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Abstract. We verify that a large portion of the theory of complex operator spaces
and operator algebras (as represented by the 2004 book by the author and Le Merdy for
specificity) transfers to the real case. We point out some of the results that do not work
in the real case. We also discuss how the theory and standard constructions interact with
the complexification, which is often as important, but sometimes much less obvious. For
example, we develop the real case of the theory of operator space multipliers and the
operator space centralizer algebra, and discuss how these topics connect with complexifi-
cation. This turns out to differ in some important details from the complex case. We also
characterize real structure in complex operator spaces and give ‘real’ characterizations of
some of the most important objects in the subject.

1. Introduction. Complex operator spaces are an important umbrella
category containing C∗-algebras, operator systems, operator algebras, von
Neumann algebras, and many other objects of interest in modern analysis
and also in modern quantum physics (such as quantum information theory).
They have an extensive theory (see e.g. [25, 40, 38, 7]) and have very impor-
tant applications in all of these subjects.

Ruan initiated the study of real operator spaces in [42, 43], and this study
was continued in [44, 15]. A real operator space may be viewed either as a
real subspace of B(H) for a real Hilbert space H, or abstractly as a vector
space with a norm ∥ · ∥n on Mn(X) for each n ∈ N, satisfying the condi-
tions of Ruan’s characterization in [42]. Real structure occurs naturally and
crucially in many areas of mathematics, as is also mentioned for example in
the first paragraphs of [15] and [44], or in [41]; it also shows up in places in
modern mathematical quantum physics (see e.g. [23] and references therein).
Unfortunately there is not much literature on real operator spaces; the works
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cited at the start of the paragraph do not add up to a lot of pages. Even
for Hilbert spaces, very rough comparisons with the amount of literature in
the complex case mentioned in the introductions of [18, 15] are startling.
A researcher working on a problem which involves real operator spaces or
systems would have to reconstruct a large amount of the theory from scratch.
Thus for contemporary applications in the areas of mathematics and physics
mentioned above, it is of interest to understand the real case of the impor-
tant results in (complex) operator space theory—what works and how it is
connected to the complex case.

This is one goal of the present paper, to supply in some fashion such a re-
source. Since this is a daunting and not well-defined task we restrict ourselves
in the last part of our paper mostly to the more modest target of checking the
real case of the most important chapters in [7], and how the facts and struc-
tures there relate to the complexification, which is sometimes quite nontriv-
ial. To not try the reader’s patience we have attempted to be brief. Our proofs
are often deceptively short, frequently referencing deep results and argu-
ments. Some complementary results can be found in the companion paper [5].

We will begin our paper with several fundamental applications. Section 2
establishes the real case of some of the most important characterizations of
objects of particular interest in operator spaces: operator algebras, operator
modules, unital operator spaces, and operator systems. In Section 3 we char-
acterize when a real operator space may be given a complex structure. For
example, as we observe, the quaternions are a real operator space and a com-
plex Banach space, but are not a complex operator space. We explain why
this happens and what is needed to remedy it. We show also in this section
that in contrast to the Banach space case (see e.g. [26]), every complex oper-
ator space X has a unique complex operator space structure up to complete
isometry, and moreover such structures have a very simple classification.

Section 4 is devoted to extending to real operator spaces the deeper
aspects of the theory of operator space multipliers and operator space cen-
tralizers (see [17, Section 7] for the latter in the complex case). This is one
of the more profound parts of the ‘completely isometric theory’ of operator
spaces. Some of this is needed in [6] which uses such multipliers and op-
erator space centralizers in the real case. Indeed, it will be applicable, and
probably critical, in situations in the future involving the real case of op-
erator modules in the sense of Christensen and Sinclair, or more generally
involving subspaces of B(H) that are invariant under left multiplication by
various operators on H. The real theory differs in a few important details
from the complex case. It does not apply to some operator spaces (some
spaces have no interesting M -ideals or multipliers), but is a very powerful
tool in spaces that do possess some ‘operator algebraic structure’ in a loose
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sense. For example, Section 3 shows how multipliers are a main ingredient in
the complex structure of real operator spaces. The centralizer is a general-
ization of the center of a C∗-algebra, and is also often key to understanding
the ideal structure (or M -ideal structure in general settings). Thus one may
expect the centralizer to play a role in future generalizations of ideal struc-
ture and centers, and possibly in directions such as Bryder’s result relating
the intersection property to the action on the center of the injective enve-
lope [19].

Although there are other things there, Sections 5–9 mainly verify in a
very economical format the real case of the remaining theory in Chapters 1–4
and 8 of [7], and establish how the basic constructions there interact with
the complexification. We also check some selected results of Chapter 5 there.
The Appendix of [7] consists of standard facts in functional analysis, the
real case of almost all of which are well-known. The few that are unclear
in the real case we have discussed in scattered locations below. Since the
chapters in [7] build on each other, we will systematically start from the
beginning (avoiding of course results already in the literature). As one would
expect, many results in the real theory are proved just as in the complex
case. We say almost nothing about such results, although we may sometimes
mention a potentially confusing step in the proof. Similarly, many of the
results follow swiftly by complexification, but sometimes we give additional
details on how this should be done. Then, some results do require new proofs,
usually because the complex argument involves facts that fail in the real case.
Indeed, in addition to the ‘real issues’ listed in the introductions to [15, 5],
arguments that involve selfadjoint or positive elements and their span, or the
polarization identity, often fail in the real case. Some things are considerably
more difficult in the real case. For example a hard question in the real case
is the characterization of M -ideals in real TRO’s; see [12]. We also point out
the results that cannot be made to work in the real case.

Thus for example Section 9 may be viewed in some sense as a (very
economical) complete theory of real C∗-modules, and in particular the real
operator space aspects of that subject. Sections 5–7 verify in the real case
aspects of the general theory of operator spaces (and in particular their du-
ality and tensor products), operator algebras, and operator modules. These
sections also establish functoriality of the complexification (see the next para-
graph) for many important constructions (such as their tensor products), and
develop some other new aspects of the complexification. Section 8 mostly
concerns the real case of the few remaining topics from Chapter 4 of [7].

As we have alluded to earlier, not only do we want to check that the real
versions of the complex theory work, but we also want to know what the
complexifications of standard constructions are, and this is often as impor-
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tant but much less obvious. For example, it is important to know that the
complexification of a particular operator space tensor product is a particular
tensor product of the complexifications. More generally, it is important to
know for which ‘constructions’ F in the theory we have F (X)c = F (Xc)
canonically completely isometrically. In some cases one has to be careful
with the identifications. For example, just because one has proved that a
complex space W is complex linearly completely isometrically isomorphic
to Xc, and that W is a reasonable complexification of a real space Y , one
cannot conclude that then Y ∼= X. In fact Y may not be isometric to X.
This can happen even if X,Y,W are finite-dimensional C∗-algebras (even
if X = M2(R),W = M2(C)). Or as another example, if we have a complex
space (such as a von Neumann algebra) with a unique operator space predual,
and that predual is a reasonable complexification of a real space, then that
real space need not be unique up to complete isometry (or even isometry).

We now turn to notation. The reader will need to be familiar with the
basics of complex operator spaces and von Neumann algebras as may be
found in early chapters of [7, 25, 38, 40], and e.g. [39] respectively. It would
be helpful to also browse the (small) existing real operator space theory [42,
43, 44, 15]. Some basic real C∗-algebra theory may be found in [35, 2, 28]. The
lettersH,K are reserved for real Hilbert spaces. Every complex Hilbert space
is a real Hilbert space with the ‘real part’ of the inner product. We sometimes
write the complex number i as ι to avoid confusion with matrix subscripting.
For us a projection in an algebra is always an orthogonal projection (so
p = p2 = p∗). A normed algebra A is unital if it has an identity 1 of norm 1,
and a map T is unital if T (1) = 1. We say that A is approximately unital if it
has a contractive approximate identity (cai). We write Xsa for the selfadjoint
operators in X.

An operator space X comes with a norm ∥ · ∥n on Mn(X). Sometimes
the sequence (∥ · ∥n)n∈N of norms is called the operator space structure. If
T : X → Y , we write T (n) for the canonical ‘entrywise’ amplification taking
Mn(X) to Mn(Y ). The completely bounded norm is ∥T∥cb = supn ∥T (n)∥,
and T is completely contractive if ∥T∥cb ≤ 1. A map T is said to be positive
if it takes positive elements to positive elements, and completely positive if
T (n) is positive for all n ∈ N. A UCP map is unital and completely positive.

An operator space complexification of a real operator space X is a pair
(Xc, κ) consisting of a complex operator space Xc and a real linear complete
isometry κ : X → Xc such that Xc = κ(X) ⊕ iκ(X) as a vector space. For
simplicity, we usually identify X and κ(X) and write Xc = X + iX. We
say that the complexification is reasonable if the map θX(x + iy) = x − iy
on Xc (that is, κ(x) + iκ(y) 7→ κ(x) − iκ(y) for x, y ∈ X) is a complete
isometry. Ruan [43] proved that a real operator space has a unique reasonable
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complexification Xc = X + iX up to complete isometry. Sometimes we will
call this a ‘completely reasonable complexification’, or a ‘reasonable operator
space complexification’. Conversely, if X is a real operator space with a
complete isometry κ : X → Y into a complex operator space, then (Y, κ) is
a reasonable operator space complexification of X if and only if Y possesses
a conjugate linear completely isometric period 2 automorphism whose fixed
points are κ(X) [43, Theorem 3.2]. We will use the latter result repeatedly,
as well as the notation θX .

We recall that the complexification may be identified up to real complete
isometry with the operator subspace VX of M2(X) consisting of matrices of
the form

(1.1)
[
x −y
y x

]
for x, y ∈ X.

We will need the fact that Mn,m(X)c = Mn,m(Xc) completely isomet-
rically for an operator space X. This may be seen in several ways, for
example by using the identification of Xc with VX above. Or it may be
proved by noting that it is sufficient to assume m = n and X = B(H).
For a C∗-algebra B, we have Mn(B)c ∼= Mn(Bc) ∗-isomorphically, and
so isometrically. If T : X → Y is a real completely bounded map then
Tc(x + iy) = T (x) + iT (y) for x, y ∈ X. Ruan shows in [43, Theorem 2.1]
that ∥Tc∥cb = ∥T∥cb. We include a short proof of this.

Proposition 1.1. If T : X → Y is a real completely bounded (resp.
completely isometric, complete quotient) linear operator between real operator
spaces, then Tc is completely bounded (resp. a complete isometry, complete
quotient), with ∥Tc∥cb = ∥T∥cb.

Proof. Clearly ∥T∥cb ≤ ∥Tc∥cb since ∥T∥cb = ∥Tc|X∥cb. For the other
inequality, by the discussion around (1.1) we can identify ∥T (n)

c ([xij+ ι yij ])∥
with the norm of the matrix[

T (xij) −T (yij)
T (yij) T (xij)

]
,

for [xij + ι yij ] ∈ Mn(Xc). This quantity is dominated by ∥T∥cb times the
norm of the matrix in (1.1), which is ∥[xij + ι yij ]∥. Hence Tc is completely
bounded and ∥Tc∥cb ≤ ∥T∥cb. So ∥Tc∥cb = ∥T∥cb. If T is a complete isom-
etry, then the matrix in the displayed equation has the same norm as the
matrix in (1.1), so that Tc is a complete isometry. The ‘complete quotient’
assertion is generalized in [6, Proposition 5.5].

We showed in [5, Section 2] that CB(Xc, Yc) is a reasonable complexifi-
cation of CB(X,Y ). In places, the reader will also need to be familiar with
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the theory of the injective envelope I(X). In the complex case this may be
found in e.g. [7, 25, 38]. The real case was initiated in [44], and continued
in [5] (see also Section 8, although this is not used much in sections before
that).

A real unital operator space is an operator space X with a distinguished
element u ∈ X and a real complete isometry T : X → B(H) with T (u) = IH .
A real operator system is a unital operator space X with an involution
and a real complete isometry T : X → B(H) with T (u) = IH , which is
selfadjoint (that is, T (x∗) = T (x)∗). The diagonal ∆(X) = X ∩ X∗ of a
unital real operator space X is a well-defined real operator system inde-
pendent of representation, as in the complex case. This follows e.g. by the
discussion after Corollary 2.5 in [15]: Suppose that T : X → Y is a sur-
jective unital complete isometry between real unital operator spaces with
IH ∈ X ⊂ B(H) and IK ∈ Y ⊂ B(K). Then the canonical extension
T̃ : X +X∗ → B(K) : x + y∗ 7→ T (x) + T (y)∗ is well-defined for x, y ∈ X,
is selfadjoint and is a completely isometric complete order embedding onto
Y +Y ∗. (Whether this is isometric when T is a unital isometry was asked in
[15] whenX and Y are in addition operator algebras. In fact, this is false even
in the complex case. Simple counterexamples may be manufactured using the
U(X) construction from [7, Section 2.2].) We see that T (X ∩X∗) = Y ∩Y ∗,
and that T is selfadjoint on X∩X∗. Indeed, the results in [7, 1.3.4–1.3.7] hold
in the real case, as does Choi’s Propositions 1.3.11 and 1.3.12 and the Choi–
Effros Theorem 1.3.13 there (by going to the complexification if necessary).
Most of this was established in [44, 15] and [42, Section 4]. Example 5.10
in [15] shows that 1.3.8 in [7] fails in the real case, although it is true for
unital complete contractions (by e.g. [15, 2.4, 2.5]). For the Paulsen sys-
tem we have S(X)c ∼= S(Xc); indeed, this is inherited from the relation
M2(B(H))c ∼=M2(B(H)c).

Perhaps shockingly, the complexification Ac of an (even unital) operator
algebra A need not be well-defined up to isometric (as opposed to complete
isometric) isomorphism. For that reason operator algebras and their com-
plexification are almost always treated here in the operator space setting.
The diagonal ∆(A) = A∩A∗ of a real operator algebra A (with possibly no
kind of identity) is a well-defined operator algebra independent of represen-
tation, as in the complex case. Indeed, by [15, Theorem 2.6], a contractive
homomorphism π : A → B between operator algebras takes the diagonal
∆(A) ∗-isomorphically onto a closed C∗-subalgebra of ∆(B). Thus the re-
sults in [7, 2.1.2] hold in the real case. For an operator algebra in B(H) or
a unital operator space we have ∆(Xc) = Xc ∩X∗

c = ∆(X)c in B(H)c. Be-
cause the selfadjoint elements do not necessarily span a real C∗-algebra (or
may be all of the C∗-algebra), one needs to be careful in places. Thus ∆(A)
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need not be the span of the selfadjoint elements (nor of the projections if A
is also weak∗-closed and not commutative), unlike in the complex case.

2. Abstract characterizations. Complex operator space theory began
with Ruan’s abstract characterization of complex operator spaces [25, The-
orem 2.3.5]. Ruan also gave the matching characterization of real operator
spaces in [42]. Similarly, there is a well-known abstract characterization of
complex operator algebras with contractive approximate identity (cai) [7,
Theorem 2.3.2], and its matching real version is in [44]. Real ‘dual oper-
ator algebras’ are characterized in Theorem 6.3 below. Nonunital operator
algebras are characterized up to completely bounded isomorphism in [7, Sec-
tion 5.2], and the real case follows immediately by complexification. Nonuni-
tal real operator algebras may be characterized up to complete isometry as
follows.

Theorem 2.1 (Real version of the Kaneda–Paulsen theorem). Let X be
a real operator space. The real algebra products on X for which there exists a
real linear completely isometric homomorphism from X onto a real operator
algebra, are in a bijective correspondence with the elements z ∈ Ball(I(X))
such that Xz∗X ⊂ X in the ternary product of I(X) (recall that the injective
envelope I(X) is a real ternary subsystem of I(Xc) [5, Section 4]). For such z
the associated operator algebra product on X is xz∗y.

Proof. As in [9, proof of Theorem 5.2], one direction, and the last state-
ment, follow from [14, Remark 2, p. 194], viewing I(X) as a ternary system
in B(H), and taking V there to be z∗. For the other direction, suppose that
X is a real operator algebra, and that (by the complex version of the present
theorem) the canonical operator algebra product on Xc is given by xz∗y for
some z ∈ Ball(IC(Xc)) = Ball(IC(X)c) (see [5, Section 4] for the last iden-
tification). Write z = z1 + iz2 with zi ∈ I(X). Since Xz∗X ⊂ X it follows
that Xz∗2X = 0. Therefore Xcz

∗
2Xc = 0 and z2 = 0 by [7, Theorem 4.4.12].

So z ∈ Ball(I(X)). The bijectivity follows similarly from [7, Theorem 4.4.12]
as in [9, proof of Theorem 5.2].

Real unital operator spaces. Appropriate variants of the characteri-
zations of unital operator spaces from [8, 9] hold in the real case.

Theorem 2.2. Let X be a real operator space and u ∈ X with ∥u∥ = 1.
The following are equivalent:

(1) (X,u) is a real unital operator space.
(2) ∥[un x]∥ ≥

√
2 and

∥∥[ un
x

]∥∥ ≥
√
2 for all n ∈ N and x ∈ Mn(X) with

∥x∥ = 1.
(3)

∥∥[ un −x
x un

]∥∥ ≥
√

1 + ∥x∥, for all n ∈ N and x ∈Mn(X).
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Here, un is the diagonal matrix u ⊗ In in Mn(X) with u in each diagonal
entry.

Proof. (1)⇒(2) This is the easy direction, and follows from the real C∗-
identity (as in [8]).

(1)⇒(3) Assuming (1), (Xc, u) is a complex unital operator space. The
left side of (3) is unchanged if we replace x by −x (as may be seen be pre-
and post-multiplying by the diagonal matrix with entries 1,−1). Thus by
[8, Lemma 2.2] the left side of (3) (with respect to Xc) is max {∥un + ikx∥ :
k = 0, 1, 2, 3}. This is ≥

√
1 + ∥x∥ by [8, Theorem 1.1].

(2)⇒(1) Let v : Xc → M2(X) be the complete isometry yielding the
matrix in (1.1). If x ∈Mn(Xc) =Mn(X)c with ∥x∥ = 1, then ∥v(n)(x)∥ = 1.
Applying v we get

∥[un x]∥ = ∥[u2n v(n)(x)]∥ ≥
√
2.

Thus by the characterization in [8] there exists a linear complete isometry
T : Xc → B(H) with T (u) = IH . Restricting to X we get the result. (We
are also using the fact that complex Hilbert spaces are real Hilbert spaces,
as we do in many places in this paper.)

(3)⇒(1) This is somewhat similar. Let x ∈ Mn(Xc) with x = y + iz for
y, z ∈Mn(X). By reversing the argument for (1)⇒(3) above we have

max {∥un + ikx∥ : k = 0, 1, 2, 3} =

∥∥∥∥[un −x
x un

]∥∥∥∥.
Applying v as in the last paragraph, this equals∥∥∥∥[ u2n −v(n)(x)

v(n)(x) u2n

]∥∥∥∥ ≥
√

1 + ∥v(n)(x)∥ =
√

1 + ∥x∥.

Thus (Xc, u) is a complex unital operator space by [8, Theorem 1.1], and we
finish as in the last paragraph.

Most of the other characterizations in the papers [8, 9] hold in the real
case, for example the characterization of isometries, coisometries and uni-
taries. The characterization of these objects in [8, Theorem 2.4] in the real
case follows by a modification of an argument in the last proof. Also, Lemma
5.1, Theorem 5.5 and Corollary 5.6 of [9] hold in the real case. We plan to
give more details elsewhere (see “Added in proof”). Thus unital real operator
algebras can be characterized as real operator spaces X with a coisometry u
and a bilinear map m : X ×X → X such that m(x, u) = x for x ∈ X, and
such that ∥∥∥∥[m(x, aij)

bij

]∥∥∥∥ ≤
∥∥∥∥[aijbij

]∥∥∥∥, [aij ], [bij ] ∈Mn(X),
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for n ∈ N and x ∈ Ball(X). This ‘improves’ the characterization of unital
operator algebras mentioned in the first paragraph of this section.

Real operator systems. The metric characterizations of operator sys-
tems in e.g. [8, Theorem 3.4] and [9, Proposition 4.2] are valid in the real
case by the same proofs. We state only the latter characterization in the real
case. We note that this uses the real case of the proof of the former charac-
terization (i.e. [8, Theorem 3.4]), which does not even involve an involution
on the space.

Theorem 2.3. Let X be a real operator space which possesses a real
linear period 2 involution ∗ with ∥x∗∥ = ∥x∥ for x = [xij ] ∈Mn(X), n ∈ N.
Here x∗ = [x∗ji]. Let u ∈ Ball(X) with u = u∗. Then there exists a real ∗-
linear complete isometry from X onto a real operator system with T (u) = 1
if and only if∥∥∥∥[ un x

−x∗ un

]∥∥∥∥ =
√

1 + ∥x∥2, n ∈ N, x ∈Mn(X).

Here un = u⊗ In as in Theorem 2.2.

Proof. We adapt the complex proof of [9, Proposition 4.2]. This proof is
quite complicated, so that even utilizing the hints below in conjunction with
a careful study of each step of [9, Proposition 4.2] it may take the reader
some time to master this adaption. As stated above, this adaption uses the
real version of the proof of the characterization [8, Theorem 3.4], but setting
y = yn = −x∗ there, where ∗ is the involution on X. This proof involves
suprema over states on M2(B(H)). We may use vector states here, using the
fact that vector states norm elements with a = a∗ even in the real case. (The
latter adjoint is in M2(B(H)), and is not yet related to the involution in the
statement of the present theorem.) We also need to appeal to Theorem 2.2(2)
above in place of its complex variant in the proof of [9, Proposition 4.2].

There are characterizations of complex operator systems in terms of the
positive cones in Mn(X) in the literature, most notably the Choi–Effros
characterization [24] (but see also e.g. [34, Section 7] for a recent charac-
terization in terms of noncommutative convexity/quasistates). We will not
discuss these here, except to say that in the real case an operator system may
have no nontrivial positive elements so that the obvious formulations of such
a result in the real case fail. For this reason, no doubt some authors study a
subclass of the operator systems which do have large positive cones; however,
this would exclude some of the most interesting real unital C∗-algebras.

Real operator modules. The real version of the Christensen–Effros–
Sinclair theorem characterizing operator modules and bimodules (the com-
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plex version may be found e.g. in [7, Theorem 3.3.1]) holds easily by com-
plexification:

Theorem 2.4. Let A and B be approximately unital real operator al-
gebras, and let X be a real operator space which is a nondegenerate bimodule
over A and B, satisfying

∥αxβ∥ ≤ ∥α∥ ∥x∥ ∥β∥, n ∈ N, x ∈Mn(X), α ∈Mn(A), β ∈Mn(B).

Then there exist real Hilbert spaces H and K, a real linear completely iso-
metric map Φ : X → B(K,H), and completely contractive nondegenerate real
linear representations θ of A on H, and π of B on K, such that

θ(a)Φ(x) = Φ(ax) and Φ(x)π(b) = Φ(xb), a ∈ A, b ∈ B, x ∈ X.

Therefore X is completely A-B-isometric to the concrete operator A-B-bi-
module Φ(X). Moreover, Φ, θ, π may all be chosen to be completely isometric,
and such that H = K. If A = B then one may choose, in addition to all the
above, π = θ.

Proof. It is easy to see that Xc is an Ac-Bc-bimodule algebraically. We
claim that ∥αx∥ ≤ ∥α∥ ∥x∥ for x ∈ Mn(Xc) and α ∈ Mn(Ac). This fol-
lows by a matrix calculation whose details we omit since it is similar to the
first five lines of the proof that (ii) implies (iii) in [44, Theorem 3.2]. Simi-
larly, ∥xβ∥ ≤ ∥x∥ ∥β∥. Hence the displayed inequality as stated holds in the
complexified spaces. Thus Xc is a nondegenerate bimodule over Ac and Bc

satisfying the conditions of the complex version of the theorem. Our result
follows from that version, viewing all complex spaces as real spaces, and re-
stricting the ensuing Φ, θ, π to real linear maps on X,A,B respectively, as
in earlier proofs.

3. Complex structure in operator spaces. This section could be
read after Section 4 in one sense, since the proofs (not the theorem state-
ments) here use the perspective of that theory. However, we have placed it
here in view of its importance, and because of the sheer length and techni-
cality of Section 4. Before the first theorem, we will summarize in a more or
less selfcontained way the few results we need from [44] for the proofs, but
some readers unfamiliar with the existing complex theory of multipliers will
possibly need to look at [44] or Section 4 at times during the proofs.

By a complex operator space structure (resp. complex Banach space struc-
ture) on a real operator (resp. Banach) space X we mean an action of i
on X by a real linear map J : X → X such that X (with unchanged
norms) is a complex operator (resp. Banach) space with scalar product
(s+ it)x = sx+ tJ(x) for x ∈ X and s, t ∈ R. Any complex operator space
of course has a canonical complex operator space structure corresponding to
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J(x) = ix for x ∈ X, in the notation above. It is well-known and obvious
that a map J : X → X on a real Banach space corresponds to a com-
plex Banach space structure on X (with ix = Jx) if and only if J2 = −I
and x 7→ sx + tJ(x) is an isometry whenever s = cos θ, t = sin θ, that is,
whenever s2 + t2 = 1. Write uθ = I cos θ + J sin θ. Since uθ has inverse
u−θ = cos θ− J sin θ, it follows that uθ is an isometry for all θ if and only if
it is a contraction for all θ.

A real operator space which is a complex Banach space need not be
a complex operator space. Indeed, a real C∗-algebra which is a complex
Banach space need not be a complex C∗-algebra. A counterexample is the
quaternions, for which it is easy to see the C∗-algebra statement, for example
from the fact that all two-dimensional complex C∗-algebras are commutative.
We argue in a remark below that the quaternions are not a complex operator
space, although they are obviously a complex Banach space because C is
embedded as a subalgebra. In this section we explain why this happens and
what is needed to remedy it. In particular, what more is needed for a real
operator space X which is also a complex Banach space to be a complex
operator space?

Sharma defines in [44, Section 5] (see also Section 4 below for more details
if desired) the real version MR

ℓ (X) of the left operator space multiplier al-
gebra. We suppress the superscript here if the real setting is understood. We
have Mℓ(X) ⊂ CB(X), but with a generally different norm. Sharma also
defines there the C∗-algebra of ‘left adjointable multipliers’ Aℓ(X), which
coincides with the diagonal ∆(Mℓ(X)) = Mℓ(X)∩Mℓ(X)∗ (see Section 1)
inside the C∗-algebra pI(S(X))p in the notation of [44] (more details on
this are given in Section 4 below). Similarly, one may define the real right
multiplier algebra and ‘right adjointable multipliers’ Mr(X) and Ar(X).
We define the real operator space centralizer algebra Z(X) (or ZR(X) when
we want to emphasize that this is the real case) to be the set Aℓ(X) ∩
Ar(X) in CB(X). The centralizer is a real commutative C∗-algebra. This
is because Aℓ(X) and Ar(X) commute (as may be seen by their canonical
representations in the space I(S(X)) mentioned above). Finally, X is an
operator bimodule over Z(X) in the sense of Theorem 2.4 (for basically the
same reason as in the last line; more details on any of this if needed are given
in Section 4 below).

Theorem 3.1. A real linear map J : X → X on a real operator space
corresponds to a complex operator space structure on X (with ιx = Jx) if
and only if

J2 = −I and ∥[dixij ]∥n ≤ ∥[xij ]∥n and ∥[djxij ]∥n ≤ ∥[xij ]∥n,

for all [xij ] ∈ Mn(X) and d1, . . . , dn maps of form uθ defined in the second
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paragraph of this section (that is, dk = uθk for real θk), and for all n ∈ N.
Indeed, in the n > 1 case of the above displayed inequalities only the values
θ = 0 and π/2 are needed in this characterization; that is, di = 1, or di =
J = ι.

Proof. The necessity of the condition is obvious. Conversely, given such
a map J , from the case n = 1 we see that X is a complex Banach space.
We may therefore write Jx = ix henceforth. We will not need this here, but
since uθ has inverse u−θ it is easy to see that the displayed inequalities are
equivalent to

∥[dixij ]∥ = ∥[djxij ]∥ = ∥[xij ]∥, [xij ] ∈Mn(X).

From the displayed inequalities it follows that if x, y ∈Mn(X) and

z =

[
x

y

]
, w =

[
x 0

y 0

]
then by the case of the displayed inequalities where the dk are i or 1 we have∥∥∥∥[ ixy

]∥∥∥∥ =

∥∥∥∥[ix 0

y 0

]∥∥∥∥ ≤ ∥w∥ = ∥z∥.

Thus by [44, Theorem 5.4] we see that the map Jx = ix is a contraction in
MR

ℓ (X). A similar argument with [xi y] shows that J ∈ MR
r (X). Since J is

a contraction with J2 = −I it follows that J is a unitary in the ‘diagonal’ of
MR

ℓ (X) mentioned above, with adjoint −J . Thus, J is left adjointable, and
similarly it is right adjointable. Thus J ∈ ZR(X). The map λ : C → ZR(X)
with λ(s+it) = sI+tJ is a homomorphism. Indeed, λ is a ∗-homomorphism,
so it is contractive, and hence completely contractive [15]. So X is a real
operator C-bimodule since X is an operator ZR(X)-bimodule (see the dis-
cussion above Proposition 4.3 if necessary). In particular, X satisfies Ruan’s
condition characterizing complex operator spaces: ∥αxβ∥ ≤ ∥α∥ ∥x∥ ∥β∥ for
α, β ∈Mn(C) and x ∈Mn(X).

Remark. 1. The quaternions H are a complex Banach space and a real
operator space, but not a complex operator space with the ‘canonical action’
coming from the copy of C as a real subalgebra. Indeed, it is well-known that
the complexification of H is M2(C), which has no nontrivial (complex or real)
ideals. A nonzero real ideal would have to contain one of the matrix units eij
(since I = e11 + e22 and x = IxI), but M2eijM2 =M2. If H was a complex
operator space then its complexification would be H⊕∞H (see Lemma 5.1),
which has a nontrivial ideal.

We make a stronger claim: the real operator space H has no complex op-
erator space structure at all, that is, there is no action C×H → H extending
the action of the reals and making H a complex operator space. Indeed, ac-
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cording to the examples above Theorem 4.4, ZR(H) is the center R 1 of H,
whereas if H had a complex structure then ZR(H) would have real dimension
> 1 by Corollary 3.2 below, or by the last assertion in Theorem 4.5.

The quaternions are however a real ‘operator bimodule’ over the complex
numbers, in the sense of operator space theory (see Theorem 2.4 above for
example). However, unlike the situation for complex operator spaces, the
left or right actions of C are not as ‘centralizers’, and iw ̸= wi in general,
so things are quite subtle and different to what we are used to for complex
spaces.

2. One may rephrase the theorem as: if X is a real operator space and
a complex Banach space, then X is a complex operator space if and only if
∥dx∥n ≤ ∥x∥n and ∥xd∥n ≤ ∥x∥n, for all x ∈ Mn(X) and diagonal matrices
d with entries in {1, i}.

One may also prove part of this theorem using matrix theory to verify
Ruan’s condition in the last line of the proof. Any complex matrix may
be written via the polar decomposition and diagonalization as a product
UEU ′ for complex unitary matrices U,U ′ and a diagonal matrix E. It is
known that any complex unitary matrix U may be written as KDV where
K and V are real orthogonal matrices and D is diagonal and unitary (see e.g.
[27, Theorem 5.1]). Putting these facts together gives the theorem (except
for its final assertion about 1 and i).

Corollary 3.2. A real operator space X is a complex operator space if
and only if it possesses a real linear antisymmetry J : X → X (antisymmetry
means that J2 = −I) which is also a real operator space centralizer.

It follows that a real operator space X has a complex operator space
structure if and only if its real centralizer algebra Z(X) has a complex Ba-
nach space structure, because this happens if and only if Z(X) possesses
an antisymmetry. We have some interesting and at present exciting-looking
applications of these results that we hope to present in a future work. We
mention a sample result:

Corollary 3.3. Let X be a real operator space such that the real oper-
ator space bidual X∗∗ has a complex operator space structure. Then X has a
complex operator space structure.

There is a similar result for the dual in place of the bidual, but it is more
complicated to state.

A second question one may ask about complex structure is whether we
can classify all of the scalar multiplications C×X → X on a real operator
space that make X a complex operator space. Note that if X and Y are
complex operator spaces, then X ⊕∞ Y is a complex operator space with a
‘twisted’ complex multiplication given by i · (x, y) = (ix,−iy). Surprisingly,
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it turns out that the latter is the only example of a complex structure on a
complex operator space space besides the given one:

Theorem 3.4. A complex operator space X has a unique complex opera-
tor space structure up to complete isometry. Moreover, for any other complex
operator space structure on X there exist two complex (with respect to the
first complex structure) subspaces X+ and X− of X with X = X+ ⊕∞ X−
completely isometrically such that the second complex multiplication of λ ∈ C
with x+ + x− is (λx+) + (λx−) for x+ ∈ X+ and x− ∈ X−.

Proof. Let X be a complex operator space with a second scalar multipli-
cation making it a complex operator space. Let u : X → X be multiplication
by i in the second scalar multiplication. As we saw in the last theorem, mul-
tiplication by i in the first product is in ZR(X), and similarly u ∈ ZR(X).
Now ZR(X) is a real commutative C∗-algebra. In such an algebra an ele-
ment with f2 = −1 may be viewed as a function (see [35, end of Section 5.1,
Example (3)]). Then f(x) = ±i, so that the involution/adjoint of f is −f .
Thus in ZR(X) the element s = −iu is selfadjoint with square I.

Therefore p = (I + s)/2 is a projection in ZR(X). Let X+ = pX and
X− = (1 − p)X. We claim that X = X+ ⊕∞ X− completely isometrically
and as complex operator spaces. To see this recall that p commutes with i,
so it is C-linear. By [44, Theorem 5.4] the map τp in [7, Theorem 4.5.15] is
completely contractive on C2(X). By the latter theorem, p is a complex left
M -projection. Similarly it is a right M -projection, and a (complex) complete
M -projection by [7, Proposition 4.8.4]. This proves our claim.

Now up = is(I + s)/2 = ip, and similarly up⊥ = −ip⊥. We may define a
real complete isometry v : X → X by v(px+(1−p)y) = px− (1−p)y. Then
v(uz) = v(u(px+ (1− p)y)) = v(ipx− i(1− p)y) = ipx+ i(1− p)y = iz

for z = px+ (1− p)y.

Remark. In particular, if X is the complexification of a real operator
space Y , then ZC(X) = ZR(X) = ZR(Y )c by Lemma 4.2 and Theorem 4.5
below. If θ is the multiplication by i in a different complex operator space
scalar multiplication, then by the last theorem we obtain a projection in
Z(X) = Z(Y )c. If p = qc for projection q ∈ Z(Y ) then we may obtain
an M -summand decomposition in Y corresponding to the adjusted complex
structure as in Theorem 3.4. However, there may be projections in Z(X)
that are not of this form.

4. Operator space multipliers and the operator space central-
izer. This section is a little more technical and requires a familiarity with
the theory of complex operator space multipliers and centralizers (as in e.g.
[7, 17]). We will also use the theory of the real injective envelope I(X) ini-
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tiated in [44] and continued in [5]. As pointed out in [44], the important
Construction 4.4.2 in [7] relating the injective envelope I(X) to the injective
envelope I(S(X)) of the Paulsen system is valid in the real case. If p = 1⊕0
and q = 0 ⊕ 1 then as usual I11 and I22 are the corners pI(S(X))p and
p⊥I(S(X))p⊥, and I(X) = pI(S(X))p⊥. It is shown in [5, Section 4] that
I(X)c = I(Xc). A similar relation holds for the other two important ‘corners’
of I(S(X)):

Lemma 4.1. For a real operator space X we have I11(Xc) ∼= (I11(X))c
as unital C∗-algebras. Similarly, I22(Xc) ∼= (I22(X))c.

Proof. Indeed, I(S(X))c ∼= I(S(X)c) ∼= I(S(Xc)) as unital C∗-algebras,
via a ∗-homomorphism that preserves the projection p = 1 ⊕ 0 ∈ S(X).
Then

I11(Xc) = pI(S(Xc))p ∼= pI(S(X))cp ∼= (pI(S(X))p)c = (I11(X))c.

Similarly, I22(Xc) ∼= (I22(X))c.

We defined the left and right real operator space multiplier algebras
Mℓ(X) and Mr(X) just above Theorem 3.1, as well as the real C∗-algebras
of left and right adjointable multipliers Aℓ(X) and Ar(X), and the real op-
erator space centralizer algebra Z(X). Giving a little more detail from [44],
we define matrix norms as in the complex case (see [7, 4.5.3]), i.e. so that
Mn(Mℓ(X)) ∼= Mℓ(Cn(X)) isometrically. Also, T ∈ Ball(Mℓ(X)) if and
only if there exists a real linear complete isometry j : X → B(H) for a real
Hilbert space H and an operator S ∈ Ball(B(H)) with j(Tx) = Sj(x) for
all x ∈ X. Complexifying this, if T ∈ Mℓ(X) we see that Tc ∈ Mℓ(Xc).
The most useful characterization, however, is the τT criterion which in the
real case is [44, Theorem 5.4]. (Sharma does not state this, but the real ver-
sions of all statements in [7, 4.5.1–4.5.9 and 4.5.12–4.5.13] are valid by the
same arguments, with the possible exception of [7, Theorem 4.5.2(v)]. Items
4.5.14–4.5.15 of [7] are in [44], and we will check 4.5.10 and 4.5.11 below. We
will discuss Banach–Stone theorems such as 4.5.13 briefly in Section 8.)

As in the complex case, we obtain a completely contractive one-to-one
homomorphism Mℓ(X) → CB(X), and a completely isometric homomor-
phism Mℓ(X) → I11(X). Indeed, we have

Mℓ(X) ∼= {a ∈ I11(X) : aj(X) ⊂ j(X)},
where j : X → I(X) is the canonical inclusion (that is, (I(X), j) is an
injective envelope of X).

Lemma 4.2. For a real operator space X we have Mℓ(Xc) ∼= Mℓ(X)c
completely isometrically as operator algebras, and T 7→ Tc is the canon-
ical map of Mℓ(X) into this complexification. Similarly for the spaces of
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right multipliers. Moreover, Aℓ(Xc) ∼= Aℓ(X)c ∗-isomorphically. The opera-
tor space centralizer algebra Z(X) is a commutative unital real C∗-algebra,
and Z(Xc) ∼= Z(X)c ∗-isomorphically.

Proof. We may identify Mℓ(Xc) with

{a ∈ I11(Xc) : ajc(Xc) ⊂ jc(Xc)}
∼= {b+ ic ∈ (I11(X))c : (b+ ic)jc(Xc) ⊂ jc(Xc)}.

The latter inclusion is equivalent to b and c being in Mℓ(X). It follows (if
necessary, thinking of b+ic as the usual 2×2 matrix as in (1.1)) that the right
side of the last displayed equation is Mℓ(X)c. That is, Mℓ(Xc) ∼= Mℓ(X)c
completely isometrically as operator algebras. It is easy to see the assertion
regarding Tc: if Tj(x) = aj(x) for a ∈ I11(X) then Tc (jc)(x+ iy) = ajc(x)+
iajc(y). Similar arguments hold in the Mr(X) case.

Using the fact ∆(Ac) = ∆(A)c from the introduction concerning the
diagonal operator algebra, we have

Aℓ(X)c = ∆(Mℓ(X))c ∼= ∆(Mℓ(X)c) ∼= ∆(Mℓ(Xc)) = Aℓ(Xc),

and
Z(Xc) = Aℓ(Xc) ∩ Ar(Xc) = Aℓ(X)c ∩ Ar(X)c = Z(X)c.

Moreover, for T ∈ Z(X) the involution of T in Aℓ(X) coincides with its
involution in Ar(X), since the analogous statement is true in Z(Xc) [17]. So
Z(X) is a real C∗-algebra.

We have Mℓ(X) = {T ∈ B(X) : Tc ∈ Mℓ(Xc)}. Indeed, for example τT
is clearly completely contractive if and only if τTc = (τT )c is completely con-
tractive. The map T 7→ Tc restricts to a faithful contractive homomorphism,
hence ∗-homomorphism, Aℓ(X) = ∆(Mℓ(X)) → Aℓ(Xc) = ∆(Mℓ(X)).
Thus if T ∈ Aℓ(X) then (Tc)

∗ = (T ∗)c. It is easy to see that Aℓ(X) =
{T ∈ B(X) : Tc ∈ Aℓ(Xc)}, and a similar relation holds for Z(X). Indeed,
Tc ∈ Z(Xc) = Aℓ(Xc) ∩ Ar(Xc) iff T ∈ Aℓ(X) ∩ Ar(X), and iff T ∈ Z(X).

As in the complex case, X is an operator bimodule (or h-bimodule) over
all of these spaces in the sense of [7, Section 3.1]. Indeed, X is an opera-
tor Mℓ(X)-Mℓ(X)-bimodule, which in turn can be viewed as an Mℓ(X)-
Mℓ(X)-subbimodule of Xc. The actions of Aℓ(X), Ar(X) and Z(X) on X
are restrictions of the Mℓ(X)-Mℓ(X)-bimodule action. These bimodules can
as usual all be concretely viewed at any time as subspaces of a C∗-algebra,
e.g. of the C∗-algebra which is the injective envelope of the Paulsen system.
For example, X regarded as an operator Mℓ(X)-Mℓ(X)-bimodule may be
viewed in the 1-2 corner of I(S(X)), with Mℓ(X) a subalgebra of the 1-1
corner I11 as above. The action T (x), for T ∈ Mℓ(X) and x ∈ X, is identi-
fied in the usual way with the product of the two 2× 2 matrices in I(S(X))
corresponding to the copy of T in I11 and the copy of X in the 1-2 corner.
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There is a subtlety, however, with the Z(X)-bimodule action. We often write
ax = xa for a ∈ Z(X) and x ∈ X, and this is perfectly true if interpreted
correctly as an abstract bimodule action. However, if X is represented con-
cretely, such as above in the 1-2 corner of I(S(X)), one should usually rather
write ρ(a)x = xπ(a), where π and ρ are faithful ∗-homomorphisms with do-
main Z(X). That is, although the right action of Z(X) on X coincides with
the left action, if one represents X as a concrete bimodule, as above say,
Z(X) usually gets represented in ‘two different places’.

Proposition 4.3. Let X be a real operator space.

(1) A real linear map u : X → X is in Al(X) if and only if there exist a real
Hilbert space H, a linear complete isometry σ : X → B(H), and a map
v : X → X with σ(ux)∗σ(y) = σ(x)∗σ(vy) for all x, y ∈ X.

(2) Same as (1), but with the conditions involving v replaced by existence
of S ∈ B(H) with σ(ux) = Sσ(x) for all x ∈ X, and such that also
S∗σ(X) ⊂ σ(X).

(3) Al(X) ∼= {a ∈ I11(X) : aX ⊂ X and a∗X ⊂ X} as C∗-algebras.
(4) If u, S and σ are as in (1) (resp. (2)), then the involution u∗ in Al(X)

is v (resp. the map x 7→ σ−1(S∗σ(x)) on X).
(5) The canonical inclusion map from Al(X) into CB(X) is a completely

isometric homomorphism. Moreover ∥T∥cb = ∥Tc∥ = ∥T∥ for T ∈
Al(X), so the inclusion viewed as a map into B(X) is an isometric
homomorphism.

Proof. If S ∈ B(H) with all the properties in (2) exists, then v =
σ−1(S∗σ(·)) satisfies the condition in (1). Conversely, if v satisfies the con-
dition in (1) then vc : Xc → Xc satisfies σ(ucx)∗σ(y) = σ(x)∗σ(vcy) for
all x, y ∈ Xc. By [7, Theorem 8.4.4] we deduce that uc ∈ Al(Xc) so that
u ∈ Al(X) by an earlier observation. The rest of the proofs of (2)–(4) are as
in the complex case and using the real cases discussed earlier of results cited
in [7, Proposition 4.5.8].

For (5), if Al(X) we have

∥T∥Mℓ(X) = ∥Tc∥Mℓ(Xc) = ∥Tc∥cb = ∥T∥cb.

From the complex case this equals ∥Tc∥, by the same proof but using The-
orem 6.1 (the real version of [7, Theorem A.5.9]). The matricial case fol-
lows similarly, as in the complex case. The last assertion follows from Theo-
rem 6.1.

Note that ZR(X) is a real commutative C∗-algebra but need not be a
real C(K) space (a simple example is X = C considered as a real operator
space).
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Examples. (1) For any real approximately unital operator algebra A
we have Mℓ(A) = LM(A) and Mr(A) = RM(A), just as in the proof of
[7, Proposition 4.5.11]. Hence Aℓ(A) = ∆(Mℓ(A)) = ∆(LM(A)). If B is a
real C∗-algebra then it is then easy to deduce that Aℓ(B) is just M(B). We
claim that Z(A) is the diagonal of the center of M(A). Indeed, if T ∈ Z(A)
then Tc ∈ ZC(Ac), so that Tc is in the diagonal of the center of M(Ac). Thus
T ∈M(A) by our earlier discussion of the multiplier algebra of A. It is easy
to see that T is in the center of M(A). The map Z(A) into the center of
M(A) is a contractive homomorphism, so it maps into the diagonal of the
center of M(A). Conversely, if T is in the diagonal of the center of M(A)
then T ∈ ∆(LM(A)) = Aℓ(A). Similarly T ∈ Ar(A), so that T ∈ Z(A).

(2) If X = Hcol, a real Hilbert column space, then as in the complex case
Mℓ(X) = Aℓ(X) = B(H), Mr(X) = R I, so that Z(X) = R I.

(3) Suppose thatX is a minimal real operator space, that is,X = Min(E)
for a real Banach space E (see [44]). Then it is known that the Banach space
injective envelope is a C(K) space, and [44, Proposition 4.10] shows that the
injective envelope of X is a C(K) space with its canonical operator space
structure. By the argument in [7, 4.5.10], Mℓ(X) is a minimal operator space,
and Aℓ(X) is a commutative C∗-algebra. Indeed, we have the following,
which is the real case of [17, Proposition 7.6(i)].

Theorem 4.4. For a real Banach space X we have

Mℓ(Min(X)) = Aℓ(Min(X)) = Z(Min(X)) = Cent(X) = M(X),

where Cent and M are the real Banach space centralizer and multiplier al-
gebra [3, 30]. This also agrees with {T ∈ B(X) : Tc ∈ M(Xc)}, and for
such T we have ∥T∥ = ∥Tc∥.

Proof. It is known (and obvious from the definitions) that Cent(X) =
M(X) in the real case [3, 30]. We have T ∈ Mℓ(Min(X)) if and only if

Tc ∈ Mℓ((Min(X))c) = Mℓ(Min(Xc)) = M(Xc),

using [44, Proposition 2.1] and [7, 4.5.10]. If T ∈ M(X) then as in [4,
Theorem 2.1] one sees that there is a compact space K, a linear isometry
σ : X → C(K), and an f ∈ C(K), such that σ(Tx) = fσ(x) for x ∈ X. By
a universal property of Min (see [44]) it is easy to see that σ is a complete
isometry on Min(X). So T is in Aℓ(Min(X)) (since f is selfadjoint) and
indeed in Z(Min(X)), since the C∗-algebras concerned all commute. Thus
we have shown that

Cent(X) = M(X) ⊂ Z(Min(X)) ⊂ Aℓ(Min(X)) ⊂ Mℓ(Min(X)).

Now I(Min(X)) = (C(K,R), j), a real C(K) space, as stated above the
theorem. From the real version of [7, Proposition 4.4.13] in conjunction
with the representation of Mℓ above Lemma 4.2, we have Mℓ(Min(X)) =
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{f ∈ C(K) : fj(X) ⊂ j(X)}. By the real version of [7, Theorem 3.7.2] we
see that Mℓ(Min(X)) ⊂ M(X).

That ∥T∥ = ∥Tc∥ follows from the above and e.g. Proposition 4.3(5).

Remark. In [3, 30] it is shown that for a complex Banach space X we
have CentC(X) = CentR(X) + iCentR(X).

Theorem 4.5. If X is a complex operator space viewed as a real operator
space Xr, we have Mℓ(Xr) = MC

ℓ (X), Aℓ(Xr) = AC
ℓ (X), and ZR(Xr)

= ZC(X). The projections in the latter algebra are the (complex ) complete
M -projections (of e.g. [17, Section 7] or [7, Chapter 4]).

Proof. If u is multiplication by i on X then u ∈ Ball(Mℓ(Xr)), and
indeed it is in the centralizer as we saw in the proofs in Section 3. Hence u
commutes with all members of Mℓ(Xr). It follows that operators in Mℓ(Xr)
are C-linear on X, and therefore are in MC

ℓ (X). Thus Mℓ(Xr) = MC
ℓ (X).

This is a completely isometric identification, since CR
n (Xr) ∼= CC

n (X) real
completely isometrically, and thus

Mn(Mℓ(Xr)) = Mℓ(Cn(Xr)) = MC
ℓ (Cn(X)) ∼=Mn(MC

ℓ (X))

isometrically. Taking the ‘diagonal’, we have Aℓ(Xr) = AC
ℓ (X). Here we used

the fact that for a unital subalgebra A of B(H) in the complex setting, if we
view B(H) as a real C∗-algebra B(H)r then the ‘real and complex diagonal
algebras’ of A coincide. Then

ZR(Xr) = Aℓ(Xr) ∩ Ar(Xr) = AC
ℓ (X) ∩ AC

r (X) = ZC(X)

as desired. The last assertion may be found in e.g. [17, Section 7].

Remark. 1) The above is quite different to the Banach space case,
where CentR(X) need not contain CentC(X). Indeed, if we take X = C
then CentF(X) = F ·I, while Z(X) = C = ZR(Xr) = Aℓ(X). Nor do we
have ZR(X) ⊂ CentR(X), where the latter is the Banach space central-
izer algebra, in contrast to the complex theory [17, Corollary 7.2]. Indeed,
ZR(A) is not a subset of CentR(A) in general, even for real commutative
two-dimensional C∗-algebras. Nor is CentR(X) a subset of ZR(X) in gen-
eral. Indeed, suppose that X is a complex operator space with a complex
M -projection P which is not a complete M -projection. Then P is a real
M -projection so it is in CentR(X). However, P is not in ZR(X), for if it
were then one sees that P (n) is an M -projection for all n, contradicting that
P is not a complete M -projection. Sharma does not discuss real complete
M -projections, but just as in the complex case one sees that these are just
the P ∈ B(X) for which P (n) is an M -projection for all n.

We recall that a real M -projection on a complex Banach space is a
complex M -projection [30, Theorem I.1.23]. Similarly, each real complete
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M -projection P on a complex operator space is a complex complete M -
projection. This may be easily seen by the proof of the claim in the proof of
Theorem 3.4.

2) If X is a complex operator space then we recall from [5, Section 4]
that IR(X) = IC(X). Replacing X by I(X) in the last result, we see that
IR11(X) = Mℓ(I(X)r) = MC

ℓ (I(X)) = IC11(X). Similarly for I22.

Proposition 4.6. We have T ∈ Mℓ(X) if and only if T ∗∗ ∈ Mℓ(X
∗∗),

and the multiplier norms of these coincide. Similarly T ∈ Z(X) if and only
if T ∗∗ ∈ Z(X∗∗). Also, Aℓ(X) ⊂ Aℓ(X

∗∗) isometrically via a faithful ∗-
homomorphism.

Proof. The first statement follows by the argument in [17, Proposi-
tion 5.14]. Similarly for the second statement. For Z(X) we note that
T ∈ Z(X) iff Tc ∈ Z(Xc), and iff (Tc)∗∗ ∈ Z((Xc)

∗∗) by [17, Theorem 7.4].
Since (Tc)

∗∗ = (T ∗∗)c and (Xc)
∗∗ = (X∗∗)c, the latter happens iff (T ∗∗)c ∈

Z((X∗∗)c), which as before is equivalent to T ∗∗ ∈ Z(X∗∗).

Remark. We do not in general have the ‘if and only if’ above in the case
of Aℓ(X). That is, one may have T ∈ Mℓ(X) \ Aℓ(X) with T ∗∗ ∈ Aℓ(X

∗∗).

The remaining results in [7, Section 4.6] seem unchanged in the real
case. In [7, Section 4.7], the first result follows by complexification, and
the rest of the results follow with unchanged proofs. As in the complex
case, Mℓ(X) is a dual operator algebra, and its subspace Aℓ(X) is a real
von Neumann subalgebra if X is a dual operator space. It follows that Z(X)
is a commutative real von Neumann subalgebra, whose projections as in the
complex case are the complete M -projections. Indeed, Z(X) may be viewed
as the fixed points of the weak∗ continuous period 2 ∗-automorphism of the
complex commutative von Neumann algebra Z(X)c ∼= Z(Xc). Most of [7,
Section 4.8] is covered in [44], with the notable exception of complete (two-
sided) M -ideals. We have already mentioned in Remark 1 after Theorem 4.5
that one sees, just as in the complex case, that complete M -projections
are just the P ∈ B(X) with P (n) an M -projection for all n ∈ N. As in
the complex case these are the left M -projections that are also right M -
projections, and they are precisely the projections in Z(X), as in the complex
case.

Note that if a real operator algebra A has both a left and a right cai then
it has a cai as in e.g. [7, Proposition 2.5.8].

Theorem 4.7. If A is an approximately unital real operator algebra then
the complete M -ideals (resp. complete M -summands) are exactly the two-
sided ideals in A with contractive approximate identity (resp. Ae for a central
projection e ∈M(A)).
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Proof. Let P be a complete M -projection on an approximately unital
operator algebra. Then it is a left M -projection and a right M -projection.
Thus Pc is a complex left M -projection on Ac by [44, Proposition 5.8], and
similarly on the right, hence it is a complex complete M -projection. By the
complex case in [7, Theorem 4.8.5] we have Pc(x) = ex for a central projec-
tion e ∈M(Ac). Since M(Ac) =M(A)c by Lemma 6.2, and PcA = eA ⊂ A,
it follows that e ∈ M(A). This proves the statement about M -summands.
Similarly it follows as in [44, Corollary 5.9] that a real subspace J is a com-
plete M -ideal (or summand) in X if and only if Jc is a complete M -ideal
(or summand) in Xc. From this, the statement about M -ideals follows, or it
may be deduced from [44, Corollary 5.11].

It is not at all obvious if the word ‘complete’ in the last result can be
dropped. Indeed, such a result has not previously appeared in the literature
even in the real C∗-algebra case. For a commutative real C∗-algebra A the
M -ideals are the closed ideals. Indeed, by [5, Theorem 3.1] A∗∗ is the L∞

sum of real and complex C(K) spaces. As we said earlier, real and complex
M -projections on a complex space coincide. Any real M -summand V of A∗∗

corresponds to real M -summands of these C(K) spaces. Thus V = eA∗∗ for
an orthogonal projection e ∈ A∗∗. Recently in joint work with M. Neal, A.
Peralta and S. Su [12] we have proved that the M -ideals in a general real
C∗-algebra (and in more general objects of interest) are the closed ideals,
and coincide with the complete M -ideals. See the “Added in proof” section.
In particular, we have fully generalized Theorem 4.8.5 of [7] to the real case.
We remark that (4) of that theorem was later improved to replace LM by
the multiplier algebra M(A), and this holds also in the real (even Jordan)
operator algebra case.

5. Operator spaces. The remaining sections of our paper, as stated in
the introduction, verify in a very economical, linear, and somewhat system-
atic format the real case of the remaining theory in several chapters of [7],
and establish how the basic constructions there interact with the complex-
ification. We begin with [7, Chapter 1]. A few of the facts below appear
in the papers of Ruan and Sharma (see e.g. [44, end of Section 2]). Ruan
showed in [43] that (Xc)

∗ ∼= (X∗)c completely isometrically. For linear func-
tionals we have ∥φ∥ = ∥φ∥cb, as follows from [42, Lemma 5.2]. It is pointed
out, however, in [44, Proposition 2.8] that (Xr)

∗ ̸= (X∗)r completely iso-
metrically for a complex operator space (some mistakes in the proof of that
proposition are easily fixed). Here Xr is the space regarded as a real operator
space.

We note that a real C∗-algebra A has a unique operator space struc-
ture such that Mn(A) is a real C∗-algebra for all n ∈ N. This is because
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a real ∗-algebra has at most one C∗-algebra norm, as follows immediately
by complexification, or from e.g. [44, Lemma 2.2]. Proposition 1.2.4 in [7]
then follows from [15, Theorem 2.6]. The assertion there that π is a complete
quotient map with closed range can easily be seen by considering πc. It is
interesting, however, that the Russo–Dye theorem holds for real von Neu-
mann algebras [36]; the Kadison–Schwarz inequality is discussed there too.
On quotient operator spaces we have Xc/Yc ∼= (X/Y )c by Proposition 1.1
(the proof of this in [44] may be corrected as in [6, Proposition 5.5]). It is
easy to see that the operator space complexification commutes with c0 and
ℓ∞ sums of operator spaces (see e.g. [44, proof of Lemma 5.14]). The rest of
[7, Section 1.2] is in the small real operator space literature, or follows as in
the complex case or (as in the case of e.g. 1.2.31) by complexification. The
exception is 1.2.30, for obvious reasons; we will not discuss interpolation in
the present paper.

In what follows, X is the ‘conjugate operator space’ of a complex op-
erator space X. That is, X is the set of formal symbols x for x ∈ X,
with matrix norms ∥[xij ]∥ = ∥[xij ]∥. With ‘conjugate scalar multiplica-
tion’ X is a complex operator space; the map x 7→ x is conjugate linear
(see [16, Proposition 2.1 and Remark after it]). This defines a functor on the
complex operator space, with the action on morphisms being T (x) = T (x).
In practice this construction is often extremely useful. The first reason for
this is that in checking certain facts about a complexification Yc we very fre-
quently must use the important conjugate linear isomorphism θY onW = Yc.
One often wants to apply results from the complex theory to θY , and to do
this it is often convenient to view conjugate linear maps into W as complex
linear maps into W . Lemma 5.3 is an example of this. The next result is also
useful for similar reasons (see [21] for an example of this).

Lemma 5.1. The operator space complexification of a complex operator
space X is complex linearly completely isometric to X⊕∞X, where we iden-
tify X with {(x, x) : x ∈ X}, and identify x+ iy in the complexification with
(x+ iy, x− iy) ∈ X⊕∞X. If B is a complex C∗-algebra then Bc

∼= B⊕∞B◦

∗-isomorphically (as complex C∗-algebras). Here B◦ is the ‘opposite’ C∗-
algebra of B.

Proof. Note that X + iX becomes {(x, x) + (iy,−iy) : x, y ∈ X} =
X ⊕∞ X. Also, (x, x) = (iy,−iy) implies that x = iy = −iy, so that x =
y = 0 and X ∩ (iX) = {0}. The embedding x 7→ (x, x) is clearly completely
isometric (by definition of X above). Finally, if we define θ(x + iy, x− iy)
= (x − iy, x+ iy), then θ((a, b)) = (b, a) for a, b ∈ X, which is clearly
completely isometric, and the copy of X is the set of fixed points of θ. So
by Ruan’s uniqueness theorem, the operator space complexification of X is
X ⊕∞ X.
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If B is a complex C∗-algebra then B is a C∗-algebra with product
xy = xy. Indeed, x 7→ (x∗)◦ is a complex linear ∗-isomorphism B → B◦.

Remark. We remark that in the last result X ⊕∞ X is real completely
isometric to the set of matrices of the form (1.1) with x, y ∈ X. However,
the latter set is not always complex linearly completely isometric to Xc

(similarly to the fact mentioned in Section 2 that a Banach space E need
not be complex isometric to E), so it is not very useful for many purposes.
Note also that the statement in the lemma about C∗-algebras does not imply
that A⊕A◦ is completely isometric to Ac for a (complex) operator algebra A,
where A◦ is the opposite algebra of [7, 2.2.8].

The basics of the theory of real operator systems are much the same as
in the complex case (see [43, 42, 44, 15]) in many ways, most results being
proved in the same way as in the complex case, or simply following from that
case by complexification. We have already indicated some of the problematic
issues with real operator systems and states in other papers (see also [43, 15]),
such as the selfadjoint or positive elements not necessarily spanning a real
operator system S, or that they may be all of S. See also comments on [14,
Section 2.1] below.

The facts in [7, Section 1.4] are valid with the same proofs. See e.g. [44,
Proposition 2.4 and Remark on p. 104] for some examples of this.

Lemma 5.2. Let X be a real operator space, which is the operator space
dual of another real operator space Y . Then X is completely isometrically
isomorphic, via a homeomorphism for the weak∗ topologies, to a weak∗ closed
subspace of B(H) for a real Hilbert space H. Also, X is a weak∗ closed real
subspace of its operator space complexification Xc

∼= (Yc)
∗, and the canonical

maps X → Xc, Xc → X and θX : Xc → Xc are weak∗ continuous.
Conversely, any weak∗ closed subspace X of B(H) is the operator space

dual of B(H)∗/X⊥.

Proof. The first and the last statements follow perhaps most quickly
from [7, proofs of Lemmas 1.4.6 and 1.4.7]. If X is a weak∗ closed subspace
of B(H) then in the setup of [5, Section 2], B(H)c may be viewed as a weak∗
closed real subspace of M2(B(H)) ∼= B(H(2)) ∼= BR(Hc), and the induced
embedding B(H)c ↪→ BR(Hc) has range in BC(Hc) and coincides with the
canonical map B(H)c → BC(Hc). The latter range is weak∗ closed. The iso-
morphism B(H(2)) ∼= BR(Hc) is a weak∗ homeomorphism. Hence the canoni-
cal maps B(H) → B(H)c and B(H)c → B(H) (‘real’ and ‘imaginary’ parts)
are weak∗ continuous. Indeed, St+iTt −−−→t→∞ S+iT weak∗ iff St −−−→t→∞ S weak∗

and Tt −−−→t→∞ S weak∗. It follows that Xc is weak∗ closed in B(H)c ∼= B(Hc),
and the canonical maps X → Xc and Xc → X are weak∗ continuous, as thus
is θX on Xc. Thus X is a weak∗ closed real subspace of its complexification.



24 D. P. Blecher

If X has a real operator space predual Y then Xc has operator space pre-
dual Yc, of course. By the net convergence formulation above, the associated
weak∗ topology on Xc coincides with the one inherited from B(Hc) above
if the embedding X ⊂ B(H) is weak∗ continuous with respect to σ(X,Y ),
such as the embedding in the first statement.

A real C∗-algebra is representable as a real von Neumann algebra if and
only if it has a Banach space predual [32]. Such a Banach space predual is
unique by [32, 6.2.5]. By [35, last part of Section 5.5] the bidual of a real
C∗-algebra A is a real W ∗-algebra, and (Ac)

∗∗ ∼= (A∗∗)c. Indeed, the theory
of the real bidual of an operator space or an operator algebra is very similar
to the complex theory (e.g. in [7, Sections 1.4 and 2.5]).

Lemma 5.3. The operator space 1-direct sum W =
⊕1

α (Xα)c is the rea-
sonable complexification of V = ⊕1

αXα.

Proof. The inclusionXα→W induces a complete contraction κ : V →W ,
by the real variant of [7, 1.3.14]. The universal property of the 1-sum applied
to the complexification of the inclusion iα : Xα → V gives a complete con-
traction r : W → Vc with r ◦ κ = IV . So, κ is a complete isometry. It is
not hard to show that W has the universal property of

⊕1
α (Xα)c, so that

these operator spaces may be identified. The composition of θXα with the
canonical map (Xα)c → W → W induces a linear complete contraction
u : W → W . Similarly, we obtain a map v : W → W with vu = IW . Then
u(·) is a period 2 conjugate linear complete isometric surjection θ :W →W
fixing Ran(κ). Thus W is the reasonable complexification.

Basic aspects of the real version of the theory of operator space ten-
sor products are stated in Ruan’s paper [42]. We will expand on his very
terse remarks, for example discussing functoriality of the complexification
for the three tensor products in [7, Section 1.5]: the minimal, projective,
and Haagerup operator space tensor products. The operator space projec-
tive tensor product is designed to linearize real bilinear maps that are jointly
completely bounded in the sense of [7, 1.5.11]. One can see in several ways that
a ‘jointly completely contractive’ real bilinear map u : X × Y → Z of real
operator spaces extends uniquely to a jointly completely contractive complex
bilinear map u : Xc×Yc → Zc (this follows e.g. from the next lemma). As in
the complex case (E ⊕⌢ F )∗ ∼= CB(E, Y ∗) completely isometrically (see the
last page of [42] and [7, (1.51)]).

The Haagerup tensor product of real operator spaces is defined e.g. as
in [7, 1.5.4] so as to have the universal property of linearizing bilinear maps
that are completely bounded in the sense of Christensen and Sinclair (called
simply completely bounded in e.g. [7]). As in the complex case, if Xi ⊂ Yi
completely isometrically then X1⊗hX2 ⊂ Y1⊗h Y2 completely isometrically
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(this is the ‘injectivity’ of the Haagerup tensor product). There are several
known proof strategies for this, but it also follows from the complex case and
the complete isometry beginning the third paragraph of the next proof. The
proof of the CSPS theorem in [7, Theorem 1.5.7] is just as in the complex
case. The other results in [7, Section 1.5], e.g. the ‘selfduality’ of the Haagerup
tensor product, are also just as in the complex case.

Lemma 5.4. For real operator spaces X and Y we have (X ⊗min Y )c ∼=
Xc ⊗min Yc and (X ⊗⌢ Y )c ∼= Xc ⊗

⌢
Yc completely isometrically. Similarly

(X ⊗h Y )c ∼= Xc ⊗h Yc completely isometrically. In particular, a completely
contractive (in the sense of Christensen and Sinclair) real bilinear map u :
X×Y → Z of real operator spaces extends uniquely to a completely contrac-
tive complex bilinear map u : Xc × Yc → Zc.

Proof. If ⊗min is the uncompleted minimal operator space tensor prod-
uct, we have

(X ⊗min Y )c ⊂ CB(Y ∗, X)c = CB((Y ∗)c, Xc) = CB((Yc)
∗, Xc).

Thus the algebraic identification of (X⊗minY )c and Xc⊗minYc is a complete
isometry. A similar principle shows that (X ⊗⌢ Y )c ∼= Xc ⊗

⌢
Yc completely

isometrically. Indeed,

(Xc⊗
⌢
Yc)

∗ ∼= CB(Xc, (Yc)
∗) ∼= CB(Xc, (Y

∗)c) ∼= CB(X,Y ∗)c ∼= ((X⊗⌢ Y )∗)c

completely isometrically, so that the algebraic identification of (the uncom-
pleted) operator space projective tensor products Xc ⊗

⌢
Yc and (X ⊗⌢ Y )c is

a complete isometry.
Let u : X × Y → Z be a completely contractive (in the sense of Chris-

tensen and Sinclair) real bilinear map and let uc : Xc × Yc → Zc be the
unique complex bilinear extension. Let θ : Zc → M2(Z) be the map taking
x + iy to the matrix in (1.1). For n ∈ N and a ∈ Mn(Xc), b ∈ Mn(Yc) the
reader can check that θn(ucn(a, b)) = u2n(θn(a), θn(b)). Hence

∥ucn(a, b)∥ = ∥θn(ucn(a, b))∥ = ∥u2n(θn(a), θn(b))∥
≤ ∥θn(a)∥ ∥θn(b)∥ = ∥a∥ ∥b∥.

Thus uc is completely contractive.
It is easy to deduce from the latter and the universal property that the

canonical map X ⊗h Y → Xc ⊗h Yc is a complete isometry. To show that
(X⊗h Y )c ∼= Xc⊗h Yc completely isometrically it suffices by the ‘injectivity’
of the Haagerup tensor product, and ofX 7→ Xc, to assume thatX and Y are
finite-dimensional. Clearly ⊗ : X × Y → X ⊗h Y is completely contractive,
so by the facts above we obtain a completely contractive map Xc × Yc →
(X ⊗h Y )c, and we see that the canonical map Xc ⊗h Yc → (X ⊗h Y )c is
completely contractive. Hence the canonical map X∗

c ⊗h Y
∗
c → (X∗ ⊗h Y

∗)c
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is completely contractive. Dualizing this we get a complete contraction

(X∗ ⊗h Y
∗)∗c → (X∗

c ⊗h Y
∗
c )

∗ ∼= Xc ⊗h Yc,

the latter by the ‘selfduality’ above the lemma. Also by this ‘selfduality’
we have X ⊗h Y ∼= (X∗ ⊗h Y

∗)∗. Complexifying this last isomorphism, and
composing with the map in the last displayed equation, one may see that
the canonical map (X ⊗h Y )c → Xc ⊗h Yc is a complete contraction. Thus
(X ⊗h Y )c ∼= Xc ⊗h Yc completely isometrically.

Nearly all of the real versions of the results in [7, Section 1.6] are valid
by the same arguments. We end this section by discussing the real versions
of a couple of results there that are not so clear.

If X,Y are weak∗ closed real subspaces of B(H) and B(K), we define the
normal spatial tensor product X ⊗ Y to be the weak∗ closure in B(H ⊗K)
of the span of the operators x⊗ y for x ∈ X and y ∈ Y . Define the normal
Fubini tensor product X ⊗F Y to be the subspace of B(H ⊗K) of elements
whose ‘left slices’ are in X and ‘right slices’ are in Y (see [25, bottom of
p. 134]).

Lemma 5.5. If X and Y are weak∗ closed real subspaces of B(H) and
B(K) then there is a canonical weak∗ continuous completely isometric iso-
morphism

(X∗ ⊗
⌢
Y∗)

∗ ∼= X ⊗F Y,

which carries the weak∗ closure of the canonical copy of X⊗Y in (X∗⊗
⌢
Y∗)

∗

onto the normal spatial tensor product X ⊗ Y .
In addition, Xc ⊗ Yc is a reasonable complexification of X ⊗ Y ; indeed,

X ⊗ Y may be identified with the fixed points of the period 2 automorphism
θX ⊗ θY on Xc ⊗ Yc.

Proof. The proof of the complex version of the first assertion, which is
[25, Theorem 7.2.3], works in the real case.

Consider the canonical map

X ⊗ Y
κ−→ Xc ⊗ Yc.

Here κ(x ⊗ y) = x ⊗ y for x ∈ X, y ∈ Y . Note that κ is weak∗ continuous
and completely isometric since it is a restriction of the canonical map

B(H)⊗B(K) = B(H ⊗K)
κ−→ B(Hc)⊗B(Kc) = B(Hc ⊗Kc).

(One may use Lemma 5.2 here and below too if desired.) Note also that
θX ⊗ θY is the weak∗ continuous restriction of θB(H)⊗ θB(K) to Xc⊗Yc, and
is thus easily seen to be a well-defined period 2 automorphism on Xc ⊗ Yc.
Let

Q(z) = 1
2(z + (θX ⊗ θY )(z)), z ∈ Xc ⊗ Yc.
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This is a weak∗ continuous idempotent, and Ran(Q) is the set of fixed points
of θX ⊗ θY . It is easy to check that Q ◦ κ = κ first on elementary ten-
sors, and then on X ⊗ Y by continuity and density. On the other hand,
Q((x + iy) ⊗ (x′ + iy′)) is easily seen to be in Ran(κ), so since the latter
is weak∗ closed we have Ran(Q) ⊂ Ran(κ) again by continuity and density.
Thus Ran(Q) = Ran(κ) is the set of fixed points of θX ⊗ θY . The result
follows from this and [5, Proposition 2.1].

The next result is quite important, and contains the real case of a cele-
brated result of Effros and Ruan:

Theorem 5.6. If M and N are real von Neumann algebras, then the
operator space projective tensor product M∗⊗

⌢
N∗ is the operator space predual

of the von Neumann algebra M⊗N . In addition, M⊗N is real ∗-isomorphic
to the fixed points of the period 2 automorphism θM ⊗ θN on Mc ⊗Nc.

Proof. That M∗⊗
⌢
N∗ is the operator space predual of the normal spatial

tensor product M ⊗ N follows exactly as in the complex case [25, Theo-
rem 7.2.4], but using Lemma 5.5 above and the real version of the commu-
tation theorem for tensor products in [35, Theorem 4.4.3]. The last assertion
follows from the previous result.

Finally, we consider the formula L∞(Ω,µ) ⊗ Y = L∞(Ω,µ;Y ) in [7,
1.6.6], for a dual operator space Y with separable predual. In this case
again the proof referenced there (from Sakai’s book) works in the real case,
since it relies on the Dunford–Pettis theorem and the well-known fact that
L1(Ω,µ) ⊗̂ Y = L1(Ω,µ;Y ) (due to Grothendieck), both of which are valid
in the real case. (Actually, we only need the first ten lines of Sakai’s proof,
the rest is covered by our earlier discussion.) This concludes our discussion
of Chapter 1 in [7].

6. Operator algebras. Before we discuss technical issues arising in [7,
Chapter 2] we say a few things about real Banach algebras. The first point is
that the Neumann lemma and its variants, and the norm formulae often ac-
companying the Neumann lemma, are valid verbatim for unital real operator
algebras via complexification. This is because of the uniqueness of the op-
erator space complexification, and the fact that the canonical map Ac → A
is a contraction. The basic spectral theory of real Banach algebras may be
found e.g. in [28, 35]. Nonzero multiplicative linear functionals (characters)
χ on a real operator algebra A need to be complex-valued in general to get
a sensible theory (see [28, 35]). If A is unital then χ is contractive. If A is
not unital then χ extends to a unital character on A1. So χ is (completely)
contractive. Thus the Gelfand transform is a contraction, and the characters
on commutative unital real operator algebras are in bijective correspondence
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with the maximal ideals [28, 35]. There is a natural involutive homeomor-
phism on the spectrum of a commutative real C∗-algebra (see [35, end of
Section 5.1, Example (3)]). There is therefore a good functional calculus for
real C∗-algebras that works in the expected way provided that one uses con-
tinuous functions on the spectrum that are involutive with respect to the just
mentioned involution (the real C∗-algebra generated by a normal element a
corresponds via the Gelfand transform to such involutive functions on the
spectrum). See e.g. [36] for a recent survey on some aspects of real Banach
algebras.

It seems to be well-known that Cohen’s factorization theorem works for
real Banach modules over real approximately unital Banach algebras, with
the same proof. Namely, for a nondegenerate real left Banach A-module X
over a real approximately unital Banach algebra, if x ∈ X has norm < 1
there exist a ∈ Ball(A) and y ∈ X of norm < 1 with x = ay. Since we do not
have a reference on hand, we also mention that the basic proof of Cohen’s
theorem uses the Neumann lemma, which as we said works in the real case
with the same norm inequality consequences, and builds the element a from
convex combinations of the cai. Similarly, the element y is also constructed
using real methods, so that we still have a ∈ Ball(A) and y ∈ X with desired
norm inequality.

The following result is somewhat well-known in the complex case, and has
various known proofs, for example using a result of Kaplansky on minimal al-
gebra norms on C0(K), or see e.g. [7, Theorem A.5.9]. The real case seems to
be new, but may be proved similarly using Kaplansky’s result applied to the
algebra generated by x∗x. We give a longer but selfcontained and novel route.

Theorem 6.1. Let θ : A → B be a contractive homomorphism from
a real C∗-algebra into a real Banach algebra. Then π(A) is norm closed,
and it possesses an involution with respect to which it is a real C∗-algebra.
Moreover, π is then a ∗-homomorphism into this C∗-algebra. If π is one-to-
one then it is an isometry.

Proof. Assume first that A is commutative. By replacing B by π(B)
we may assume that B is commutative, so Arens regular, although this is
not necessary. By extending to the bidual we may assume that A = M
is a commutative real W ∗-algebra and π is weak∗ continuous. (Note that
if π∗∗ is a ∗-homomorphism into a C∗-algebra then so is π, and its range
is closed and is a C∗-algebra.) Quotienting by the kernel, a weak∗ closed
ideal, we may assume that π is one-to-one. By [5, Theorem 3.1] we may
assume that M = L∞(X,C) ⊕∞ L∞(Y,R). Let p be the projection in M
corresponding to the first summand. We claim that π(pM) = π(L∞(X,C))
and π((1 − p)M) = π(L∞(Y,R)) are closed and are C∗-algebras, so that
π(pM)⊕∞ π((1− p)M) is a C∗-algebra.
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If e and f are mutually orthogonal projections in M then π(e) and π(f)
are contractive nonzero idempotents with zero product, and are of norm 1.
Hence it is easy to see that π is isometric on real linear combinations of
mutually orthogonal projections in M . Since such real linear combinations
are norm dense in L∞(Y,R), it follows that π is isometric on (1 − p)M . So
π((1 − p)M) is closed and has an involution making it a commutative real
W ∗-algebra with its original norm, and π is a ∗-homomorphism.

We now consider the complementary space pM = L∞(X,C). Let D
be the closure of π(L∞(X,C)). By the argument above, π is isometric on
(pM)sa. A similar argument will show it is isometric on all of pM . If J = π(i)
then J2 = −I, and since J and π(−i) are contractive with product 1, they
have norm 1. Note that

∥(cosφI + J sinφ)x∥ = ∥π(cosφ · 1 + i · sinφ)x∥
≤ ∥π(cosφ · 1 + i1 · sinφ)∥∥x∥ ≤ ∥x∥

since π is contractive and |cosφ + i sinφ| = 1. So D is a complex Banach
space with ix = Jx for x ∈ D (by the simple criterion in the second para-
graph of Section 3). Indeed, it clearly is a complex Banach algebra (see [36,
Proposition 6.2]). Now π(if) = Jπ(f) = iπ(f), so that π is a complex linear
contractive homomorphism. By the argument in the last paragraph, but tak-
ing complex combinations, π is isometric on pM , and π(pM) is closed and
possesses an involution with respect to which it is a complex, hence real,
commutative C∗-algebra, and π is a ∗-homomorphism. Let q = π(p), the
identity of the latter C∗-algebra.

For x, y ∈M we have

∥qπ(x)∥ ≤ ∥qπ(x)+(1−q)π(y)∥ ≤ ∥px+(1−p)y∥ = max {∥px∥, ∥(1−p)y∥}.

Since θ is isometric on the two pieces, the latter equals max {∥qπ(x)∥,
∥(1 − q)π(y)∥}. Thus π(M) = π(pM) ⊕∞ π((1 − p)M) isometrically, and
is norm closed and possesses an involution with respect to which it is a real
C∗-algebra. Also, π is an isometric ∗-homomorphism.

In the general case, again θ∗∗ : A∗∗ → B∗∗ is a unital contraction, and it
is easy to see that it is a homomorphism with respect to, say, the left Arens
product on B∗∗. So we may assume that A is a real von Neumann algebra.
Indeed, if the range of θ∗∗ is a C∗-algebra then θ is a ∗-homomorphism by
[15, Theorem 2.6], so it has closed range which is a C∗-algebra. As above
we may assume that θ is one-to-one. We claim that θ is an isometry. By
the commutative case, θ is an isometry on selfadjoint elements since they
generate a commutative unital C∗-algebra. For a ∈ A let a = v|a| be the
polar decomposition in A (see [35, Proposition 4.3.4(2)]). Then

∥θ(a)∥ = ∥θ(v|a|)∥ = ∥θ(|a|)∥ =
∥∥|a|∥∥,
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since θ(v), θ(v∗) are contractions and |a| = v∗v|a|. So θ is an isometry on A.
Hence π(A) is closed, and has an involution with respect to which it is a
C∗-algebra.

We now survey the real case of the remaining results in [7, Chapter 2]
(see also the last paragraphs of the introduction). As said elsewhere, the self-
adjoint elements in a real operator algebra are not necessarily the hermitian
elements, although a selfadjoint element a is positive iff φ(a) ≥ 0 for real
states φ. States are thoroughly discussed in [15]. One may add to that that
the real states φ on an approximately unital real operator algebra A are
precisely the real parts of complex states on Ac (such as φc), or of a complex
C∗-algebra generated by Ac (using [15, Lemma 4.13] in the approximately
unital case). However, the real parts of two different such complex states
may coincide on A. A similar fact holds in the Jordan operator algebra case.

The results of [7, 2.1.5–2.1.8 and Appendix A.6] rely in places on Cohen
factorization, but as we mentioned above, the latter is valid in the real case.
Lemmas 2.1.9 and 2.1.18 of [7] in the real case appear as Proposition 4.3
and Lemma 4.12 in [15]. Indeed, most results in [7, Section 2.1] are just as in
the complex case, or are explicitly in [44, 15]. For example, the unitization
A1 was studied in [44, Section 3] where it was checked that (A1)c ∼= (Ac)

1

completely isometrically. For the U(X) construction from [7, Section 2.2]
it is clear that U(X)c ∼= U(Xc) completely isometrically and as operator
algebras (just as we saw the analogous result for S(X)c in the introduction).
Sharma abstractly characterized real operator algebras in [44]. The rest of
the results in [7, Sections 2.2–2.5] are virtually unchanged in the real case,
with the exception (as in Chapter 1) being the complex interpolation results
in [7, Section 2.3]. We mention in particular the fact that the quotient of a
real operator algebra A by a closed two-sided ideal is a real operator algebra,
which follows as in [7, Proposition 2.3.4] or from the complex case and the
earlier complete isometry A/I ⊂ (A/I)c ∼= Ac/Ic [44, Lemma 5.12].

The theory of the left, right and two-sided multiplier algebras of an ap-
proximately unital operator algebra A in [7, Section 2.6] is just as in the
complex case. The next lemma follows from Lemma 4.2 but we include a
short direct proof.

Lemma 6.2. For a real approximately unital operator algebra A, a reason-
able complexification of LM(A) is (LM(Ac), T 7→ Tc). Similarly M(A)c =
M(Ac) and RM(A)c = RM(Ac) completely isometrically isomorphically.

Proof. We have (completely isometrically as operator algebras)

LM(Ac) = {η ∈ (Ac)
∗∗ ∼= (A∗∗)c : ηAc ⊂ Ac},

which is {ζ + iξ ∈ (A∗∗)c : ζA ⊂ A, ξA ⊂ A}. Since the latter is rea-
sonable, it is LM(A)c. It follows that (LM(Ac), T 7→ Tc) is a reasonable
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complexification of LM(A); also T ∈ LM(A) iff Tc ∈ LM(Ac). The others
are similar.

Moreover, 2.6.14–17 (for real selfadjoint UCP maps) and the real version
of Section 2.7 hold in the real case. The real version of [7, Theorem 2.7.9]
holds by complexification. For the reader’s convenience we walk quickly
through the details as being representative of such arguments:

Theorem 6.3. Let M be a real operator algebra which is a dual operator
space. Then the product on M is separately weak∗ continuous, and M is a
dual operator algebra. That is, there exists a real Hilbert space H and a weak∗
continuous completely isometric homomorphism π :M → B(H).

Proof. Indeed, if A is a real operator algebra with an operator space
predual Y , then Ac is a complex operator algebra with an operator space
predual Yc. Also A is a weak∗ closed real subalgebra of its complexification
by our comments above on [7, Section 1.4]. Thus by [7, Theorem 2.7.9] there
exists a (complex, hence) real Hilbert space H and a weak∗ continuous com-
pletely isometric homomorphism π : A → B(H) with π(A) a weak∗ closed
real operator algebra on H.

We call these the real dual operator algebras. We remark that some of
the real theory of dual operator algebras also follows from the involutive
approach as in [16, Section 4].

We end this section with a few words about the completely isomorphic
version of the theory. As mentioned in the introduction, we only check some
selected results in [7, Chapter 5]. The results in [7, Section 5.1] are valid in
the real case, with the usual exception of complex interpolation [7, (5.1.10)].
As we said in Section 2 above, the main result in [7, Section 5.2] follows
from the complex case by complexification. Similarly, the matching result
for modules [7, 5.2.17] is valid in the real case with unchanged proof.

7. Operator modules. The real analogues of nearly all results in [7,
Chapter 3] are unproblematic, although some of these results need some
facts about operator space multipliers from Section 4 above in place of their
complex variants. The complexification of what are called operator mod-
ules, h-modules, Hilbert modules, and matrix normed modules in that chap-
ter are complex operator modules, h-modules, and matrix normed mod-
ules, respectively (using for example facts mentioned in Section 5 about
the complexification of tensor products in reference to [7, Section 1.5]). For
example, using this principle, the proof in Section 2 of the real version of the
Christensen–Effros–Sinclair theorem characterizing operator modules in [7,
Theorem 3.3.1] may be rephrased in terms of complexifying all spaces and
using the last assertion of Lemma 5.4.
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Items [7, 3.1.11 and 3.5.4–3.5.5] use Cohen factorization, but as we men-
tioned above, the latter and several accompanying results in [7, Appendix A.6]
are valid in the real case. Theorem 3.2.14 there uses Appendix A.1.5. How-
ever, the latter result follows in the real case by complexification. Indeed,
if W is as in Appendix A.1.5 and T is as in the fifth line of the appendix
then Wc is weak∗ closed in B(Hc), and clearly (Wc)

(∞) = (W (∞))c. We also
clearly have Tcζ ∈ [(W (∞))c ζ] for ζ ∈ (Hc)

(∞) = (H(∞))c. Since (Wc)
(∞) is

reflexive by [7, A.1.5] in the complex case, we have Tc ∈ (Wc)
(∞) = (W (∞))c,

so that T ∈W (∞).
Much of the real version of [7, Section 3.7] is classical, is in the literature

in some form, and is largely due to E. Behrends and his collaborators [3, 30].
Some of this is explicitly discussed in Section 4, mostly in Theorem 4.4 and
its proof. Some other results in Section 3.7 follow immediately from the
complex case by complexification. The real versions of results in Section 3.8
in [7] follow with the same proofs or by complexification.

8. Operator spaces and injectivity, etc. We turn to the few remain-
ing parts of Chapter 4 in [7]. The motivational Section 4.1 is largely a review
of the classical Shilov and Choquet boundary of complex function spaces.
There is a literature of these boundaries for real function spaces, but we will
say no more here on this topic, since our goal is the more general real opera-
tor space case. Early results in Section 4.2 and on the real injective envelope
and C∗-envelope are covered in [44] (some are mentioned without proof in
Ruan’s papers on real operator spaces). Indeed, items up to 4.2.7 and 4.2.11
are in [44] or are obvious in the real case. Corollary 4.2.8 there is handled in
[5, Theorem 4.2], and Corollary 4.2.9 follows by complexification. The first
part of 4.2.10 is as in the complex case. That I(Mm,n(X)) ∼= Mm,n(I(X))
is generalized in [7, 4.6.12], whose proof is unchanged in the real case. It is
proved in [5] that a complex operator space is real injective if and only if it
is complex injective.

The real C∗-envelope is discussed in [44] and [5, Section 4]. The real
versions of the important facts in 4.3.2 and 4.3.6 in [7] about the C∗-envelope
are true, but some of these use the real versions of facts from Chapters 1 and 2
of [7] that are discussed above. Examples (1) and (2) in 4.3.7 are essentially
unchanged, except that one must use the classification of finite-dimensional
real C∗-algebras in [35, Theorem 5.7.1]. We have not checked 4.3.8–4.3.11,
although we would guess that 4.3.8 and the Dirichlet algebra results are
unchanged. These results seem like a possibly interesting project. Theorem
4.4.3 in [7] is valid, and its Corollary 4.4.4 was already in [42]. The remaining
results in Section 4.4 in [7] are unchanged, or follow by complexification as
in the case of Youngson’s Theorem 4.4.9 and the Corollary after that.
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In view of the importance to real operator spaces and their complexifi-
cations of the space X discussed in and around Lemma 5.1, the following is
often quite useful.

Proposition 8.1. If X (resp. A) is a complex operator space (resp.
algebra), then

(A1) = (A)1, I(X) = I(X), T (X) = T (X), C∗
e (A) = C∗

e (A).

Proof. If (I(X), j) is a (complex operator space) injective envelope of
a complex operator space X, then (I(X), j) is an injective envelope of X.
Indeed, as indicated in [16, Proposition 2.1], a routine diagram chase (i.e.
applying the functor above the proposition to the ‘universal injectivity and
rigidity diagrams’) shows that I(X) is injective, and has the ‘rigidity prop-
erty’, so is an injective envelope of X.

In complicated situations it is sometimes very useful to view the above in
terms of a containing C∗-algebra B, where it is much easier to see what the
‘bar’ is doing in terms of the C∗-algebra adjoint and opposite (indeed recall
from the proof of Lemma 5.1 that B = B◦, the ‘opposite’ C∗-algebra). We
take the time to spell this out in a bit more detail. Namely, consider the C∗-
algebra B = I(S(X)) which has I(X) as its 1-2 corner Z (see e.g. [7, 4.4.2]).
Viewed in this way, it is clear that I(X) is a ternary system or TRO (that
is, ZZ∗Z ⊂ Z). In terms of the ‘opposite’ X◦ and ‘adjoint’ X⋆ constructions
from [7, 1.2.25] and [16, Proposition 2.1] we have X = (X◦)⋆. We view X◦

and I(X)◦ as the appropriate subspaces of the ‘opposite’ C∗-algebra B◦.
Then X and I(X) are the ‘adjoints’ of the latter subspaces of B◦ (by adjoint
we mean the C∗-algebra involution of the C∗-algebra B◦). Similarly, for any
complex subTRO Z of B the canonical map Z → Z is therefore a conjugate
linear TRO morphism and ‘complete isometry’. Viewed in this way, it is
easy to see that I(X) is again a TRO, and indeed I(X) = I(X). Similarly,
(T (X), j) is a ternary envelope of X. That is, T (X) is the subTRO of I(X)
generated by j(X). This can also be deduced from [16, Proposition 2.1]:

T (X) = T ((X◦)⋆) = T (X◦)⋆ = (T (X)◦)⋆ = T (X).

Similarly, if X = A is a complex operator algebra then one may deduce in
the same way from [16, Proposition 2.1] that (A1) = (A)1, and (C∗

e (A), j) is
a C∗-envelope of A.

It follows for example from the last result and Lemma 5.1 that for a
complex operator space X we have I(Xc) ∼= I(X ⊕∞ X) ∼= I(X) ⊕∞ I(X)
∼= I(X)c.

Concerning the Banach–Stone type Theorem 4.5.13, in the case that A
is unital there are many proofs of this in the literature which still work in
the real case. For example, the method in 8.3.13, whose proof is unchanged



34 D. P. Blecher

in the real case. The unital case also follows from the real unital C∗-algebra
Banach–Stone type theorem [43, Theorem 4.4] (which generalizes the simple
[7, Corollary 1.3.10]), by passing to the injective or C∗-envelope. We have
several more general complex Banach–Stone theorems in e.g. [10, 11], and it
would be interesting to see which of these are true in the real case (see also
the paragraph after Proposition 2.10 in [15]). We remark that Ph.D. student
Dylan Phelps is pursuing some of these directions under our co-direction
with Labuschagne.

9. C∗-modules and TROs. Real Hilbert C∗-modules over a real C∗-
algebra are defined almost exactly as in the complex case—see [29, Defini-
tion 2.4]. Let A be a real C∗-algebra and V a real right C∗-module over A.
Then it is known (see e.g. [29]) that there is an Ac-valued inner product on
Vc = V + iV ,

⟨v + iw, x+ iy⟩ = ⟨v, x⟩+ ⟨w, y⟩+ i(⟨v, y⟩ − ⟨w, x⟩),

extending the originalA-valued inner product on V , such that Vc is a complex
C∗-module over Ac. This complexification is ‘reasonable’ with respect to
the canonical norm: ∥v − iw∥ = ∥v + iw∥. Similarly, Mn(V ) is a real right
C∗-module over Mn(A), and its complexification is reasonable. With these
matrix norms V is a real operator space, a real subspace of Vc with the latter
regarded as a real operator space. Thus the C∗-module Vc with its canonical
operator space structure is a (completely) reasonable complexification. It
follows from Ruan’s theorem that this canonical operator space structure
coincides with the unique operator space complexification of V .

If {Yt} is a family of real right C∗-modules over A then the C∗-module
sum

⊕
t Yt is a real right C∗-module over A as in the complex case and(⊕

t

Yt

)
c

∼=
⊕
t

(Yt)c.

Indeed, one may define
⊕

t Yt to be the closure of the real span of the copies of
Yt in

⊕
t(Yt)c. Then the inherited inner product on this closed real subspace

lies in A. Viewing the latter as an operator space as in [7, Section 8.2], it is
clear that

⊕
t(Yt)c is a reasonable operator space complexification of

⊕
t Yt.

Indeed, since Ac is a reasonable complexification of A it is easy to see that

∥(yt) + i(zt)∥2 =
∥∥∥∑

t

⟨yt + izt, yt + izt⟩
∥∥∥ =

∥∥∥∑
t

⟨yt − izt, yt − izt⟩
∥∥∥

= ∥(yt)− i(zt)∥2

for yt, zt ∈ Y . We leave it to the reader to check the matricial case of this
computation, that is, that

⊕
t(Yt)c is a completely reasonable complexifica-

tion. By Ruan’s theorem we deduce that (
⊕

t Yt)c
∼=

⊕
t(Yt)c.
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If T : Y → Z is adjointable then it is easy to check that Tc is adjointable
with (Tc)

∗ = (T ∗)c. The set BA(Y ) of such adjointable T : Y → Y is therefore
∗-isomorphic to a real ∗-subalgebra of the complex C∗-algebra BAc(Yc). The
following is useful:

Lemma 9.1. If Y, Z are real right C∗-modules over A and T : Y → Z
is an A-module map. Then Tc : Yc → Zc is adjointable if and only if T is
adjointable.

Proof. The converse direction is obvious. If Tc : Yc → Zc is adjointable
then

⟨y, (Tc)∗(z)⟩ = ⟨Tcy, z⟩ = ⟨Ty, z⟩ ∈ A, y ∈ Y, z ∈ Z.

Writing (Tc)
∗(z) = y1 + iy2 we easily see, by examining the part of the left

side of the last equation that is in iA, that ⟨y, y2⟩ = 0. Setting y = y2 gives
⟨y2, y2⟩ = 0. Hence (Tc)

∗(Y ) ⊂ Z, so that T is adjointable on Y .

Also, BA(Y ) is closed in BB(Y ) as in the complex case. So D = BA(Y )
is a real unital C∗-algebra, and we may view it as a real C∗-subalgebra of
E = BAc(Yc). For y, x, w ∈ Y we have

(|y⟩⟨y|)x+ i(|y⟩⟨y|)w = y⟨y, x⟩+ iy⟨y, w⟩.
Also within BAc(Yc) we have |y⟩⟨y|(x + iw) = y(⟨y, x⟩ + i⟨y, w⟩). Thus
(|y⟩⟨y|)c = |y⟩⟨y| in BAc(Yc), which is a positive operator. Now Dc may be
viewed as a complex C∗-subalgebra of Ec, and d ∈ D is in D+ iff d ∈ (Dc)+
iff d ∈ (Ec)+ iff d ∈ E+, where the latter are the positive operators in E,
with E considered as a real C∗-algebra. However, by [35, Proposition 5.2.2]
this is equivalent to d being positive in E in the usual sense. Thus |y⟩⟨y| ≥ 0
in BA(Y ). It follows that Y is a real left C∗-module over BA(Y ), and over
KA(Y ), where the latter is the closure of the span of the |y⟩⟨z| for y, z ∈ Y .

Since every real C∗-algebra has an increasing contractive approximate
identity (see the proof of [35, Proposition 5.2.4]), 8.1.3 and 8.1.4(1) in [7]
hold. Since Cohen’s factorization theorem works for real Banach modules
over real C∗-algebras, as we said at the start of our discussion of Chapter 2
in [7], 8.1.4(2) holds and so does the rest of 8.1.4. Lemma 8.1.5 may be proved
by complexification. Proposition 8.1.6 holds with the same proof, but the
argument after that proof fails. This is the assertion that the inner product
on a C∗-module Y is completely determined by, and may be recovered from,
the Banach module structure. To see this, simply complexify and use the
complex case of this remark.

The definitions and arguments in 8.1.7 hold except for the point involving
the polarization identity. However, this point is proved in [29]: A surjective
isometric A-module map between real right C∗-modules is an (adjointable)
unitary A-module map. Indeed, we have the real version of 8.1.8; and 8.1.9,
8.1.11, 8.1.14 and 8.1.15 hold with the same arguments (in some of these
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using again that Cohen’s factorization theorem holds in the real case). We
do not have the results in 8.1.12 and 8.1.13, of course. It is easy to see that
the real variant of [7, Proposition 8.1.16(1)–(3)] holds. Item (4) there fails
(take Y = B a real unital C∗-algebra whose selfadjoint elements do not
span B). The theory of the linking C∗-algebra in 8.1.17–8.1.19 is unchanged.
We have:

Theorem 9.2. For real right C∗-modules Y, Z over A we have

KAc(Yc, Zc) ∼= KA(Y, Z)c,

BAc(Yc, Zc) ∼= BA(Y, Z)c,

(BA(Y,Z))c ∼= BAc(Yc, Zc)

completely isometrically. If Y = Z then the first two of these isomorphisms
are ∗-isomorphisms, and the last is also an algebra isomorphism. For the
linking algebra, L(Y )c ∼= L(Yc) ∗-isomorphically.

Proof. By replacing the spaces by the C∗-module sum Y ⊕ Z we may
assume that Y = Z. Then, since Yc is an equivalence KAc(Yc)-Ac-bimodule
and also an equivalence KA(Y )c-Ac-bimodule, it follows that KAc(Yc) =
KA(Y )c. The action of KA(Y )c on Yc is as

(R+ iS)(x+ iy) = Rx− Sy + i(Ry + Sx) = Rc(x+ iy) + iSc(x+ iy)

= (Rc + iSc)(x+ iy).

If Rc = iSc then Rx + iRy = −Sy + iSx for all x, y ∈ Y and R = S = 0.
Thus KAc(Yc) may be identified as a C∗-algebra with {Rc + iSc ∈ BAc(Yc) :
R,S ∈ KA(Y )}. We have

(BA(Y ))c ∼= (LM(KA(Y )))c ∼= LM((KA(Y ))c) ∼= LM(KAc(Yc))
∼= BAc(Yc),

and similarly (BA(Y ))c ∼= BAc(Yc). Finally,

L(Y )c ∼= KA(Y ⊕A)c ∼= KAc((Y ⊕A)c) ∼= KAc(Yc ⊕Ac) ∼= L(Yc),

and L(Y ) is clearly a ∗-subalgebra of L(Yc).

By taking Y = Cn(A) and considering the natural ∗-homomorphism
Mn(A) → KA(Cn(A)) we see that the norm of a matrix in Mn(A) is given
by the formulae in [7, Corollary 8.1.13]. However, the equivalence with (ii)
in that result is not valid even if A = R and a is selfadjoint and n = 2.

Corollary 8.1.20 is true, but needs a change at a couple of points of the
proof. One first replaces the appeal to Proposition 8.1.16(4) to an appeal to
a fact about the diagonal mentioned after Theorem 6.1. This shows that the
contractive unital homomorphism π : Z(M(B)) → CBB(Y ), which may be
viewed as mapping into LM(KB(Y )), actually maps into ∆(LM(KB(Y ))) =
M(KB(Y )) = BB(Y ).
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One may avoid the problematic parts of the proof of Corollary 8.1.21
in the real case by instead proving the result by complexification. Indeed,
in that proof Pc will be adjointable on Yc by the complex version of this
result, so that P is adjointable on Y by Lemma 9.1. In the proof of 8.1.22
we may apply the argument for contractivity of R to Rc =

∑
i(Qi)c, to

see that Rc, and hence R, is contractive. The rest of that proof works in
the real case. Items 8.1.23–8.1.25 are true with the same proof, and 8.1.26
follows by complexification. The proof of Theorem 8.1.27(1) uses the polar
decomposition of maps on complex C∗-modules from the source cited there.
Inspecting that source shows that the argument there works in the real case.

Item 8.2.1 is valid in the real case, and is important (some of this we
have stated already). If T : Y → Y is a contractive A-module map, then
by Theorem 9.2 we see that Tc is contractive, hence completely contractive
by the complex case. Thus [7, Proposition 8.2.2] holds. We also deduce that
∥T∥ = ∥Tc∥ = ∥Tc∥cb, by a property of the operator space complexification.
Also, the paragraph after that proposition, and the items in 8.2.3 and 8.2.4,
hold in the real case. Items 8.2.5–8.2.7 are valid in the real case, although
one needs to check that the facts cited in 8.2.5 from other sources hold in
the real case. For this, it is useful to note that if a ∈ A is a strictly positive
element in a real C∗-algebra A (so that a = a∗ ≥ 0 and φ(a) > 0 for all
real states φ on A), then a is strictly positive in Ac. This is because if ψ is
a state on Ac then ψ(a) ≥ 0 and ReψA is a state on A so that ψ(a) > 0. If
a is a strictly positive element then a1/n will be a countable cai, as usual.

Essentially all of the rest of Section 8.2 is true in the real case with the
same arguments. For example, item 8.2.24 is true in the real case, and we note
that lattices (1)–(4) there are also in correspondence to the analogous lattices
in the complexified spaces. Similar statements hold for the real variant of
8.2.25. Some of the real versions of basic facts about TROs in [7, Section 8.3]
are discussed at the end of the introduction to [5]. The rest of the items in
Section 8.3 are also valid with the same proofs.

In Section 8.4 a word needs to be said about formula (8.17) since the
proof of this there uses the span of Hermitian elements. However, (8.17)
may be seen directly: let C be the algebra on the right side of (8.16). Then
∆(C) is a ∗-subalgebra of ∆(CBF (T (X))) = BF (T (X)). Thus ∆(C) is a
∗-subalgebra of the algebra on the right side of (8.17). Conversely, the latter
algebra is clearly contained in ∆(C).

Similarly, the proof that (iii) implies (i) in Theorem 8.4.4 needs to be
altered in the real case: if T and R are as in (iii), note that Tc and Rc

satisfy the analogous relation for the complexifications. Thus Tc ∈ Aℓ(Xc) ∼=
Aℓ(X)c and hence T ∈ Aℓ(X). (Alternatively, Tc is left multiplication by
an element in I11(Xc), so can be identified with left multiplication by a+ ib
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for a, b ∈ Mℓ(X) ⊂ I11(X). Since (a∗ + ib∗)jc(Xc) ⊂ jc(Xc) we see that
a ∈ Aℓ(X).) Items 8.5.1–8.5.21 are as in the complex case, although in
8.5.20, the M -ideal case seems difficult and only recently proved in [12] (see
the “Added in proof” below). In the complete M -ideal case the results follow
by working in the complexification.

Reaching fatigue, we will say nothing about the real case of the remaining
results 8.5.22–8.5.40, except that most of these items seemed unproblematic
on our first pass through them, but we have not checked them carefully. This
would be a nice project since many of these results are extremely important.
Most of these items are not operator space results, but rather are von Neu-
mann algebraic, so one might expect that a few of these results will be in
the literature.

Finally, the real versions of most results in the first part of Section 8.6
are essentially already noted by Ruan at the end of his two papers on real
operator spaces, although he leaves the details to the reader. Indeed, he
points out these operator space properties hold on X if and only if they
hold on Xc, so that the real cases of results in 8.6.1–8.6.3 follow from their
complex versions.

Added in proof. Much of the present paper concerns real versions of
the theory of operator spaces and algebras represented in [7] or from around
the time of that text. Recently we have extended some more current as-
pects of this theory, such as e.g. real positivity, and some aspects of complex
Jordan operator algebras, to the real setting. Also, the questions we raised
on M -ideals in real operator algebras and real TRO’s were solved after the
acceptance of this paper (for the latter see [12]).
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