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Billiards with countably many scatterers under no eclipse

by

Haruyoshi Tanaka (Naruto)

Abstract. We consider a billiard flow with countably infinitely many scatterers on
the plane without eclipse. We show that the non-wandering set of the billiard flow is
in one-to-one correspondence with a two-sided topological Markov shift with countably
many states. We also give a sufficient condition for the Euler product formula for the zeta
function with respect to the billiard flow.

1. Introduction and the outline of the main results. Let S be
a countable set with #S ≥ 3 and {Qj : j ∈ S} a countable number of
bounded closed domains in R2 such that dist(Qi, Qj) > 0 for all distinct
i, j ∈ S and supj∈S diamQj < ∞. Each Qi is called a scatterer and the set
Q = R2 \

⋃
j∈S Qj is called the billiard table, where Qj means the closure

of Qj . Consider a billiard flow (St) on Q. This flow advances along straight
lines on Q with unit speed, and if it knocks against the boundary ∂Q of Q,
it rebounds with the condition that the incidence angle and the reflection
angle coincide. We introduce the following conditions (A.1)–(A.3):

(A.1) (Dispersing) The boundary ∂Qj of Qj is a smooth simple closed curve
with positive curvature for each j ∈ S.

(A.2) (No eclipse) For distinct elements i, j, k ∈ S, conv(Qi∪Qj)∩Qk = ∅,
where conv(A) denotes the convex hull of the set A.

(A.3) The number η := infi,j∈S: i ̸=j infq∈∂Qi
k(q) dist(Qi, Qj) is positive,

where k(q) is the curvature at q ∈ ∂Q.

If S is finite then (A.3) is automatically satisfied, so our setting is a countable
version of the billiard flow without eclipse treated in [4]. In Section 3, we
will give many examples satisfying conditions (A.1)–(A.3) under #S = ∞.

The outline of the first main result is as follows:
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(1) Assume that conditions (A.1)–(A.3) are satisfied. Then there is a one-
to-one correspondence between the non-wandering set of the flow (St)
on Q and a suitable countable Markov shift (see Theorem 2.3).

In addition to (A.1)–(A.3), we consider the following condition:

(A.4) There exists s0 > 0 such that
∑

i∈S exp(−s0 infj∈S: j ̸=i dist(Qi, Qj)) is
finite.

Then the outline of the second main result is as follows:

(2) Assume that conditions (A.1)–(A.4) are satisfied. Then the zeta function
with respect to the length spectrum of (St) on Q has radius of conver-
gence equal to the inverse of the maximal simple eigenvalue of the Ruelle
operator of a suitable potential. Moreover, the Euler product formula for
the zeta function holds under some natural condition (see Theorem 2.8).

We show (1) by developing the technique given in [4]. On the other hand, the
various properties of zeta functions for (St) in the finite case, #S < ∞, may
not extend to the infinite case, #S = ∞. In fact, there may be no solution
of the equation P (−sξ) = 0 for s > 0, where ξ is a potential with respect
to the length spectrum (see (2.5) for definition) and where P (−sξ) is the
topological pressure of −sξ which is defined by (2.9). We will obtain (2) as
a part of the results in the case #S < ∞ under the additional condition
(A.4) and by using the thermodynamic formalism for topological Markov
shifts. The complete statements and the proofs are given in Section 2. In
future work generalizing [6], we shall consider singular perturbation from
perturbed billiards with infinite scatterers to the unperturbed billiard with
finitely many scatterers. In order to study this, we need to investigate precise
properties for (St) under #S = ∞ and these are given in Section 3.

2. Results and proofs. In this section, we give all the auxiliary propo-
sitions and main results with the proofs. We begin with some notation. Let
π : R2 × {z ∈ R2 : |z| = 1} → R2 be the natural projection. Denote by
n(q) ∈ R2 the unit normal at q ∈ ∂Q, directed to the inside of Q. We set

M+ = {x = (q, v) ∈ R2 × R2 : q ∈ ∂Q, |v| = 1, ⟨v, n(q)⟩ ≥ 0}

and M = π−1Q ∪ M+, where ⟨·, ·⟩ denotes the inner product in R2. Fix a
base point q(j) ∈ ∂Qj for each j ∈ S. For x = (q, v) ∈ π−1∂Q, ω0(x) = j if
π(x) = q ∈ ∂Qj , r(x) is the arclength distance from q(ω0(x)) to q measured
counterclockwise along the curve ∂Qj , and φ(x) is the angle between the
vector v and n(q) measured counterclockwise from n(q) to v. We may assume
that the angle φ(x) of x ∈ M+ satisfies −π/2 ≤ φ(x) ≤ π/2. Also if no
confusion can arise, we may write a point x ∈ M+ as (ω0(x), r(x), φ(x)),
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(r(x), φ(x)) or (r, φ) for short. For x ∈ M we let

t+(x) = inf {t > 0 : Stx ∈ M+}, t−(x) = sup {t < 0 : Stx ∈ M+}.

Note that these may be +∞ and −∞, respectively. Put

D1 = {x ∈ M+ : t+(x) < ∞}, D−1 = {x ∈ M+ : t−(x) > −∞}.

Then we can define the map T : D1 → M+ by Tx = St+(x)x and the
map T−1 : D−1 → M+ by T−1x = St−(x)x. Note that T (resp. T−1) is a
diffeomorphism from intD1 (resp. intD−1) onto intD−1 (resp. intD1). By
induction, we set

Dn = {x ∈ Dn−1 : t
+(Tn−1x) < ∞},

D−n = {x ∈ D−n+1 : t
−(T−n+1x) > −∞},

and define Tn : Dn → M+ by Tnx = T (Tn−1x) and T−n : D−n → M+ by
T−nx = T−1(T−n+1x). Clearly, T−n = (Tn)−1 if Tn is defined. Consider the
non-wandering set

Ω = {x ∈ M : π(Stx) ∈ ∂Q for both infinitely many t > 0

and infinitely many t < 0}

and Ω+ = Ω∩M+. Observe the equation Ω+ =
⋂

n∈ZDn, where D0 := M+.
Let A = (A(ij)) be a zero-one matrix indexed by S with A(ij) = 1 − δij .
Consider the set

X̂ =
{
ω = (ωn)n∈Z ∈

∞∏
n=−∞

S : A(ωnωn+1) = 1 for all n ∈ Z
}
.

We call X̂ the two-sided topological Markov shift (two-sided TMS for short)
with state space S and transition matrix A. Denote by σ the left shift trans-
formation on X̂ defined by (σω)i = ωi+1 for all i ∈ Z. For 0 < θ < 1, we
define a metric dθ on X̂ by dθ(ω, υ) = θn for n = min {n ≥ 0 : ωn ̸= υn
or ω−n ̸= υ−n} if ω ̸= υ, and dθ(ω, υ) = 0 otherwise. For x ∈ M+, we
put ωi(x) = ω0(T

ix) ∈ S if T i is defined. The coding map Π : Ω+ → X̂
is defined by x 7→ (ωn(x))

∞
n=−∞. The value Π(x) is called the itinerary of

x ∈ Ω+.
We first check that the map Π is bijective. To do this, we recall previous

results in [2, 5]. We put

Lsup = sup
i∈S

{the perimeter of ∂Qi}.

Note that since {Qi} is uniformly bounded and has positive curvature at all
points in the boundary, Lsup is finite. For simplicity, for x = (q, v) ∈ M+,
we write ki = k(T ix), ri = r(T ix), φi = φ(T ix), ci = c(T ix), t+i = t+(T ix),
t−i = t−(T ix) and c = c(x) = cosφ.
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Proposition 2.1 ([2], [5, Lemma 2.1]). Let γ be a curve on ∂M+
j which

is expressed as {(j, r, φ(r)) : a ≤ r ≤ b, φ = φ(r)} and φ(r) is of class C1.
Assume that T and T−1 are defined on γ. Denote by γ1 (resp. γ−1) the image
T 1γ (resp. T−1γ) and express it by {(j1, r1, φ1) : a1 ≤ r1 ≤ b1, φ1 = φ1(r1)}
(resp. {(j−1, r−1, φ−1) : a−1 ≤ r−1 ≤ b−1, φ−1 = φ−1(r−1)}), where φ1 and
φ−1 are of class C1. Then

dr1
dr

= − c

c1

(
1 +

t+(dφ/dr + k)

c

)
,(2.1)

dr−1

dr
= − c

c−1

(
1 +

−t−(−(dφ/dr) + k)

c

)
,(2.2)

dφ1

dφ
= −k1

c

c1

dr

dφ
−
(
1 +

t+k

c1

)(
1 + k

dr

dφ

)
,(2.3)

dφ−1

dφ
= k−1

c

c−1

dr

dφ
−
(
1− t−k

c−1

)(
1− k

dr

dφ

)
.(2.4)

For x∈M+, we let ηi = infj ̸=ωi(x) dist(Qωi(x), Qj) inf {k(q) : q ∈ ∂Qωi(x)}.
Proposition 2.2. Assume that condition (A.1) is satisfied. Let x, y ∈

M+ and n ≥ 1. Assume that for each −n ≤ i ≤ n, the map T i is defined
and ωi(x) = ωi(y). Let r(x, y) be the arclength between π(x) and π(y) on
∂Qω0(x). Then

(1) r(x, y) ≤ Lsupη
−1
0

∏n−1
j=1 (1 + min {ηj , η−j})−1;

(2) |φ(x)− φ(y)| ≤ π
∏n−1

j=0 (1 + min {ηj , η−j})−1.

Consequently, if (A.3) is satisfied, then r(x, y) ≤ C1(1 + η)−n with C1 =
(1 + η)Lsup/η and |φ(x)− φ(y)| ≤ π(1 + η)−n.

Proof. (1) We may assume r(x) < r(y). We refer to the technique of the
proof of [4, Lemma 2.1]. First we consider the case when φ(x) ≤ φ(y). Let
γ = {(r, φ(r)) : a ≤ r ≤ b, φ = φ(r)} be an increasing C1-curve from x to y.
Here the curve γ is called increasing if dφ(r)/dr ≥ 0. We see that the curve
γ1 = Tγ is also increasing and therefore so is γi = T iγ for all 1 ≤ i ≤ n. We
write γi = (ri, φi) = {(ri, φ(ri)) : ai ≤ ri ≤ bi, φi = φi(ri)}. By virtue of
(2.1) and (2.2), we have∣∣∣∣drndr

∣∣∣∣ = ∣∣∣∣ drn
drn−1

drn−1

drn−2
· · · dr1

dr0

∣∣∣∣
=

∣∣∣∣(−1)n
cn−1

cn

cn−2

cn−1
· · · c0

c1

n−1∏
i=0

(
1 +

t+i (dφi/dri + ki)

ci

)∣∣∣∣
≥

∣∣∣∣ c0cn
n−1∏
i=0

(
1 +

ηi
ci

)∣∣∣∣ (∵ dφi/dri ≥ 0 and t+i ki ≥ ηi)
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=

∣∣∣∣ 1cn (c0 + η0)
n−1∏
i=1

(
1 +

ηi
ci

)∣∣∣∣ ≥ η0

n−1∏
i=1

(1 + ηi) (∵ 0 < ci ≤ 1),

where r0 := r, c0 := c, φ0 := φ, k0 := k and t+0 := t+. Thus we obtain

r(x, y) =

b�

a

dr =

bn�

an

∣∣∣∣ drdrn

∣∣∣∣drn ≤
(bn�

an

drn

)
η−1
0

n−1∏
i=1

(1 + ηi)
−1.

Next we prove the assertion in the case φ(x) > φ(y). We take a decreasing
C1-curve γ = {(r, φ(r))} from x to y, that is, dφ(r)/dr ≤ 0. By using (2.1)
and (2.2) for the maps T−1, . . . , T−n, and by noting −t−i ki ≥ ηi, a similar
argument implies the same assertion. Hence the proof of (1) is complete.

(2) We may assume φ(x) < φ(y). First we study the case r(x) ≤ r(y).
Take an including C1-curve γ = {(r(φ), φ) : r = r(φ), a ≤ φ ≤ b} from
x to y. Here including means dr/dφ ≥ 0. In this case, the image γi = T iγ
is also including C1-curve for each 1 ≤ i ≤ n and therefore if we write
γi = {(ri(φi), φi) : ri = ri(φi), ai ≤ φi ≤ bi}, then dri/dφi ≥ 0. By using
(2.3) and (2.4), we find that for each i = 0, 1, . . . , n− 1∣∣∣∣dφi+1

dφi

∣∣∣∣ = ki+1
ci
ci+1

dri
dφi

+

(
1 +

t+i ki
ci+1

)(
1 + ki

dri
dφi

)
≥ 1 +

t+i ki
ci+1

≥ 1 + ηi

since dri/dφi ≥ 0. Thus we get

|φ(x)− φ(y)| =
�

γ0

dφ0 =
�

γ0

∣∣∣∣dφ0

dφ1

dφ1

dφ2
· · · dφn−1

dφn

∣∣∣∣dφn

≤
( �

γn

dφn

) n−1∏
i=1

(1 + ηi)
−1.

Consequently, the assertion holds when φ(x) < φ(y). If φ(x) ≥ φ(y), we
obtain the assertion again by a similar argument.

Now we can show the following:

Theorem 2.3. The coding map Π from Ω+ to X̂ is bijective.

Proof. For the proof, we mainly refer the proof of [4, Theorem 0]. The
inclusion Π(Ω+) ⊂ X̂ is clear. To show the converse inclusion, let ω =
(ωi)

∞
i=−∞ ∈ X̂. We consider the following two cases:

Case I: ω is periodic, i.e. ω = σkω for some k ≥ 1. In this case, the
existence and uniqueness of x with Φ(x) = ω are proven in a quite similar
way in the finite case #S < ∞ (see [4, proof of Theorem 0]). Note that
conditions (A.1) and (A.2) are used in this argument.

Case II: ω is not periodic. Choose any periodic element ωm ∈ X̂ such
that dθ(ω, ω

m) → 0 as m → ∞, and the period p(m) of ωm is strictly
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increasing in m. By Case I, there exists a unique xm ∈ Ω+ such that ω(xm)
= ωm for each m ≥ 1. Let i ∈ Z. Then, there exists m0 ≥ 1 such that
p(m0) > |i| + 1. For any m ≥ m0 and k ≥ 1, it follows from Proposition
2.2(1) that

r(T ixm, T ixm+k) ≤ C1(1 + η)−pm+|i|.

Together with Proposition 2.2(2), this fact implies that xm converges to an
element x which satisfies T ix = ωi for all i. Uniqueness is also guaranteed
by Proposition 2.2. Hence the theorem is valid.

We say that a function f : X̂ → R is semi-weak dθ-Lipschitz continuous if
there exists a constant C2 > 0 such that for any ω, υ ∈ X̂ with ω0ω1 = υ0υ1,
|f(ω) − f(υ)| ≤ C2dθ(ω, υ). Consider the function ξ̂ : X̂ → R defined by
ξ̂(ω) = τ+ ◦Π−1(ω). Put θ = (1 + η)−1.

Proposition 2.4. Assume that conditions (A.1)–(A.3) are satisfied.
Then the potential ξ̂ is semi-weak dθ-Lipschitz continuous with C2 =
max {2Lsupθ

−2, C1(θ
−1 + θ−2)}.

Proof. Denote x = Π−1(ω) and y = Π−1(υ). First assume that dθ(ω, υ)
≥ θ2, in other words, ω−1 ̸= υ−1, ω−2 ̸= υ−2 or ω2 ̸= υ2. Then by basic
geometry,

|τ+(x)− τ+(y)| ≤ |π(x)− π(y)|+ |π(Tx)− π(Ty)|
≤ r(x, y) + r(Tx, Ty) ≤ 2Lsupθ

−2dθ(ω, υ).

If dθ(ω, υ) < θ2, then Proposition 2.2(1) says that

r(T ix, T iy) ≤ C1θ
−1−idθ(ω, υ) for i = 0, 1.

Thus we get |τ+(x) − τ+(y)| ≤ C1(θ
−1 + θ−2)dθ(ω, υ), and the assertion

follows.

We recode the two-sided TMS X̂ using a one-sided TMS. We define

X =
{
ω = (ωn)

∞
n=0 ∈

∞∏
n=0

S : A(ωnωn+1) = 1 for all n ≥ 0
}
.

The set X is called a one-sided topological Markov shift (one-sided TMS for
short) with state space S and transition matrix A. A word w = w1 · · ·wn

∈ Sn is called A-admissible if A(wiwi+1) = 1 for any 1 ≤ i < n. Denote by
[w] the cylinder set {ω ∈ X : ω0ω1 · · ·ωn−1 = w}. By the definition of A, the
matrix A becomes finitely primitive, that is, there exist an integer N ≥ 1 and
a finite subset F ⊂ SN such that for any a, b ∈ S there exists w ∈ F such
that a · w · b is A-admissible. Indeed, we can take F = {123, 321, 131, 313}.
For the metric on X we use the same notation as for the metric on X̂. Here
for ω, υ ∈ X, dθ(ω, υ) is defined to be θn if n = min {n ≥ 0 : ωn ̸= υn}. For
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f : X → C and an integer k ≥ 1, we define

[f ]k,θ := sup
w∈Sk

sup

{
|f(ω)− f(υ)|

dθ(ω, υ)
: ω, υ ∈ X, ω ̸= υ, ω, υ ∈ [w]

}
.

If [f ]1,θ < ∞ then f is locally dθ-Lipschitz continuous, and if [f ]2,θ < ∞ then
it is weak dθ-Lipschitz continuous. We use the following fact.

Proposition 2.5 ([1, 7]). Let X̂ and X be the two-sided TMS and the
one-sided TMS, respectively, with transition matrix A and with countable
state space S. Assume that there exists an element τa ∈ X̂ with τa0 = a for
all a ∈ S. For ω ∈ X̂, we write an element ω̂ ∈ X̂ as ω̂ = · · · τω0

−2τ
ω0
−1ω0ω1 · · · .

For a semi-weak dθ-Lipschitz continuous function f̂ : X̂ → C, define

V (f̂)(ω) =
∞∑
n=0

(f̂(σnω̂)− f̂(σnω))

for ω ∈ X̂. Then V (f̂) is a bounded d√θ-Lipschitz continuous function and
the function f := f̂ +V (f̂)−V (f̂) ◦σ does not depend on the past, so it can
be regarded as a function on X. Moreover, [f ]2,√θ < ∞.

For the function ξ̂ = t+ ◦Π−1 : X̂ → R, we put

ξ := ξ̂ + V (ξ̂)− V (ξ̂) ◦ σ.(2.5)

Consider closed orbits of the billiard flow (St) on the table Q. For f : X → C,
we put Snf(ω) :=

∑n−1
k=0 f(σ

kω). The following is an easy consequence of
Theorem 2.3.

Corollary 2.6. Assume that conditions (A.1)–(A.3) are satisfied. Then
for any periodic element ω ∈ X with σnω = ω, there exists a unique prime
closed orbit γ of (St) such that the length l(γ) of γ is equal to Snξ(ω)/m
with m = n/p, where p denotes the least period of ω.

We will consider dynamical zeta functions for the billiard flow (St). Recall
that Ruelle’s dynamical zeta function for a potential f : X → R is given by

ζf (t) = exp

( ∞∑
n=1

tn

n
Yn(f)

)
,(2.6)

where Yn(f) =
∑

ω∈X:σnω=ω exp(Snf(ω)). It is known [8] that if f is weak dθ-
Lipschitz continuous, then the radius of convergence of ζ is equal to e−QG(f),
where

QG(f) = lim
n→∞

1

n
log Yn(f).
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Consider the zeta function ζ−sξ(t) for some number s. In view of Corol-
lary 2.6, we can rewrite

ζ−sξ(t) = exp

( ∞∑
p=1

tp

p

∞∑
m=1

∑
γ

exp(−msl(γ))

m

)
,(2.7)

where the innermost summation is taken over all prime closed orbits of (St)
which hit exactly p obstacles.

To state some properties of ζ−sξ, we introduce two pressures and Ruelle
operators. For a function f : X → R, the Gurevich pressure PG(f) of f and
the topological pressure P (f) are defined by

PG(f) = lim
n→∞

1

n
logZn,a(f) with Zn,a(f) =

∑
ω∈X:σnω=ω,ω0=a

exp(Snf(ω))

(2.8)

P (f) = lim
n→∞

1

n
logZn(f) with Zn(f) =

∑
w∈Sn: [w]̸=∅

exp
(
sup
ω∈[w]

Snf(ω)
)
,

(2.9)

respectively. Since Zn,af(ω) ≤ Ynf(ω) ≤ Znf(ω), we see that PG(f) ≤
QG(f) ≤ P (f). Denote by Fθ the Banach space consisting of all bounded
locally dθ-Lipschitz continuous functions f : X → C endowed with the
Lipschitz norm ∥ · ∥∞ + [·]1, where ∥f∥∞ = supω∈X |f(ω)|. For a function
g : X → R, the Ruelle operator Lg of g is a linear operator defined formally by

Lgf(ω) =
∑

a∈S:A(aω0)=1

eg(a·ω)f(a · ω)

for f : X → C and ω ∈ X, where a ·ω means aω0ω1 · · · ∈ X. It is known that
if g is weak Lipschitz continuous with ∥Lg∥∞ < ∞, then Lg is a bounded
linear operator acting on Fθ (see [8, 10]).

If S is finite, then QG(−sξ) = PG(−sξ) = P (−sξ) and these are finite
for all s > 0. In particular, the radius of convergence of ζ is the inverse of the
simple maximal eigenvalue of the Ruelle operator of −sξ. Moreover, when
we take a solution s = H(Q) of P (−sξ) = 0 under #S < ∞, the following
hold (see [4, 7]):

(i) the function z 7→ ζ−zξ(1) in the half-plane Re z > H(Q) has the Euler
product formula ζ−zξ(1) =

∏
γ(1 − e−zl(γ))−1 and defines an analytic

function without zeros;
(ii) the function z 7→ ζ−zξ(1) has a meromorphic extension without zeros

in some half-plane containing the closed half-plane Re z ≥ H(Q);
(iii) z = H(Q) is a unique pole on the axis Re z = H(Q) and it is simple;
(iv) limu→∞ πQ(u)(H(Q)u)/eH(Q)u = 1, where we put πQ(u) = #{γ :

γ a prime closed orbit with l(γ) ≤ u}.
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On the other hand, if S is infinite, then QG(−sξ) may not be finite,
and may be neither PG(−sξ) nor P (−sξ) (see also [8]). This implies that
the radius of convergence of ζ(t) may not be the inverse of an eigenvalue of
the Ruelle operator of the potential −sξ. Furthermore, even if these three
quantities are identical, there is no solution of the equation P (−sξ) = 0 in
general. In [8], an alternative zeta function, called the local dynamical zeta
function, was introduced as (2.6) with Yn(f) replaced by Zn,a(f):

ζf,a(t) = exp

( ∞∑
n=1

tn

n
Zn,a(f)

)
for each a ∈ S. Then the radius of convergence of ζf,a is independent of a, and
is equal to exp(−PG(f)). If f is recurrent and has finite Gurevich pressure,
then exp(−PG(f)) becomes the inverse of the maximal eigenvalue of the
Ruelle operator of f . Moreover, [8] gave a necessary and sufficient condition
for positive recurrence (or null recurrence) of f using the notion of the local
dynamical zeta function ζf,a. The zeta function ζ−sξ,a(t) has the form

ζ−sξ,a(t) = exp

( ∞∑
p=1

tp

p

∞∑
m=1

∑
γa

exp(−msl(γa))

m

)
,

where γa is taken over all prime closed orbits which hit exactly p scatterers
with Qa.

In the remainder of this section, we will show that if the potential −s0ξ
is summable for some s0 > 0, then QG(−sξ) = PG(−sξ) = P (−sξ) and
this is finite for all s ≥ s0. Here a function f : X → R is summable if∑

a∈S exp(supω∈[a] f(ω)) < ∞ (see [3, 10]). Moreover, if P (−sξ) = 0 for
some s, then we will give an Euler product formula for z 7→ ζ−zξ(1).

Proposition 2.7. Let X be a one-sided topological Markov shift whose
shift is topologically mixing. Let g : X → R be weak Lipschitz continuous and
summable. Then PG(g) = QG(g) = P (g) and these are finite.

Proof. The finiteness of P (g) is guaranteed since g is summable. It suf-
fices to show that P (g) = PG(g). By [10, Theorems 3.1(1), 3.4] with k := 1
and M := A, we see that g is positive recurrent, namely there exists a triple
(λ, g, ν) such that λ is a positive simple eigenvalue of the Ruelle operator
Lg of g and equals exp(P (g)), g is a positive continuous function and the
corresponding eigenfunction, and ν is a Borel probability measure on X and
the corresponding eigenvector of the dual L∗

g of Lg with ν(g) < ∞. Thus the
generalized Ruelle–Perron–Frobenius theorem [9] also yields λ = exp(PG(g)).
Hence the assertion follows.

Then we have the following:
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Theorem 2.8. Assume that conditions (A.1)–(A.4) are satisfied. Then
for any s ≥ s0, the zeta function t 7→ ζ−sξ(t) has radius of convergence
exp(−P (−sξ)) and this is the inverse of the maximal eigenvalue of the Ruelle
operator of the potential −sξ. Moreover, if there exists s1 ≥ s0 such that
P (−s1ξ) = 0, then the function z 7→ ζ−zξ(1) has the Euler product form

ζ−zξ(1) =
∏

τ a prime closed orbit of (St)

(1− e−zl(τ))−1(2.10)

in the half-plane Re z > s1.

Proof. By the Cauchy–Hadamard theorem, the radius of convergence of
t 7→ ζ−sξ(t) is equal to (limn→∞(|Yn(−sξ)|/n)1/n)−1 = exp(−QG(−sξ)).
Moreover, the inequality −sξ(ω) ≤ −s0ξ(ω) ≤ −s0 dist(Qω0 , Qω1) and con-
dition (A.4) imply the summability of −sξ. Therefore it follows from Propo-
sition 2.7 that the radius equals exp(−P (−sξ)). Thus the first assertion is
valid.

To check (2.10), we note that for any z ∈ C with Re z > s1, the number
exp(−P (−Re (z)ξ)) is larger than 1. Therefore the series ζ−sξ(t) at t = 1 is
convergent. In view of the absolute convergence of ζ−sξ(1), we obtain

ζ−zξ(1) = exp

( ∞∑
p=1

1

p

∞∑
n=1

∑
γ

e−nzl(γ)

n

)
= exp

( ∞∑
p=1

1

p

∑
γ

∞∑
n=1

e−nzl(γ)

n

)

= exp

( ∞∑
p=1

1

p

∑
γ

− log(1− e−zl(γ))

)
= exp

(∑
τ

− log(1− e−zl(τ))
)
=

∏
τ

(1− e−zl(γ))−1,

where the innermost summation in the first expression is taken over all prime
closed orbits γ of (St) which hit exactly p obstacles, and the last summation
is taken over all prime closed orbits τ (cf. [7, p. 100]). Hence all assertions
follow.

Remark 2.9. Since Qi is uniformly bounded for all i ∈ S, condition
(A.4) holds if and only if −sξ is summable.

3. Examples. We will exhibit countably many scatterers satisfying con-
ditions (A.1)–(A.4).

Proposition 3.1. There is an example satisfying conditions (A.1)–(A.4)
and P (−sξ) = 0 for some s > 0.

Proof. Put S = {1, 2, . . . }. Let γ = {c(t) ∈ R2 : a ≤ t < b} be a strictly
convex, simple, smooth, parametrized curve on R2 with b ≤ ∞ which may
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have infinite length. Assume also that the straight line parallel to the normal
at c(a) and passing through c(a) does not intersect γ outside c(a). Choose
any infinitely many distinct points ci = c(ti) on γ (t1 < t2 < · · · ). Note
that there are no other points on the line segment between any two points.
Now consider placing a closed ball centered at each point. By induction as
in (a)–(c) below, we determine the radius ri of each ball B(ci, ri):

(a) Denote by L1 the line through two points c2 and c3. Then we take r1 > 0
so that Q1 := B(c1, r1) does not intersect the line L1 (see Figure 1(a)).

(b) Denote by L1
2 the line through c3 and c4. Among the tangents to Q1

passing through c3 (there are two), let L2
2 be the one closest to c2. Then

we take r2 > 0 so that Q2 := B(c2, r2) does not intersect L1
2 and L2

2 (see
Figure 1(b)).

(c) For k ≥ 3, assume that Qk−2 and Qk−1 are decided. Denote by L1
k

the line through ck+1 and ck+2. Among the tangents to Qk−1 passing
through ck+1, let L2

k be the one closest to ck. Among the tangents to
Qk−2 and Qk−1 (there are four), let L3

k be the one closest to ck. Then
we take rk > 0 so that Qk := B(ck, rk) does not intersect L1

k, L
2
k and L3

k
(see Figure 1(c)).

(a) (b)

(c) (d)

Fig. 1
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The sequence {Qi} so constructed satisfies conditions (A.1) and (A.2). If
infi ̸=j dist(Qi, Qj) > 0 then condition (A.3) is also satisfied since the scatter-
ers {Qi} are uniformly bounded. In case infi ̸=j dist(Qi, Qj) = 0, by reducing
ri if necessary, infj∈S infq∈∂Qi

k(q) dist(Qi, Qj) ≥ C3 can be satisfied for some
C3 > 0 which is independent of i (so (A.3) is satisfied). Finally, if we take a
curve γ with infinite length and points ci satisfying min1≤j<i dist(ci, cj) ≥ i
for each i = 1, 2, . . . , then

∞∑
i=1

exp
(
−s inf

j∈S: j ̸=i
dist(Qi, Qj)

)
≤

∑
i

exp(−si) = es/(es − 1) < ∞

for any s > 0. In this case, condition (A.4) is fulfilled (see Figure 1(d)).
We also see that P (−sξ) ≤ log(es/(es − 1)) < ∞ for all s > 0. By using
the facts that inf ξ > 0, s 7→ P (−sξ) is strictly decreasing and continuous,
lims→+0 P (−sξ) = +∞ and lims→+∞ P (−sξ) = −∞, there is a unique
solution of the equation P (−sξ) = 0 for s > 0.

We can easily find an example of QG(−sξ) = +∞ for all s > 0: we may
take a curve γ with finite length in Proposition 3.1. In this case, Zn,a(−sξ)
= +∞ for all n, a, s.
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