text{if } X \geq X_1(\varepsilon), \, Y \geq Y_1(\varepsilon).$$

So for $\delta < 1/200$ we deduce from (4.21) the inequality

$$(11.7) \quad \delta_2 > \frac{1}{1 - 6\delta_2} \left(1 - \varepsilon_1 \right) \log \frac{2}{3 \delta_1 \log Y}.$$

Since by (11.6) the right-hand side is $< \varepsilon_1$, this implies

$$(11.8) \quad \delta_2 > (1 - 7\varepsilon_1) \log \frac{2}{3 \delta_1 \log Y} =: \varphi_0(Y)$$

for any ε_1 and $Y \geq Y(\varepsilon_1)$. Here $\varphi_0(Y) < \varepsilon$ if $Y \geq Y_2(\varepsilon, \varepsilon_1)$. Let us denote now (cf. (11.3))

$$(11.9) \quad (\delta_1 \mathcal{L})^{-1} =: G_1 \geq h^{-1}, \quad G(Y) = G := \frac{2}{3 \delta_1 \log Y} > \frac{G_1}{2}.$$
We recall (cf. [18]) that effectively \(\delta_1 \gg r_1^{-1/2} \), and consequently \(r_1 \gg L^2 \). Further, by Main Lemma 1 (cf. (7.5)–(7.7) and (1.21)–(1.22)),

\[
\mathcal{G}(\chi_0, \chi_0, m) = \mathcal{G}(m)
\]

(11.10)

\[
\mathcal{G}(\chi_1, \chi_0, m) \ll \frac{r_1}{\varphi^2(r_1)} \mathcal{G}(m) \ll \mathcal{G}(m) \frac{\log r_1}{r_1},
\]

\[
|\mathcal{G}(\chi, \chi', m)| \leq \mathcal{G}(m) \quad \text{for any } \chi, \chi'.
\]

Hence the asymptotic formula (10.24) tells us that

\[
\int_m S_3^2(\alpha)e(-m\alpha) d\alpha = \mathcal{G}(m)m + \mathcal{G}(\chi_1, \chi_1, m) \frac{\Gamma(1-\delta_1)^2}{\Gamma(2-2\delta_1)} m^{1-2\delta_1}
\]

\[
+ O\left(\mathcal{G}(m)m \frac{\log r_1}{r_1} \right) + O(X^{1-\varepsilon_0/2})
\]

\[
\geq \mathcal{G}(m)m(1-e^{-2\delta_1 \log m} + O(\delta_1) + O(X^{-\varepsilon_0/2}))
\]

\[
> 1.9 \cdot \mathcal{G}(m)m \frac{G_1}{G_1}.
\]

if \(m > X^{1-\varepsilon_0/3} \), since the last error term is negligible in view of Siegel’s theorem (cf. (11.6)).

Now, using the zero-free region (11.8) we try to show that, possibly for all \([m \in X/2, X] \),

\[
\int_m (S_2^2(\alpha) + 2S_2S_3(\alpha))e(-m\alpha) d\alpha \leq \frac{5\mathcal{G}(m)m}{6G_1}.
\]

(11.12)

We remark that (11.12) is sufficient to show our theorem, in view of the notation (6.3)–(6.4), the final result (8.28) of Section 8 and \(G_1^{-1} \geq P^{-\varepsilon} \) (cf. (11.6)). It would actually be possible to show (11.12) for all \(m \) for some smaller value of \(\vartheta \) than \(4/9 \) (\(\vartheta = 16/39 \)). However, we can also show for any \(\vartheta < 4/9 \) that (11.12) holds for all but

\[
O\left(\frac{X^{1+\varepsilon}}{P} \right)
\]

values \(m \in [X/2, X] \), which is an admissible size exceptional set; this is the same as or better than the cardinality of the exceptional set arising from the minor arcs (cf. (5.3)).

Let us now investigate \(\int (S_2^2(\alpha) + 2S_2(\alpha)S_3(\alpha))e(-m\alpha) d\alpha \). The number of zeros appearing in \(S_0(\alpha) \) is, by Lemma 4.18

\[
\ll (P^2 \sqrt{X})^{(2+\varepsilon)b} \ll X^{3b}
\]

(11.14)

and \(b \) can be chosen arbitrarily small. The number of pairs of zeros is consequently \(\ll X^{6b} \).
In the present section we will suppose $b < b_1(\eta_0)$ is a fixed constant, whose value will be determined later. First we can observe that the total contribution to $\sum \sum W'_2(x)$ in (9.12) of all zeros ϱ of all $L(s, \chi)$ belonging to primitive characters $\chi \mod r$ with

$$0 \leq \delta \leq b, \quad |\gamma| > \frac{P}{R} X^b, \quad r \in [R, RX^b], \quad R \leq P$$

is (according to the argument in (9.12)), for $b \leq 1/8$,

$$\ll X^{1/2} \sum_{2^\mu \geq X^b} (2^\mu)^{-1 + b c_2(b)(1+\varepsilon)} e^{-cH} \ll X^{1/2 - b/2}. \quad (11.16)$$

This implies that their total contribution to $\int S_2^2 + 2S_2S_3$, by (9.12), (9.14), satisfies the estimate

$$\ll \mathcal{S}(m) X^{1 - b/2} = o\left(\frac{\mathcal{S}(m) \cdot m}{G}\right) \quad (11.17)$$

(naturally $S_3(\alpha)$ is completely known by Section 10 explicitly, since it has now only the two terms $\varrho_0 = 1, \varrho_1 = 1 - \delta_1$).

So we will suppose from now on, in this section, that

$$0 \leq \delta \leq b, \quad |\gamma| \leq \frac{P}{R} X^b, \quad r \in [R, RX^b] \quad (11.18)$$

for the zeros associated with $S_2(\alpha)$ (cf. (6.3)–(6.4)).

Further, we can suppose that for the given m we have, for all $\chi_\nu \mod r_\nu$ and $\chi_\mu \mod r_\mu$,

$$|\mathcal{S}(\chi_\nu, \chi_\mu, m)| \geq X^{-b} \mathcal{S}(m) \quad (11.19)$$

since for the total contribution of pairs not satisfying (11.19) we have directly, by (9.2) and (9.12)–(9.14), the estimate

$$B \mathcal{S}(m) X^{-b} \left\{ \left(\sum_{r(\chi) \leq P}^* W_2(\chi) \right)^2 + \sum_{r(\chi) \leq P} \sum_{r(\chi') \leq P}^* W_2(\chi) W_3(\chi') \right\} \ll X^{1-b} \mathcal{S}(m). \quad (11.20)$$

However, according to Main Lemma 1, (11.19) implies (see (1.21)–(1.22))

$$U(\chi_\nu, \chi_\mu, m) \ll X^{3b} \quad (11.21)$$

In what follows we will delete pairs in S_2^2 violating (11.19). Note also that (11.21) moreover implies

$$X^{-3b/2} \ll r_\nu/r_\mu \ll X^{3b/2}. \quad (11.22)$$

Let us consider first the easier case $S_3 \cdot S_2$. In this case the term (ϱ_j, χ_j, r_j) coming from S_3 is either

$$1 \cdot \chi_0, 1 \quad \text{or} \quad (1 - \delta_1, \chi_1, r_1) \quad (j = 0 \text{ or } 1). \quad (11.23)$$
Let us suppose first that \(j = 1 \). If for the term \((\varrho, \chi, r)\), \((11.19)\) is false, we can delete it. So we can suppose here by \((1.21) - (1.22)\) that for all \((\varrho, \chi, r)\) in \(S_2 \) we have

\[(11.24) \quad r_j X^{-3b/2} \ll r \ll r_j X^{3b/2}, \quad \text{cond } \chi \chi_j \ll X^b\]

at least for the examination of \(S_2 \cdot S_{31} \), the part coming from \(\chi_1 \). Thus, for any pair \(\chi, \chi' \) of characters remaining in \(S_2 \) after the deletion, we have

\[(11.25) \quad \text{cond } \chi \chi' \leq \text{cond } \chi_1 \chi \cdot \text{cond } \chi_1 \chi' \ll X^{6b}.\]

Let us denote the corresponding new set by \(S'_{21} \). Now we are able to use our density Lemma 4.21, more exactly \((4.18)\). If the constant \(b \) is chosen sufficiently small in dependence on \(\eta_0 \) then for any \(R_\nu = X^{\nu b} \leq P \) and \(\delta \leq b \) we have

\[(11.26) \quad \sum_{R_\nu \ll R_\nu < r_\nu \ll P} \sum_{\chi'(r_\nu) \in S'_{21}} N \left(1 - \delta, \frac{P}{R_\nu} X^b, \chi_\nu \right) \ll_b \left(P X^{18b} \right)^{3/4 + \frac{3}{2} \sqrt{b} \delta} \ll_b P^{(3/4 + 2 \sqrt{b} \delta)} \ll_{\eta_0, b} X^{\delta/3}.\]

Thus by the Deuring–Heilbronn phenomenon \((11.8)\), similarly to \((9.12)\) we obtain

\[(11.27) \quad S_{231}^* := X^{-1/2} \sum_{r_\nu \leq P} \sum_{\chi'(r_\nu) \in S'_{21}} W'_2(\chi) \ll_{\eta_0, b} X^{-(2/3)\varphi_0(Y)}.\]

Now we will show an estimate sharper than \((11.3)\) for \(Y \). In view of formulas \((11.22)\) and \((11.18)\), for any pair \((\varrho, \chi)\), \(\chi \) mod \(r \), remaining in \(S'_{21} \) we have

\[(11.28) \quad Y = (r_2^2 r \kappa(|\gamma| + 2)^2)^{3/8} \ll \left(r^3 X^{6b} \left(\frac{P}{R} X^{2b} \right)^2 \right)^{3/8} \ll P^{9/8} X^{4b} \leq \sqrt{X}.\]

Substituting this into \((11.27)\) we obtain

\[(11.29) \quad S_{231}^* \ll_{\eta_0, b} \exp \left(-2 \frac{L}{3} \left(1 - 7\varepsilon_1 \right) \log G(\sqrt{X}) \right) \ll_{\eta_0, b} G(\sqrt{X})^{-4/3 + 10\varepsilon_1} \ll_{\eta_0, b} G(\sqrt{X})^{-5/4}\]

if \(\varepsilon_1 < 1/120 \). Now let us fix a small \(b \) in dependence on \(\eta_0 \). If \(h \) is chosen small enough in dependence on \(\eta_0 \), then \(G(\sqrt{X}) = 4G_1/3 \geq 4h^{-1}_1/3 \) will be sufficiently large in dependence on \(\eta_0 \), and so from \((11.29)\) we finally obtain

\[(11.30) \quad \left| \sum_{\mathfrak{m}} S_2(\alpha) S_3(\alpha) e(-m\alpha) \, d\alpha \right| < \frac{\mathfrak{G}(m) X}{12G_1} < \frac{\mathfrak{G}(m)m}{6G_1}.\]

If we take \(\varrho = \varrho_0 = 1, \chi_0, r_0 = 1 \), then by \((11.24)\) the undeleted terms satisfy

\[(11.31) \quad r \ll X^{3b/2}.\]
Consequently, using (4.19) in place of (4.18) we obtain the improved estimate X^{10b^2} in place of (11.26). Accordingly, instead of (11.27) we obtain the estimate $X^{-(1-10b)\varphi_0(Y)}$. Further,

\begin{equation}
Y = (r_1^2 r \kappa(|\gamma| + 2)^2)^{3/8}
\ll \left(P^{3r/2} \left(\frac{P}{r} X^{2b} \right)^2 \right)^{3/8} = P^{15/8} X^{3b/2} \leq X^{5/6}.
\end{equation}

Therefore, similarly to (11.29), for the analogous quantity S_{230}^* we obtain

\begin{equation}
S_{230}^* \ll_{\eta_0,b} \exp \left(-(1 - 10b) \mathcal{L} \frac{(1 - 7\varepsilon_1) \log G(X^{5/6})}{5\mathcal{L}/6} \right)
\ll_{\eta_0,b} G(X^{5/6})^{-7/6}.
\end{equation}

Therefore by (11.9) we also have

\begin{equation}
\left| \int_{2\pi} S_2(\alpha) S_3(\alpha) e(-m\alpha) \, d\alpha \right| < \frac{\mathcal{S}(m)m}{6G_1},
\end{equation}

where S_{30} denotes the part of S_3 corresponding to $\varrho_0 = 1$.

In order to treat $\int S_2^2(\alpha)$ let us consider any fixed pair $(\chi_j, \varrho_j) \mod r_j \in [R, RX^b]$ and consider the set $S(\varrho_j, \chi_j)$ of all pairs $(\varrho_{\mu}, \chi_{\mu})$, $\chi_{\mu} \mod r_{\mu}$, in S_2 for which (11.19) and therefore (11.21), (11.22) and (11.24) hold (with $\varrho = \varrho_j$). By symmetry we can suppose $\delta_{\mu} \geq \delta_j$.

The upper estimate for all possible $Y = Y(\varrho'), (\varrho', \chi') \in S(\varrho_j, \chi_j)$, will now be, again by (11.18), (11.22), (11.24), similarly to (11.28),

\begin{equation}
Y = (r_1^2 r_{\mu} \kappa(|\gamma_{\mu}| + 2)^2)^{3/8} \ll r_1^{3/4} k^{3/8} R^{3/8} \left(\frac{P}{R} \right)^{3/4} X^{2b}
\ll P^{3/2} k^{3/8} R^{-3/8} X^{2b}.
\end{equation}

If we would like to have an estimate valid for all $m \in [X/2, X]$, we can estimate k by P^2 from above and obtain

\begin{equation}
Y \ll P^{9/4} R^{-3/8} X^{2b} =: Z.
\end{equation}

Further, due to $\delta_{\mu} \geq \delta_j$ we obtain, as in (11.26)–(11.27),

\begin{equation}
X^{-1/2} \sum_{\chi_{\mu}} W_2''(\chi_{\mu}) \ll (P^{3/4+2\sqrt{5}} X^{-1})^{\delta_j},
\end{equation}

where the summation runs over all χ_{μ} for which there exists ϱ_{μ} with $\varrho_{\mu}, \chi_{\mu} \in S(\varrho_j, \chi_j)$.

On the other hand, the contribution to $\sum \sum W(\chi_j)$ of all pairs (χ_j, ϱ_j) with $\chi_j \mod r_j \in [R, RX^b]$, $|\gamma_j| \leq \frac{P}{r_j} X^b \leq \frac{P}{R} X^b$ is, multiplied by (11.37),
similarly to (9.12),

\begin{equation}
\leq L \int_{\varphi_0(Z)}^{b} (R^{c_1(b)} - c_2(b) P^{c_2(b)} X^{-1 + 6b} P^{3/4 + 2 \sqrt{b} X^{-1}}) d\delta
\end{equation}

\begin{equation}
\leq \eta, b (R^{3/4} P^{9/4 + 3 \sqrt{b}} X^{-2}) \varphi_0(Z).
\end{equation}

Let \(u = \log R/L \leq \vartheta - \eta_0 \). Then by (11.8) and (11.36) the above estimate is

\begin{equation}
\leq c(\eta_0, b) \exp \left(- \left(\frac{2 - (9/4) \vartheta - (3/4) u}{(9/4) \vartheta - (3/4) u} - \eta_0 \right) \log G \right)
\end{equation}

\begin{equation}
\leq c(\eta_0, b) G^{-1 - \eta_0}
\end{equation}

if now exceptionally \(P \leq X^{\vartheta - \eta} \) with \(\vartheta = 16/39 < 4/9 \), and \(b \) is small enough in dependence on \(\eta \).

In this way we get, analogously to (11.30)–(11.34),

\begin{equation}
\left| \int_{\mathfrak{m}} S_2^2(\alpha) e(-m\alpha) d\alpha \right| < \frac{\mathcal{S}(m)m}{2G_1}.
\end{equation}

In order to reach \(\vartheta = 4/9 \), we need a further idea. First we can remark that according to Main Lemma 1 we have

\begin{equation}
|\mathcal{S}(\chi_1, \chi_1, m)| \leq (\sqrt{3}/2) \mathcal{S}(m) \quad \text{if } r_1 \nmid 36m.
\end{equation}

In this case the effect of the Siegel zero cannot destroy the main term. Therefore in this case, according to Sections 8–10,

\begin{equation}
\int_{\mathfrak{m}} S_2^2(\alpha) e(-m\alpha) d\alpha = \int_{\mathfrak{m}} S_3^2(\alpha) e(-m\alpha) d\alpha + O(e^{-cH} X)
\geq \frac{1}{8} m \mathcal{S}(m) + O(e^{-cH} X) > \frac{1}{9} m \mathcal{S}(m),
\end{equation}

and we are ready without any further analysis. So we can suppose further on that \(r_1 \mid 36m \). In the argument (11.35)–(11.40) we are allowed to suppose formula (11.21), and consequently

\begin{equation}
g_\mu(m) = \frac{r_\mu}{(r_\mu, m)} \ll X^{3b}.
\end{equation}

Now we can distinguish two cases.

CASE A: \([r_1, r_\mu] \leq P\). In this case \(k = \text{cond} \chi_1 \chi_\mu \leq P \), and from (11.35) we now have

\begin{equation}
Y \ll P^{15/8} R^{-3/8} X^{4b} =: Z.
\end{equation}

This replaces (11.36). Both (11.37) and (11.38) remain true, whereas instead
of (11.39) we now have the final estimate
\begin{equation}
(11.45) \quad c(\eta, b) \exp \left\{ - \left(\frac{2 - (9/4) \vartheta - (3/4) u}{(15/8) \vartheta - (3/8) u} - \eta \right) \log G \right\} \leq c(\eta, b)G^{1-\eta}
\end{equation}
if \(u \leq \vartheta = 4/9 - \eta \), that is, \(R \leq P = X^{4/9-\eta} \).

Case B: \([r_1, r_\mu] > P\). Let us denote by \(d_{\mu k} \) the divisors of \(r_\mu \) with \(d_{\mu k} \leq X^{3b} \). If we consider any fixed pair \(r_\mu, d_{\mu k} \) then let us consider the set
\begin{equation}
(11.46) \quad M(r_\mu, d_{\mu k}) = \left\{ 36m : X/2 \leq m \leq X, r_1 \mid 36m, \frac{r_\mu}{(r_\mu, m)} = d_{\mu k} \right\}.
\end{equation}
Since \(r_1 \mid 36m \) and \(\frac{r_\mu}{d_{\mu k}} \mid m \mid 36m \), all elements of \(M(r_\mu, d_{\mu k}) \) are multiples of \((11.47) \quad \left[r_1, \frac{r_\mu}{d_{\mu k}} \right] > \frac{P}{d_{\mu k}} \geq PX^{-3b} \), so
\begin{equation}
(11.48) \quad |M(r_\mu, d_{\mu k})| \ll \frac{X^{1+3b}}{P}.
\end{equation}
The number of all moduli is \(\ll X^{3b} \) by (11.14), so the number of all pairs \(r_\mu, d_{\mu k} \) is clearly \(\ll X^{6b} \).

Thus, throwing away all \(m \)'s with \((11.49) \quad \mathcal{M} = \left\{ m : 36m \in \bigcup_{r_\mu, d_{\mu k}} M(r_\mu, d_{\mu k}) \right\}, \)
the cardinality of the arising new exceptional set will be
\begin{equation}
(11.50) \quad |\mathcal{M}| \leq X^{1+9b}/P.
\end{equation}
For all \(m \in [X/2, X] \setminus \mathcal{M} \) we have Case A and therefore we obtain, by (11.45), similarly to (11.40) (with \(\vartheta = 4/9 \)),
\begin{equation}
(11.51) \quad \left| \int_{\mathfrak{m}} S_2^2(\alpha)e(-m\alpha) \, d\alpha \right| < \frac{\mathfrak{S}(m)m}{2G_1}.
\end{equation}

This, together with (11.30) and (11.34), really shows (11.12). So by formula (11.11) we have
\begin{equation}
(11.52) \quad \int_{\mathfrak{m}} S_0^2(\alpha)e(-m\alpha) \, d\alpha \geq \frac{1.05\mathfrak{S}(m)m}{G_1}.
\end{equation}
Hence, inequalities (11.52) and (8.28) prove, in the case of existence of a Siegel zero,
\begin{equation}
(11.53) \quad R_1(m) \geq \frac{1.05\mathfrak{S}(m)m}{G_1} + O(\mathcal{L}^8X^{1-b/82}) > \mathfrak{S}(m)m\delta_1\mathcal{L}
\end{equation}
in view of Siegel’s theorem (see (11.6) and (11.9)), for all values of \(m \in [X/2, X] \setminus \mathcal{M} \), where the exceptional set \(\mathcal{M} \) satisfies (11.50). The constant \(b \) can be chosen arbitrarily small here. Thus (11.53) proves our Theorem 2.

12. Conclusion. In what follows we will investigate the sum

\[
I'(\varrho_1, \varrho_2, m) = \sum_{X/2 < k \leq X - m} k^{\varrho_1 - 1}(k + m)^{\varrho_2 - 1} \quad (X_2 = X/4),
\]

or, more precisely, first

\[
J(\gamma_1, \gamma_2, m, u) = \sum_{X/2 < k \leq u} e\left(\frac{f(k)}{2\pi}\right) \quad (u \leq X - m)
\]

where

\[
f(y) = \gamma_1 \log y - \gamma_2 \log(y + m),
\]

\[m \in [X/4, X/2], \quad X/4 \leq y \leq X - m.
\]

By symmetry we can clearly suppose \(\gamma_1 \geq 0 \). Let

\[
M = \max(|\gamma_1|, |\gamma_2|) > C,
\]

a suitably chosen large constant. Aiming to apply Lemma 4.4 we calculate

\[
f'(y) = \frac{\gamma_1}{y} - \frac{\gamma_2}{y + m} = \frac{\gamma_1 m - (\gamma_2 - \gamma_1)y}{y(y + m)}.
\]

We have

\[
f'(y) \geq \frac{\gamma_1 + |\gamma_2|}{X} \geq \frac{M}{X} \quad \text{if } \gamma_2 \leq 0,
\]

\[
f'(y) \geq \frac{\gamma_1}{4X} = \frac{M}{4X} \quad \text{if } 0 \leq \gamma_2 \leq \gamma_1,
\]

\[
f'(y) \geq \frac{4\gamma_1}{3(y + m)} - \frac{7\gamma_1}{6(y + m)} \geq \frac{\gamma_2}{7X} = \frac{M}{7X} \quad \text{if } \gamma_1 \leq \gamma_2 \leq (7/6)\gamma_1.
\]

Thus, let us suppose \(\gamma_2 > (7/6)\gamma_1 \), \(\gamma_2 = M > C \) from now on. Then

\[
f'(y) \geq 0 \quad \text{if } y \leq \frac{m\gamma_1}{\gamma_2 - \gamma_1}.
\]

Let \(D = \sqrt{M} = \sqrt{\gamma_2} \). Now

\[
f'(y) > \frac{DX}{y(y + m)} > \frac{D}{X} \quad \text{if } y < \frac{m\gamma_1 - DX}{\gamma_2 - \gamma_1}
\]

and

\[
f'(y) < -\frac{DX}{y(y + m)} < -\frac{D}{X} \quad \text{if } y > \frac{m\gamma_1 + DX}{\gamma_2 - \gamma_1}.
\]

So we can apply Lemma 4.4 if

\[
y \notin \left[\frac{m\gamma_1}{\gamma_2 - \gamma_1} - \frac{DX}{\gamma_2 - \gamma_1}, \frac{m\gamma_1}{\gamma_2 - \gamma_1} + \frac{DX}{\gamma_2 - \gamma_1} \right] =: I_0.
\]
Estimating the sum in (12.2) trivially if \(k \in I_0 \), and otherwise using Lemmas 4.5 and 4.6 from \(\gamma_2 - \gamma_1 > M/7 \) we obtain

\[
J(\gamma_1, \gamma_2, m, u) \ll \frac{X}{D} + \frac{DX}{M} \ll \frac{X}{\sqrt{M}}.
\]

Finally, by partial summation, (12.11) implies

\[
I'(\varrho_1, \varrho_2, m) \ll \frac{X^{1-\delta_1-\delta_2}}{\sqrt{\max(\|\gamma_1\|, \|\gamma_2\|)}}.
\]

The above estimate holds trivially if (12.4) is false. Thus we obtain an estimate similar to (10.25) in the case of the Generalized Twin Prime Problem, too. Theorem 1 is therefore completed by the above arguments and by the results of Sections 8–10, more precisely by (8.28), (9.16) and (10.27).

Acknowledgements. Research supported by the National Research Development and Innovation Office, NKFIH, KKP 133819.

References

János Pintz
ELKH Alfréd Rényi Mathematical Institute
Budapest, H-1053 Hungary
E-mail: pintz@renyi.hu