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Two problems on the greatest prime factor of n2 + 1

by

Glyn Harman (Egham)

Abstract. Let P+(m) denote the greatest prime factor of the positive integer m.
In [Arch. Math. (Basel) 90 (2008), 239–245] we improved work of Dartyge [Acta Math.
Hungar. 72 (1996), 1–34] to show that

|{n ≤ x : P+(n2 + 1) < xα}| ≫ x

for α > 4/5. In this note we show how the recent work of de la Bretèche and Drappeau
[J. Eur. Math. Soc. 22 (2020), 1577–1624] (which uses the improved bound for the smallest
eigenvalue in the Ramanujan–Selberg conjecture given by Kim [J. Amer. Math. Soc. 16
(2003), 139–183]) along with a change of argument can be used to reduce the exponent
to 0.567. We also show how recent work of Merikoski [J. Eur. Math. Soc. 25 (2023),
1253–1284] on large values of P+(n2 + 1) can improve work by Everest and the author
[London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, 2008, 142–154] on
primitive divisors of the sequence n2 + 1.

1. Introduction. On page 23 of [12] the following conjecture is asserted.

There are infinitely many primes n2 + 1. More generally, if a, b, c are
integers without common divisor, a is positive, a+b and c are not both even,
and b2 − 4ac is not a perfect square, then there are infinitely many primes
an2 + b+ c.

Indeed, there is a more general conjecture on irreducible polynomials
without fixed prime divisors, and this has been put into a quantitative form
[2, 11]. In the same way, conjectures have been made on “smooth” values of
polynomials. For example, it is reasonable, given −D not an integer squared,
to suppose that, given ϵ > 0, one should have P+(n2 + D) < nϵ infinitely
often, where P+(m) denotes the greatest prime factor of the positive inte-
ger m. Indeed, this has been proved, in a slightly stronger form with an ex-
plicit ϵ(n,D) → 0, by Schinzel [20, Theorem 13]. However, Schinzel’s method
does not give the expected formula for the number of such values of n2 +D.
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In fact, given α > 0 (not necessarily “small”) it cannot even provide a lower
bound of the correct order of magnitude for

|{n ≤ x : P+(n2 +D) < xα}| = Ψ∗
D(x, α), say,

since the values of n are stated explicitly in a form ≥ 2m for a certain
sequence of values m [20, p. 230].

There is more recent work which covers general quadratic polynomials [4],
but still cannot provide the correct order lower bound. An asymptotic for-
mula has been given by Martin [18], but only dependent on a very strong
unproved hypothesis (a uniform quantitative version of “Hypothesis H” of
Schinzel and Sierpiński). In 1996 Dartyge [5] proved that Ψ∗

1 (x, α) ≫ x for
α > 149

179 ≈ 0.8324. The method drew on the techniques used in [14, 7] for
proving that P+(n2 + 1) > nγ with γ > 1, combined with methods of Ba-
log [1] and Friedlander [10] for obtaining the correct order of magnitude of
smooth numbers in certain sequences.

In [13] we dispensed with Balog’s method and thereby reduced the lower
bound for α to 4

5 , and the first purpose of the present paper is to give the
following more significant improvement. The value 0.567 which occurs in our
main result arises as

356

381
e−1/2 + ϵ

for any ϵ > 0. Here, and throughout the paper, we reserve the letter e for
the base of natural logarithms. There are no serious mathematical problems
in replacing n2+1 with n2+D (where −D is not an integer squared) in any
of our results. We have restricted ourselves to n2 +1 for brevity and clarity.
All the main lemmas have exact analogues for n2 +D which can be derived
using Hooley’s work [14, 15] and noting that [3] deals with the more general
case. Henceforth we shall therefore suppress the subscript 1 on Ψ∗

1 (x, α).

Theorem 1.1. For α ≥ 0.567 we have

(1) Ψ∗(x, α) ≫ x.

If we fed an improved result from [3] into the method of [13] we would only
get an exponent of 82/107+ϵ ≈ 0.766. However, we shall use a different result
from [3] and combine that with the Balog–Friedlander approach to get a
much better improvement in the exponent (though paradoxically this makes
our method resemble Dartyge’s approach [5]). We remark that Merikoski
[19] has combined the work of de la Brèteche and Drappeau with other ideas
to show that infinitely often P+(n2 + 1) > n1.279. The methods used to
prove these types of results have implications for the work given in [8, 9] on
primitive divisors of quadratic polynomials, and we shall briefly describe one
such result in our final section.
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2. Outline of the method. Write

ϕ = e−1/2, β =
356

381
, α = βϕ+ ϵ, A = [x, 2x] ∩ N, η = ϵ2, ν = ϵ3.

Henceforth it will be implicit that the constants in the O and ≪ notation
may depend on ϵ, though we will write O∗ for the few occurrences where
we need the constants to be absolute. Our basic idea is to count integers
mpℓ = k2 + 1, k ∈ A. Here and elsewhere p and q always denote primes.
If both m and ℓ are around Y in size, Balog’s technique, if we can do the
counting correctly, can show that q | ℓm ⇒ q < Y ϕ+η. Friedlander’s idea is
to make ℓ have all its prime factors > xν and so, for a fixed n, the number of
solutions to mpℓ = n2 + 1 is ≪ 1. Since pY 2 ≈ x2, we would like p to range
over values as large as possible to reduce Y , but also satisfying p ≤ Y ϕ+η.

We need to introduce a smoothing factor for the variable k in order to
use a result from [3]. To this end we let V (u) be an infinitely differentiable
non-negative function such that

V (u)

{
< 2 if 1 < u < 2,

= 0 if u ≤ 1 or u ≥ 2,

with
drV (u)

dur
≪r 1 and

�

R

V (u) du = 1.

We allow implied constants to depend on the choice of V (u), for example in
(2) below. Since we will often have a factor V (k/x), the condition k ∈ A will
be superfluous and so omitted in most of the sums that follow. The following
result then follows immediately from [3, Théorème 5.2] and provides us with
the means of counting solutions of the required form. We write ω(n) for the
number of solutions to the congruence r2 ≡ −1 (mod n), 0 ≤ r < n, and,
for B ≥ 1, we write b ∼ B for B ≤ b < eB, b ∈ N.

Proposition 2.1. Let η > 0, x,M,N ≥ 1, MN ≤ x2, and suppose
gm, hn are two sequences of complex numbers with modulus at most 1. Write

r(s) =
∑

k2≡−1 (mod s)

V

(
k

x

)
− x

ω(s)

s
.

Then

(2)
∑
m∼M

∑
n∼N

(m,n)=1

gmhnr(mn) ≪ F (x,M,N, η),

where

(3) F (x,M,N, η) = x1/2+ηM1/2 + x1+ηN3/2−θM−1/4+θ/2.
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Here 1
4 − θ2 is the best known lower bound for the smallest eigenvalue for

any congruence subgroup, so θ = 7/64 is acceptable by [17].

Now we will require F (x,M,N, η) ≪ x1−2η to get an asymptotic formula
for the weighted number of solutions we are counting by (2). We will take hn
as the characteristic function of the set of primes, so we will want NM2 ≈ x2.
Simple algebra then shows we need to take N ≈ x50/381, M ≈ x356/381. We
define three sequences ar, bℓ, cs by

ar =

{
1 if p | r ⇒ p < xα,

0 otherwise,
cs = 1− as, bℓ =

{
1 if p | ℓ ⇒ p ≥ xν ,

0 otherwise.

The Balog–Friedlander approach with this notation (omitting the smoothing
factor for clarity) is to observe that∑

k∈A
ℓmp=k2+1

ambℓaℓ ≥ Σ1 −Σ2,

where
Σ1 =

∑
k∈A

ℓmp=k2+1

bℓaℓ, Σ2 =
∑
k∈A

ℓmp=k2+1

bℓcm.

Our main task will be to show that we can obtain a lower bound for Σ1 and
an upper bound for Σ2 which are both of the “correct” size. This will lead
to a lower bound of the correct order of magnitude for the integers we are
counting, which includes a factor

1− 2 log

(
log xβ+ϵ

log xα

)
= 1− 2 log

(
β + ϵ

α

)
= log(1 + ϵ/(βϕ))− log(1 + ϵ/β)

≈ ϵ

β
(ϕ−1 − 1) ≫ 1.

Here we noted that log ϕ = −1/2 and this is what brings the e−1/2 into the
exponent of our result.

3. Preliminary results. Write χ(n) for the non-trivial character
(mod 4). We note that for all primes ω(p) = 1 + χ(p), and for n ≥ 2,
we have

ω(pn) =

{
0 if p = 2,

1 + χ(p) otherwise.

Let L(s, χ) be the corresponding L-function. We note that, by the working
in [6, Chapter 22], we have by partial summation, for s ≥ 1,

(4)
∑
q>X

χ(q)

qs
≪ exp(−C(logX)1/2)
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for someC>0. This result is used implicitly in the followingwherewe need that
ω(q) = 1 on average, and is quoted explicitly later in the proof of Theorem 1.1.

The following result is established in [8, pp. 150–151]. A more general
result (with a slightly weaker error term) can be found in the works of Hooley
[14] and [15, Chapter 2].

Lemma 3.1. For any d ∈ N and L > 1 we have

(5)
∑
ℓ∼L

ω(ℓd)

ℓ
= ρ(d)

L(1, χ)

ζ(2)
+O

(
ω(d)τ(d)(log x)3

L1/2

)
.

Here

ρ(d) = ω(d)
∏
p|d

(
1 +

1

p

)−1

.

Now write
P = (x1−β−ϵ)2 = x50/381−2ϵ.

The following simple lemma shows that we can add or remove the conditions
(m, p) = 1 or (ℓ, p) = 1 when counting solutions to mpℓ = n2 + 1 with
negligible error.

Lemma 3.2. We have, for any Π ≤ x1/2,∑
x1/2>p≥Π

∑
n∈A

ℓmp2=n2+1

1 ≪ x1+η

Π
.

Proof. This is immediate from the well-known result that ω(p2) ≤ 2.

Henceforth we write B = xν .

Lemma 3.3. In the above notation, there are two sequences of reals λ±
d

supported on the square-free numbers such that

|λ±
d | ≤ 1, λ±

d = 0 for d > xη,∑
d|n

λ−
d ≤

{
1 if q |n ⇒ q > B,

0 otherwise,

∑
d|n

λ+
d ≥

{
1 if q |n ⇒ q > B,

0 otherwise,

and, for λd equal to either of λ±
d ,

(6)
∑
d<xη

λdρ(d)

d
=

(
1 +O∗(e−1/ϵ) +O((log x)−1/3)

) ∏
q<B

(
1− ρ(q)

q

)
.

Proof. See [16, Lemma 3]. This is a “Fundamental Lemma” form of the
result (since we are sieving by the primes up to xν with distribution level xη
where η/ν = ϵ−1 is “large”).
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We will need a less precise form of the above result for a narrow range
of the variables which again follows from [16, Lemma 3] as a simple upper
bound. Henceforth γ always denotes Euler’s constant.

Lemma 3.4. There is a sequence of reals λ′
d supported on the square-free

numbers such that

|λ′
d| ≤ 1, λ′

d = 0 for d > B,
∑
d|n

λ′
d ≥

{
1 if q |n ⇒ q > B,

0 otherwise,

and

(7)
∑
d<B

λ′
dρ(d)

d
≤ 2eγ

(
1 +O((log x)−1/3)

) ∏
q<B

(
1− ρ(q)

q

)
.

Lemma 3.5. We have

(8)
∏
q<B

(
1− ρ(q)

q

)
=

e−γ

ν log x

ζ(2)

L(1, χ)

(
1 +O

(
1

log x

))
.

Proof. This is essentially [13, Lemma 3.2] and also occurs inter alia in
[5, p. 10], and [7, p. 10].

In the final part of our proof of Theorem 1.1 we shall not be able to make
use of the averaging over ℓ given in Lemma 3.1. This forces us to consider

(9)
∑
d≤xη

λd

d
ω(md) =

ω(m)

m

∑
d≤xη

2∤(d,m)

λd

d
ω

(
d

(d,m)

)
.

Thus, in our sieve bounds, ∏
q<B

(
1− ρ(q)

q

)
is replaced by (for ω(m) ̸= 0)∏

q<B
q∤m

(
1− ω(q)

q

) ∏
2<q<B
q|m

(
1− 1

q

)
.

For this reason we introduce

Ω(m) =
∏
q|m
q>2

1− 1/q

1− 2/q
=

∏
q|m
q>2

(
1 +

1

q − 2

)
.

We then need the following result.

Lemma 3.6. For all Y ≥ 2 we have

(10)
∑
m≤Y

ω(m)Ω(m)

m
≪ log Y.
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Proof. We have∑
m≤Y

ω(m)Ω(m)

m
≤

∏
q≤Y

(
1 +

ω(q)Ω(q)

q
+

ω(q2)Ω(q2)

q2
+ · · ·

)

=
3

2

∏
2<q≤Y
ω(q)̸=0

(
1 +

2

q
+O

(
1

q2

))
≪ log Y,

by standard procedures (we are, of course, using (4) implicitly here).

4. Proof of Theorem 1.1. Pick Π = ehP with 1 ≤ eh < xη. Then
choose L = egxβ+ϵ−η with 1 ≤ eg < xη. We first want to find a lower bound
very close to the expected formula for

S(L,Π) =
∑
k∈A

ℓmp=k2+1
ℓ∼L, p∼Π

bℓaℓV

(
k

x

)
.

By Proposition 2.1 and Lemma 3.2 we have

S(L,Π) = x
∑

ℓ∼L, p∼Π

bℓaℓ
ω(p)ω(ℓ)

pℓ
+O(x1−2η).

Now
aℓ = 1−

∑
q|ℓ

xα<q<eL

1.

Let
Q1 = xα, Q2 = L(log x)−20, Q3 = eL.

For 1 ≤ j ≤ 2 write Qj = [Qj , Qj+1) ∩ N. We then write

aℓ = 1−
2∑

j=1

σj(ℓ) where σj(ℓ) =
∑
q|ℓ

q∈Qj

1.

We then have three terms to deal with in order to evaluate S(L,Π) as follows:
(i) The first term is∑

ℓ∼L, p∼Π

bℓ
ω(p)ω(ℓ)

pℓ
=

∑
ℓ∼L

bℓ
ω(ℓ)

ℓ

∑
p∼Π

ω(p)

p
.

Now ∑
p∼Π

ω(p)

p
=

1

logΠ

(
1 +O((log x)−1)

)
,
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while from Lemma 3.1,

∑
ℓ∼L

bℓ
ω(ℓ)

ℓ
≥

∑
ℓ∼L

ω(ℓ)

ℓ

∑
d|ℓ

λ−
d

=
L(1, χ)

ζ(2)

∑
d<xη

λ−
d ρ(d)

d
+O

(∑
d<xη

ω(d)τ(d)(log x)3

dL1/2

)
.

The error term above is clearly ≪ (log x)7L−1/2. By Lemma 3.3 the main
term in the last line is

L(1, χ)

ζ(2)
K(x, ϵ)

∏
q<B

(
1− ρ(q)

q

)
= K(x, ϵ)

e−γ

ν log x

(
1 +O

(
1

log x

))
,

using Lemma 3.5. Here we have written

K(x, ϵ) =
(
1 +O∗(η) +O((log x)−1/3)

)
,

noting that exp(−1/ϵ) ≪ ϵ2 = η. Combining all our results gives

∑
ℓ∼L, p∼Π

bℓ
ω(p)ω(ℓ)

pℓ
≥ e−γ

(logΠ)(ν log x)
K(x, ϵ).

(ii) We have

∑
ℓ∼L

bℓσ1(ℓ)
ω(ℓ)

ℓ
=

∑
q∈Q1

ω(q)

q

∑
ℓ∼L/q

bℓ
ω(ℓ)

ℓ
.

We can treat ∑
ℓ∼L/q

bℓ
ω(ℓ)

ℓ

as in case (i) except that we now require an upper bound. We thus switch
λ− to λ+ and the error term

O
(
(log x)7L−1/2

)
becomes O

(
(log x)7(L/q)−1/2

)
.

Since q < Q2 = L(log x)−20, this error term is still admissible. (In fact,
we must have q < eL/B as ℓ has no prime factors < B, but we are only
obtaining an upper bound, and this situation does not arise in the analogous
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case when we switch the rôles of ℓ and m.) We deduce from (4) that∑
q∈Q1

ω(q)

q
=

∑
q∈Q1

1

q
+O

(
exp(−C(log x)1/2)

)
= log

(
logL− 20 log log x

log xα

)
+O((log x)−1)

= log

( 356
381 + ϵ

ϕ356
381 + ϵ

)
+O∗(η) +O((log x)−1/2)

=
1

2
−Rϵ+O∗(η) +O((log x)−1/2)

where
R =

381

356
(e1/2 − 1) >

1

2
.

Hence ∑
ℓ∼L, p∼Π

bℓ
ω(p)ω(ℓ)

pℓ
σ1(ℓ) ≤

e−γ

(logΠ)(ν log x)
K(x, ϵ)

(
1

2
−Rϵ

)
.

(iii) In this case for large x we must have q > eL/B. This forces q ∼ L
as ℓ cannot have a prime factor less than B, so ℓ = 1. The contribution from
this final part of the sum is therefore∑

q∼L

ω(q)

q

1

logΠ
=

1 +O((log x)−1)

logΠ logL
=

K(x, ϵ)O∗(ν)

(logΠ)(ν log x)
.

We have thus established that

S(L,Π) ≥ x
1 + ϵ

2

e−γ

(logΠ)(ν log x)
K(x, ϵ).

It follows that (recall 0 ≤ g, h ≤ η log x)

(11)
∑
g,h

S(L,Π) ≥ η2x
1 + ϵ

2

e−γ(
50
381 − 2ϵ

)
ν
K(x, ϵ).

We must now change the rôles of the variables to estimate the quantity we
called Σ2 in §2. Instead of breaking up the summation range over ℓ we must
do this for m. We treat p as before and suppose that Π = ehP with eh < xη.
To ensure we include all possible values for m (since we are subtracting the
final term, we need an upper bound) we consider

x2−β−ϵ

e2Π
< m <

e2x2−β−ϵ+η

Π
.

So we will be taking values

M =
egx2−β−ϵ

e2Π
with eg < e4xη.
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We are thus summing over η log x+O(1) values M and the additional O(1)
introduces no difficulties here. We must therefore study

T (M,Π) =
∑

ℓmp=k2+1
m∼M,p∼Π

bℓcmV

(
k

x

)
.

By Lemma 3.3 we can give an upper bound for this quantity by considering∑
d<xη

λ+
d

∑
ℓdmp=k2+1
m∼M,p∼Π

cmV

(
k

x

)
.

We apply Proposition 2.1 to demonstrate this sum is

x
∑
d<xη

λ+
d

∑
p∼Π
m∼M

cm
ω(p)ω(md)

pdm
+O(x1−η).

Now
cm =

∑
q|m

xα<q<eM

1 = cm(1) + cm(2), say,

where q < eM(log x)−20 in cm(1). We can work as in case (ii) of the estimate
for S(L,Π) to obtain a satisfactory bound for this part of the sum, namely,

≤ e−γx

(logΠ)(ν log x)
K(x, ϵ)

(
1

2
−Rϵ

)
.

The sum involving cm(2) is

(12) x
∑

m≤(log x)20

∑
d<xη

λ+
d

∑
p∼Π

mq∼M

ω(p)ω(mdq)

pdmq
.

Of course ω(mdq) = ω(q)ω(dm). Clearly∑
qm∼M

ω(q)

q
=

1

log(M/m)
+O((logM)−2).

We then use (9) and the working that follows in §3 to get the contribution
from (12) to be

≪ x log log x

(log x)3
.

We have thus shown that

T (M,N) ≤ e−γx

(logΠ)(ν log x)
K(x, ϵ)

(
1

2
−Rϵ

)
+O

(
x log log x

(log x)3

)
.
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It follows that (recall 0 ≤ g ≤ 4 + η log x, and 0 ≤ h ≤ η log x)

(13)
∑
g,h

T (M,Π) ≤ η2x
1− ϵ

2

e−γ(
50
381 − 2ϵ

)
ν
K(x, ϵ).

Taking the difference between (11) and (13) gives a lower bound for the
numbers we wish to count, which is

≥ ϵη2x
e−γ(

50
381 − 2ϵ

)
ν

(
1 +O∗(ϵ) +O((log x)−1/3)

)
.

This completes the proof of Theorem 1.1.

5. Primitive divisors of quadratic polynomials. We recall the fol-
lowing standard definition and proposition (see, for example, [8, 9]).

Definition 5.1. Let (An) denote a sequence with integer terms. We say
an integer d > 1 is a primitive divisor of An if

(1) d |An,
(2) gcd(d,Am) = 1 for all non-zero terms Am with m < n.

Proposition 5.2. For all n > |D|, the term Pn = n2+D has a primitive
divisor if and only if P+(n2+D) > 2n. For all n > |D|, if Pn has a primitive
divisor then that primitive divisor is a prime and it is unique.

In [8] we proved the following result (we take D = 1 for simplicity, but
as with our previous sections the results can be made more general).

Theorem 5.3. Define

ρ(x) = |{n ≤ x : n2 + 1 has a primitive divisor}|.
For all sufficiently large x we have

0.5324 <
ρ(x)

x
< 0.905.

We also tentatively suggested the following conjecture.

Conjecture 5.4. As x → ∞ we have ρ(x) ∼ x log 2.

It was explained there that such a conjecture would imply astonishingly
strong results on the lower bound for P+(n2 + 1) for infinitely many n.
Since this looks unlikely to be established without a significant advance in
knowledge, it seems worthwhile to give a modest sharpening of Theorem 5.3:

Theorem 5.5. For all sufficiently large x we have

(14) 0.5377 <
ρ(x)

x
< 0.86.

Proof. To consider the upper bound in our result we need to use the
working in [19], or rather the working with one factor changed.
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Let Px = xτ = maxn≤x P
+(n2 + 1). The basic argument goes back to

Chebyshev and starts with the observation that∑
x≤p≤Px

Gp log p = x log x+O(x).

Here

Gp =
∑

p|k2+1

V

(
k

x

)
.

Simplifying a few details to expose the main idea, we then wish to obtain
upper bounds for Gp of the form∑

1≤px−α≤e

Gp ≤ K(α)(1 + o(1))
X

log x
.

It is then a question of showing that
τ�

1

αK(α) dα < 1,

and this determines the maximum value for τ . In [8] we show that in the
above notation

ρ(x)

x
≤ (1 + o(1))

τ�

1

K(α) dα.

So, to prove our result, we only need to perform the same calculations as
in [19], removing the factor α from the integrand. In some ranges of α
the integrals are elementary, but in others numerical integration must be
employed. In his paper [19, p. 1268] Merikoski has kindly supplied links
to his Python programs for these calculations. Changing these programs to
remove the α factor, and calculating the remaining elementary integrals, then
gives

τ�

1

K(α) dα < 0.86

as required to complete the proof.
We give one example of the integrals and calculations involved to illustrate

what happens. In [19] the argument splits according to the size of α and the
first range is 1 ≤ α < 758/733. The integral computed for this region is

758/733�

1

1 dα+G1 = 0.034106 . . .+G1,
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where

G1 :=

758/733�

1

α

( α−2σ�

σ

ω(α/β − 1)
dβ

β2
+

α/2�

ξ

ω(α/β − 1)
dβ

β2

)
dα

< 0.01745.

Here ω(u) is Buchstab’s function, and σ, ξ are certain functions of α given
in [19, §2.4.1].

For the proof of our result the contribution from that region is
758/733�

1

1

α
dα+H1 = 0.033537 . . .+H1

where

H1 :=

758/733�

1

( α−2σ�

σ

ω(α/β − 1)
dβ

β2
+

α/2�

ξ

ω(α/β − 1)
dβ

β2

)
dα

< 0.01706.

Of course, α is still quite close to 1 in this region, so dividing by α has only
made a small change here.

To consider the lower bound in (14) we note that the working in [8] shows
that

(15)
ρ(x)

x
≥ (1 + o(1))

2�

τ

K(α) dα,

where τ is the solution to
2�

τ

αK(α) dα = 1.

In [8] we used an elementary argument to allow the choice

K(α) =
2

α− 1
.

If, instead, we use Proposition 2.1 (now with a different smoothing factor
V (k/x) providing an upper bound which only loses an η factor in the main
term) with M = x1−4η (compare [3, Théorème 1.1]), we can replace this
with (ignoring an η term for clarity)

K(α) =
2

α− 153
178

.

Calculations then give τ = 1.73111 . . . , leading, via (15), to the lower bound
in (14). We note that the corresponding value of τ in [8] was 1.766249 . . . .
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This change may appear quite small, but subtracting both values from 2
(which is the “starting point”, so to speak), this is a 15% improvement.

Acknowledgements. The author thanks the referee for their careful
reading of the paper and pertinent remarks.
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