Two problems on the greatest prime factor of $n^{2}+1$

by
Glyn Harman (Egham)

Abstract. Let $P^{+}(m)$ denote the greatest prime factor of the positive integer m. In [Arch. Math. (Basel) 90 (2008), 239-245] we improved work of Dartyge [Acta Math. Hungar. 72 (1996), 1-34] to show that

$$
\left|\left\{n \leq x: P^{+}\left(n^{2}+1\right)<x^{\alpha}\right\}\right| \gg x
$$

for $\alpha>4 / 5$. In this note we show how the recent work of de la Bretèche and Drappeau [J. Eur. Math. Soc. 22 (2020), 1577-1624] (which uses the improved bound for the smallest eigenvalue in the Ramanujan-Selberg conjecture given by Kim [J. Amer. Math. Soc. 16 (2003), 139-183]) along with a change of argument can be used to reduce the exponent to 0.567 . We also show how recent work of Merikoski [J. Eur. Math. Soc. 25 (2023), 1253-1284] on large values of $P^{+}\left(n^{2}+1\right)$ can improve work by Everest and the author [London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, 2008, 142-154] on primitive divisors of the sequence $n^{2}+1$.

1. Introduction. On page 23 of [12] the following conjecture is asserted.

There are infinitely many primes $n^{2}+1$. More generally, if a, b, c are integers without common divisor, a is positive, $a+b$ and c are not both even, and $b^{2}-4 a c$ is not a perfect square, then there are infinitely many primes $a n^{2}+b+c$.

Indeed, there is a more general conjecture on irreducible polynomials without fixed prime divisors, and this has been put into a quantitative form [2, 11]. In the same way, conjectures have been made on "smooth" values of polynomials. For example, it is reasonable, given $-D$ not an integer squared, to suppose that, given $\epsilon>0$, one should have $P^{+}\left(n^{2}+D\right)<n^{\epsilon}$ infinitely often, where $P^{+}(m)$ denotes the greatest prime factor of the positive integer m. Indeed, this has been proved, in a slightly stronger form with an explicit $\epsilon(n, D) \rightarrow 0$, by Schinzel [20, Theorem 13]. However, Schinzel's method does not give the expected formula for the number of such values of $n^{2}+D$.

[^0]In fact, given $\alpha>0$ (not necessarily "small") it cannot even provide a lower bound of the correct order of magnitude for

$$
\left|\left\{n \leq x: P^{+}\left(n^{2}+D\right)<x^{\alpha}\right\}\right|=\Psi_{D}^{*}(x, \alpha), \quad \text { say }
$$

since the values of n are stated explicitly in a form $\geq 2^{m}$ for a certain sequence of values m [20, p. 230].

There is more recent work which covers general quadratic polynomials [4, but still cannot provide the correct order lower bound. An asymptotic formula has been given by Martin [18], but only dependent on a very strong unproved hypothesis (a uniform quantitative version of "Hypothesis H " of Schinzel and Sierpiński). In 1996 Dartyge [5] proved that $\Psi_{1}^{*}(x, \alpha) \gg x$ for $\alpha>\frac{149}{179} \approx 0.8324$. The method drew on the techniques used in [14, 7] for proving that $P^{+}\left(n^{2}+1\right)>n^{\gamma}$ with $\gamma>1$, combined with methods of Ba\log [1] and Friedlander [10] for obtaining the correct order of magnitude of smooth numbers in certain sequences.

In 13 we dispensed with Balog's method and thereby reduced the lower bound for α to $\frac{4}{5}$, and the first purpose of the present paper is to give the following more significant improvement. The value 0.567 which occurs in our main result arises as

$$
\frac{356}{381} e^{-1 / 2}+\epsilon
$$

for any $\epsilon>0$. Here, and throughout the paper, we reserve the letter e for the base of natural logarithms. There are no serious mathematical problems in replacing $n^{2}+1$ with $n^{2}+D$ (where $-D$ is not an integer squared) in any of our results. We have restricted ourselves to $n^{2}+1$ for brevity and clarity. All the main lemmas have exact analogues for $n^{2}+D$ which can be derived using Hooley's work [14, [15] and noting that [3] deals with the more general case. Henceforth we shall therefore suppress the subscript 1 on $\Psi_{1}^{*}(x, \alpha)$.

Theorem 1.1. For $\alpha \geq 0.567$ we have

$$
\begin{equation*}
\Psi^{*}(x, \alpha) \gg x \tag{1}
\end{equation*}
$$

If we fed an improved result from [3] into the method of [13] we would only get an exponent of $82 / 107+\epsilon \approx 0.766$. However, we shall use a different result from [3] and combine that with the Balog-Friedlander approach to get a much better improvement in the exponent (though paradoxically this makes our method resemble Dartyge's approach [5]). We remark that Merikoski [19] has combined the work of de la Brèteche and Drappeau with other ideas to show that infinitely often $P^{+}\left(n^{2}+1\right)>n^{1.279}$. The methods used to prove these types of results have implications for the work given in [8, 9] on primitive divisors of quadratic polynomials, and we shall briefly describe one such result in our final section.

2. Outline of the method. Write

$$
\phi=e^{-1 / 2}, \quad \beta=\frac{356}{381}, \quad \alpha=\beta \phi+\epsilon, \quad \mathcal{A}=[x, 2 x] \cap \mathbb{N}, \quad \eta=\epsilon^{2}, \quad \nu=\epsilon^{3} .
$$

Henceforth it will be implicit that the constants in the O and \ll notation may depend on ϵ, though we will write O^{*} for the few occurrences where we need the constants to be absolute. Our basic idea is to count integers $m p \ell=k^{2}+1, k \in \mathcal{A}$. Here and elsewhere p and q always denote primes. If both m and ℓ are around Y in size, Balog's technique, if we can do the counting correctly, can show that $q \mid \ell m \Rightarrow q<Y^{\phi+\eta}$. Friedlander's idea is to make ℓ have all its prime factors $>x^{\nu}$ and so, for a fixed n, the number of solutions to $m p \ell=n^{2}+1$ is $\ll 1$. Since $p Y^{2} \approx x^{2}$, we would like p to range over values as large as possible to reduce Y, but also satisfying $p \leq Y^{\phi+\eta}$.

We need to introduce a smoothing factor for the variable k in order to use a result from [3]. To this end we let $V(u)$ be an infinitely differentiable non-negative function such that

$$
V(u) \begin{cases}<2 & \text { if } 1<u<2 \\ =0 & \text { if } u \leq 1 \text { or } u \geq 2\end{cases}
$$

with

$$
\frac{d^{r} V(u)}{d u^{r}} \ll r r 1 \quad \text { and } \quad \int_{\mathbb{R}} V(u) d u=1
$$

We allow implied constants to depend on the choice of $V(u)$, for example in (2) below. Since we will often have a factor $V(k / x)$, the condition $k \in \mathcal{A}$ will be superfluous and so omitted in most of the sums that follow. The following result then follows immediately from [3, Théorème 5.2] and provides us with the means of counting solutions of the required form. We write $\omega(n)$ for the number of solutions to the congruence $r^{2} \equiv-1(\bmod n), 0 \leq r<n$, and, for $B \geq 1$, we write $b \sim B$ for $B \leq b<e B, b \in \mathbb{N}$.

Proposition 2.1. Let $\eta>0, x, M, N \geq 1, M N \leq x^{2}$, and suppose g_{m}, h_{n} are two sequences of complex numbers with modulus at most 1 . Write

$$
r(s)=\sum_{k^{2} \equiv-1(\bmod s)} V\left(\frac{k}{x}\right)-x \frac{\omega(s)}{s}
$$

Then

$$
\begin{equation*}
\sum_{m \sim M} \sum_{\substack{n \sim N \\(m, n)=1}} g_{m} h_{n} r(m n) \ll F(x, M, N, \eta) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x, M, N, \eta)=x^{1 / 2+\eta} M^{1 / 2}+x^{1+\eta} N^{3 / 2-\theta} M^{-1 / 4+\theta / 2} \tag{3}
\end{equation*}
$$

Here $\frac{1}{4}-\theta^{2}$ is the best known lower bound for the smallest eigenvalue for any congruence subgroup, so $\theta=7 / 64$ is acceptable by [17].

Now we will require $F(x, M, N, \eta) \ll x^{1-2 \eta}$ to get an asymptotic formula for the weighted number of solutions we are counting by (2). We will take h_{n} as the characteristic function of the set of primes, so we will want $N M^{2} \approx x^{2}$. Simple algebra then shows we need to take $N \approx x^{50 / 381}, M \approx x^{356 / 381}$. We define three sequences a_{r}, b_{ℓ}, c_{s} by

$$
a_{r}=\left\{\begin{array}{ll}
1 & \text { if } p \mid r \Rightarrow p<x^{\alpha}, \\
0 & \text { otherwise }
\end{array} \quad c_{s}=1-a_{s}, \quad b_{\ell}= \begin{cases}1 & \text { if } p \mid \ell \Rightarrow p \geq x^{\nu} \\
0 & \text { otherwise }\end{cases}\right.
$$

The Balog-Friedlander approach with this notation (omitting the smoothing factor for clarity) is to observe that

$$
\sum_{\substack{k \in \mathcal{A} \\ \ell m p=k^{2}+1}} a_{m} b_{\ell} a_{\ell} \geq \Sigma_{1}-\Sigma_{2}
$$

where

$$
\Sigma_{1}=\sum_{\substack{k \in \mathcal{A} \\ \ell m p=k^{2}+1}} b_{\ell} a_{\ell}, \quad \Sigma_{2}=\sum_{\substack{k \in \mathcal{A} \\ \ell m p=k^{2}+1}} b_{\ell} c_{m}
$$

Our main task will be to show that we can obtain a lower bound for Σ_{1} and an upper bound for Σ_{2} which are both of the "correct" size. This will lead to a lower bound of the correct order of magnitude for the integers we are counting, which includes a factor

$$
\begin{aligned}
1-2 \log \left(\frac{\log x^{\beta+\epsilon}}{\log x^{\alpha}}\right) & =1-2 \log \left(\frac{\beta+\epsilon}{\alpha}\right)=\log (1+\epsilon /(\beta \phi))-\log (1+\epsilon / \beta) \\
& \approx \frac{\epsilon}{\beta}\left(\phi^{-1}-1\right) \gg 1
\end{aligned}
$$

Here we noted that $\log \phi=-1 / 2$ and this is what brings the $e^{-1 / 2}$ into the exponent of our result.
3. Preliminary results. Write $\chi(n)$ for the non-trivial character $(\bmod 4)$. We note that for all primes $\omega(p)=1+\chi(p)$, and for $n \geq 2$, we have

$$
\omega\left(p^{n}\right)= \begin{cases}0 & \text { if } p=2 \\ 1+\chi(p) & \text { otherwise }\end{cases}
$$

Let $L(s, \chi)$ be the corresponding L-function. We note that, by the working in [6, Chapter 22], we have by partial summation, for $s \geq 1$,

$$
\begin{equation*}
\sum_{q>X} \frac{\chi(q)}{q^{s}} \ll \exp \left(-C(\log X)^{1 / 2}\right) \tag{4}
\end{equation*}
$$

for some $C>0$. This result is used implicitly in the following where we need that $\omega(q)=1$ on average, and is quoted explicitly later in the proof of Theorem 1.1.

The following result is established in [8, pp. 150-151]. A more general result (with a slightly weaker error term) can be found in the works of Hooley [14] and [15, Chapter 2].

Lemma 3.1. For any $d \in \mathbb{N}$ and $L>1$ we have

$$
\begin{equation*}
\sum_{\ell \sim L} \frac{\omega(\ell d)}{\ell}=\rho(d) \frac{L(1, \chi)}{\zeta(2)}+O\left(\frac{\omega(d) \tau(d)(\log x)^{3}}{L^{1 / 2}}\right) \tag{5}
\end{equation*}
$$

Here

$$
\rho(d)=\omega(d) \prod_{p \mid d}\left(1+\frac{1}{p}\right)^{-1}
$$

Now write

$$
P=\left(x^{1-\beta-\epsilon}\right)^{2}=x^{50 / 381-2 \epsilon}
$$

The following simple lemma shows that we can add or remove the conditions $(m, p)=1$ or $(\ell, p)=1$ when counting solutions to $m p \ell=n^{2}+1$ with negligible error.

Lemma 3.2. We have, for any $\Pi \leq x^{1 / 2}$,

$$
\sum_{x^{1 / 2}>p \geq \Pi} \sum_{\substack{n \in \mathcal{A} \\ \ell m p^{2}=n^{2}+1}} 1 \ll \frac{x^{1+\eta}}{\Pi}
$$

Proof. This is immediate from the well-known result that $\omega\left(p^{2}\right) \leq 2$.
Henceforth we write $B=x^{\nu}$.
LEMmA 3.3. In the above notation, there are two sequences of reals $\lambda_{d}^{ \pm}$ supported on the square-free numbers such that

$$
\begin{gathered}
\left|\lambda_{d}^{ \pm}\right| \leq 1, \quad \lambda_{d}^{ \pm}=0 \quad \text { for } d>x^{\eta} \\
\sum_{d \mid n} \lambda_{d}^{-} \leq\left\{\begin{array}{ll}
1 & \text { if } q \mid n \Rightarrow q>B, \\
0 & \text { otherwise },
\end{array} \sum_{d \mid n} \lambda_{d}^{+} \geq \begin{cases}1 & \text { if } q \mid n \Rightarrow q>B \\
0 & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

and, for λ_{d} equal to either of $\lambda_{d}^{ \pm}$,

$$
\begin{equation*}
\sum_{d<x^{\eta}} \frac{\lambda_{d} \rho(d)}{d}=\left(1+O^{*}\left(e^{-1 / \epsilon}\right)+O\left((\log x)^{-1 / 3}\right)\right) \prod_{q<B}\left(1-\frac{\rho(q)}{q}\right) \tag{6}
\end{equation*}
$$

Proof. See [16, Lemma 3]. This is a "Fundamental Lemma" form of the result (since we are sieving by the primes up to x^{ν} with distribution level x^{η} where $\eta / \nu=\epsilon^{-1}$ is "large").

We will need a less precise form of the above result for a narrow range of the variables which again follows from [16, Lemma 3] as a simple upper bound. Henceforth γ always denotes Euler's constant.

Lemma 3.4. There is a sequence of reals λ_{d}^{\prime} supported on the square-free numbers such that

$$
\left|\lambda_{d}^{\prime}\right| \leq 1, \quad \lambda_{d}^{\prime}=0 \quad \text { for } d>B, \quad \sum_{d \mid n} \lambda_{d}^{\prime} \geq \begin{cases}1 & \text { if } q \mid n \Rightarrow q>B, \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\begin{equation*}
\sum_{d<B} \frac{\lambda_{d}^{\prime} \rho(d)}{d} \leq 2 e^{\gamma}\left(1+O\left((\log x)^{-1 / 3}\right)\right) \prod_{q<B}\left(1-\frac{\rho(q)}{q}\right) \tag{7}
\end{equation*}
$$

Lemma 3.5. We have

$$
\begin{equation*}
\prod_{q<B}\left(1-\frac{\rho(q)}{q}\right)=\frac{e^{-\gamma}}{\nu \log x} \frac{\zeta(2)}{L(1, \chi)}\left(1+O\left(\frac{1}{\log x}\right)\right) \tag{8}
\end{equation*}
$$

Proof. This is essentially [13, Lemma 3.2] and also occurs inter alia in [5, p. 10], and [7, p. 10].

In the final part of our proof of Theorem 1.1 we shall not be able to make use of the averaging over ℓ given in Lemma 3.1. This forces us to consider

$$
\begin{equation*}
\sum_{d \leq x^{\eta}} \frac{\lambda_{d}}{d} \omega(m d)=\frac{\omega(m)}{m} \sum_{\substack{d \leq x^{\eta} \\ 2 \nmid(d, m)}} \frac{\lambda_{d}}{d} \omega\left(\frac{d}{(d, m)}\right) . \tag{9}
\end{equation*}
$$

Thus, in our sieve bounds,

$$
\prod_{q<B}\left(1-\frac{\rho(q)}{q}\right)
$$

is replaced by (for $\omega(m) \neq 0)$

$$
\prod_{\substack{q<B \\ q \nmid m}}\left(1-\frac{\omega(q)}{q}\right) \prod_{\substack{2<q<B \\ q \mid m}}\left(1-\frac{1}{q}\right)
$$

For this reason we introduce

$$
\Omega(m)=\prod_{\substack{q \mid m \\ q>2}} \frac{1-1 / q}{1-2 / q}=\prod_{\substack{q \mid m \\ q>2}}\left(1+\frac{1}{q-2}\right)
$$

We then need the following result.
Lemma 3.6. For all $Y \geq 2$ we have

$$
\begin{equation*}
\sum_{m \leq Y} \frac{\omega(m) \Omega(m)}{m} \ll \log Y \tag{10}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{m \leq Y} \frac{\omega(m) \Omega(m)}{m} & \leq \prod_{q \leq Y}\left(1+\frac{\omega(q) \Omega(q)}{q}+\frac{\omega\left(q^{2}\right) \Omega\left(q^{2}\right)}{q^{2}}+\cdots\right) \\
& =\frac{3}{2} \prod_{\substack{2<q \leq Y \\
\omega(q) \neq 0}}\left(1+\frac{2}{q}+O\left(\frac{1}{q^{2}}\right)\right) \ll \log Y
\end{aligned}
$$

by standard procedures (we are, of course, using (4) implicitly here).
4. Proof of Theorem 1.1. Pick $\Pi=e^{h} P$ with $1 \leq e^{h}<x^{\eta}$. Then choose $L=e^{g} x^{\beta+\epsilon-\eta}$ with $1 \leq e^{g}<x^{\eta}$. We first want to find a lower bound very close to the expected formula for

$$
S(L, \Pi)=\sum_{\substack{k \in \mathcal{A} \\ \ell m p=k^{2}+1 \\ \ell \sim L, p \sim \Pi}} b_{\ell} a_{\ell} V\left(\frac{k}{x}\right)
$$

By Proposition 2.1 and Lemma 3.2 we have

$$
S(L, \Pi)=x \sum_{\ell \sim L, p \sim \Pi} b_{\ell} a_{\ell} \frac{\omega(p) \omega(\ell)}{p \ell}+O\left(x^{1-2 \eta}\right)
$$

Now

$$
a_{\ell}=1-\sum_{\substack{q \mid \ell \\ x^{\alpha}<q<e L}} 1
$$

Let

$$
Q_{1}=x^{\alpha}, \quad Q_{2}=L(\log x)^{-20}, \quad Q_{3}=e L
$$

For $1 \leq j \leq 2$ write $\mathcal{Q}_{j}=\left[Q_{j}, Q_{j+1}\right) \cap \mathbb{N}$. We then write

$$
a_{\ell}=1-\sum_{j=1}^{2} \sigma_{j}(\ell) \quad \text { where } \quad \sigma_{j}(\ell)=\sum_{\substack{q \mid \ell \\ q \in \mathcal{Q}_{j}}} 1
$$

We then have three terms to deal with in order to evaluate $S(L, \Pi)$ as follows:
(i) The first term is

$$
\sum_{\ell \sim L, p \sim \Pi} b_{\ell} \frac{\omega(p) \omega(\ell)}{p \ell}=\sum_{\ell \sim L} b_{\ell} \frac{\omega(\ell)}{\ell} \sum_{p \sim \Pi} \frac{\omega(p)}{p} .
$$

Now

$$
\sum_{p \sim \Pi} \frac{\omega(p)}{p}=\frac{1}{\log \Pi}\left(1+O\left((\log x)^{-1}\right)\right)
$$

while from Lemma 3.1,

$$
\begin{aligned}
\sum_{\ell \sim L} b_{\ell} \frac{\omega(\ell)}{\ell} & \geq \sum_{\ell \sim L} \frac{\omega(\ell)}{\ell} \sum_{d \mid \ell} \lambda_{d}^{-} \\
& =\frac{L(1, \chi)}{\zeta(2)} \sum_{d<x^{\eta}} \frac{\lambda_{d}^{-} \rho(d)}{d}+O\left(\sum_{d<x^{\eta}} \frac{\omega(d) \tau(d)(\log x)^{3}}{d L^{1 / 2}}\right)
\end{aligned}
$$

The error term above is clearly $\ll(\log x)^{7} L^{-1 / 2}$. By Lemma 3.3 the main term in the last line is

$$
\frac{L(1, \chi)}{\zeta(2)} K(x, \epsilon) \prod_{q<B}\left(1-\frac{\rho(q)}{q}\right)=K(x, \epsilon) \frac{e^{-\gamma}}{\nu \log x}\left(1+O\left(\frac{1}{\log x}\right)\right)
$$

using Lemma 3.5. Here we have written

$$
K(x, \epsilon)=\left(1+O^{*}(\eta)+O\left((\log x)^{-1 / 3}\right)\right)
$$

noting that $\exp (-1 / \epsilon) \ll \epsilon^{2}=\eta$. Combining all our results gives

$$
\sum_{\ell \sim L, p \sim \Pi} b_{\ell} \frac{\omega(p) \omega(\ell)}{p \ell} \geq \frac{e^{-\gamma}}{(\log \Pi)(\nu \log x)} K(x, \epsilon)
$$

(ii) We have

$$
\sum_{\ell \sim L} b_{\ell} \sigma_{1}(\ell) \frac{\omega(\ell)}{\ell}=\sum_{q \in \mathcal{Q}_{1}} \frac{\omega(q)}{q} \sum_{\ell \sim L / q} b_{\ell} \frac{\omega(\ell)}{\ell}
$$

We can treat

$$
\sum_{\ell \sim L / q} b_{\ell} \frac{\omega(\ell)}{\ell}
$$

as in case (i) except that we now require an upper bound. We thus switch λ^{-}to λ^{+}and the error term

$$
O\left((\log x)^{7} L^{-1 / 2}\right) \quad \text { becomes } \quad O\left((\log x)^{7}(L / q)^{-1 / 2}\right)
$$

Since $q<Q_{2}=L(\log x)^{-20}$, this error term is still admissible. (In fact, we must have $q<e L / B$ as ℓ has no prime factors $<B$, but we are only obtaining an upper bound, and this situation does not arise in the analogous
case when we switch the rôles of ℓ and m.) We deduce from (4) that

$$
\begin{aligned}
\sum_{q \in \mathcal{Q}_{1}} \frac{\omega(q)}{q} & =\sum_{q \in \mathcal{Q}_{1}} \frac{1}{q}+O\left(\exp \left(-C(\log x)^{1 / 2}\right)\right) \\
& =\log \left(\frac{\log L-20 \log \log x}{\log x^{\alpha}}\right)+O\left((\log x)^{-1}\right) \\
& =\log \left(\frac{\frac{356}{381}+\epsilon}{\phi \frac{356}{381}+\epsilon}\right)+O^{*}(\eta)+O\left((\log x)^{-1 / 2}\right) \\
& =\frac{1}{2}-R \epsilon+O^{*}(\eta)+O\left((\log x)^{-1 / 2}\right)
\end{aligned}
$$

where

$$
R=\frac{381}{356}\left(e^{1 / 2}-1\right)>\frac{1}{2}
$$

Hence

$$
\sum_{\ell \sim L, p \sim \Pi} b_{\ell} \frac{\omega(p) \omega(\ell)}{p \ell} \sigma_{1}(\ell) \leq \frac{e^{-\gamma}}{(\log \Pi)(\nu \log x)} K(x, \epsilon)\left(\frac{1}{2}-R \epsilon\right)
$$

(iii) In this case for large x we must have $q>e L / B$. This forces $q \sim L$ as ℓ cannot have a prime factor less than B, so $\ell=1$. The contribution from this final part of the sum is therefore

$$
\sum_{q \sim L} \frac{\omega(q)}{q} \frac{1}{\log \Pi}=\frac{1+O\left((\log x)^{-1}\right)}{\log \Pi \log L}=\frac{K(x, \epsilon) O^{*}(\nu)}{(\log \Pi)(\nu \log x)}
$$

We have thus established that

$$
S(L, \Pi) \geq x \frac{1+\epsilon}{2} \frac{e^{-\gamma}}{(\log \Pi)(\nu \log x)} K(x, \epsilon)
$$

It follows that (recall $0 \leq g, h \leq \eta \log x$)

$$
\begin{equation*}
\sum_{g, h} S(L, \Pi) \geq \eta^{2} x \frac{1+\epsilon}{2} \frac{e^{-\gamma}}{\left(\frac{50}{381}-2 \epsilon\right) \nu} K(x, \epsilon) \tag{11}
\end{equation*}
$$

We must now change the rôles of the variables to estimate the quantity we called Σ_{2} in $\S 2$. Instead of breaking up the summation range over ℓ we must do this for m. We treat p as before and suppose that $\Pi=e^{h} P$ with $e^{h}<x^{\eta}$. To ensure we include all possible values for m (since we are subtracting the final term, we need an upper bound) we consider

$$
\frac{x^{2-\beta-\epsilon}}{e^{2} \Pi}<m<\frac{e^{2} x^{2-\beta-\epsilon+\eta}}{\Pi}
$$

So we will be taking values

$$
M=\frac{e^{g} x^{2-\beta-\epsilon}}{e^{2} \Pi} \quad \text { with } \quad e^{g}<e^{4} x^{\eta}
$$

We are thus summing over $\eta \log x+O(1)$ values M and the additional $O(1)$ introduces no difficulties here. We must therefore study

$$
T(M, \Pi)=\sum_{\substack{\ell m p=k^{2}+1 \\ m \sim M, p \sim \sim \Pi}} b_{\ell} c_{m} V\left(\frac{k}{x}\right)
$$

By Lemma 3.3 we can give an upper bound for this quantity by considering

$$
\sum_{d<x^{\eta}} \lambda_{d}^{+} \sum_{\substack{\ell d m p=k^{2}+1 \\ m \sim M, p \sim \Pi}} c_{m} V\left(\frac{k}{x}\right)
$$

We apply Proposition 2.1 to demonstrate this sum is

$$
x \sum_{d<x^{\eta}} \lambda_{d}^{+} \sum_{\substack{p \sim \Pi \\ m \sim M}} c_{m} \frac{\omega(p) \omega(m d)}{p d m}+O\left(x^{1-\eta}\right)
$$

Now

$$
c_{m}=\sum_{\substack{q \mid m \\ x^{\alpha}<q<e M}} 1=c_{m}(1)+c_{m}(2), \quad \text { say },
$$

where $q<e M(\log x)^{-20}$ in $c_{m}(1)$. We can work as in case (ii) of the estimate for $S(L, \Pi)$ to obtain a satisfactory bound for this part of the sum, namely,

$$
\leq \frac{e^{-\gamma} x}{(\log \Pi)(\nu \log x)} K(x, \epsilon)\left(\frac{1}{2}-R \epsilon\right)
$$

The sum involving $c_{m}(2)$ is

$$
\begin{equation*}
x \sum_{m \leq(\log x)^{20}} \sum_{d<x^{\eta}} \lambda_{d}^{+} \sum_{\substack{p \sim \Pi \\ m q \sim M}} \frac{\omega(p) \omega(m d q)}{p d m q} \tag{12}
\end{equation*}
$$

Of course $\omega(m d q)=\omega(q) \omega(d m)$. Clearly

$$
\sum_{q m \sim M} \frac{\omega(q)}{q}=\frac{1}{\log (M / m)}+O\left((\log M)^{-2}\right)
$$

We then use (9) and the working that follows in $\S 3$ to get the contribution from $\sqrt[12]{ }$ to be

$$
\ll \frac{x \log \log x}{(\log x)^{3}}
$$

We have thus shown that

$$
T(M, N) \leq \frac{e^{-\gamma} x}{(\log \Pi)(\nu \log x)} K(x, \epsilon)\left(\frac{1}{2}-R \epsilon\right)+O\left(\frac{x \log \log x}{(\log x)^{3}}\right)
$$

It follows that (recall $0 \leq g \leq 4+\eta \log x$, and $0 \leq h \leq \eta \log x$)

$$
\begin{equation*}
\sum_{g, h} T(M, \Pi) \leq \eta^{2} x \frac{1-\epsilon}{2} \frac{e^{-\gamma}}{\left(\frac{50}{381}-2 \epsilon\right) \nu} K(x, \epsilon) . \tag{11}
\end{equation*}
$$

Taking the difference between (11) and (13) gives a lower bound for the numbers we wish to count, which is

$$
\geq \epsilon \eta^{2} x \frac{e^{-\gamma}}{\left(\frac{50}{381}-2 \epsilon\right) \nu}\left(1+O^{*}(\epsilon)+O\left((\log x)^{-1 / 3}\right)\right) .
$$

This completes the proof of Theorem 1.1.
5. Primitive divisors of quadratic polynomials. We recall the following standard definition and proposition (see, for example, [8, [9).

Definition 5.1. Let $\left(A_{n}\right)$ denote a sequence with integer terms. We say an integer $d>1$ is a primitive divisor of A_{n} if
(1) $d \mid A_{n}$,
(2) $\operatorname{gcd}\left(d, A_{m}\right)=1$ for all non-zero terms A_{m} with $m<n$.

Proposition 5.2. For all $n>|D|$, the term $P_{n}=n^{2}+D$ has a primitive divisor if and only if $P^{+}\left(n^{2}+D\right)>2 n$. For all $n>|D|$, if P_{n} has a primitive divisor then that primitive divisor is a prime and it is unique.

In [8] we proved the following result (we take $D=1$ for simplicity, but as with our previous sections the results can be made more general).

Theorem 5.3. Define

$$
\rho(x)=\mid\left\{n \leq x: n^{2}+1 \text { has a primitive divisor }\right\} \mid .
$$

For all sufficiently large x we have

$$
0.5324<\frac{\rho(x)}{x}<0.905 .
$$

We also tentatively suggested the following conjecture.
Conjecture 5.4. As $x \rightarrow \infty$ we have $\rho(x) \sim x \log 2$.
It was explained there that such a conjecture would imply astonishingly strong results on the lower bound for $P^{+}\left(n^{2}+1\right)$ for infinitely many n. Since this looks unlikely to be established without a significant advance in knowledge, it seems worthwhile to give a modest sharpening of Theorem 5.3

Theorem 5.5. For all sufficiently large x we have

$$
\begin{equation*}
0.5377<\frac{\rho(x)}{x}<0.86 \tag{14}
\end{equation*}
$$

Proof. To consider the upper bound in our result we need to use the working in [19, or rather the working with one factor changed.

Let $P_{x}=x^{\tau}=\max _{n \leq x} P^{+}\left(n^{2}+1\right)$. The basic argument goes back to Chebyshev and starts with the observation that

$$
\sum_{x \leq p \leq P_{x}} G_{p} \log p=x \log x+O(x)
$$

Here

$$
G_{p}=\sum_{p \mid k^{2}+1} V\left(\frac{k}{x}\right)
$$

Simplifying a few details to expose the main idea, we then wish to obtain upper bounds for G_{p} of the form

$$
\sum_{1 \leq p x^{-\alpha} \leq e} G_{p} \leq K(\alpha)(1+o(1)) \frac{X}{\log x}
$$

It is then a question of showing that

$$
\int_{1}^{\tau} \alpha K(\alpha) d \alpha<1
$$

and this determines the maximum value for τ. In [8] we show that in the above notation

$$
\frac{\rho(x)}{x} \leq(1+o(1)) \int_{1}^{\tau} K(\alpha) d \alpha
$$

So, to prove our result, we only need to perform the same calculations as in [19], removing the factor α from the integrand. In some ranges of α the integrals are elementary, but in others numerical integration must be employed. In his paper [19, p. 1268] Merikoski has kindly supplied links to his Python programs for these calculations. Changing these programs to remove the α factor, and calculating the remaining elementary integrals, then gives

$$
\int_{1}^{\tau} K(\alpha) d \alpha<0.86
$$

as required to complete the proof.
We give one example of the integrals and calculations involved to illustrate what happens. In [19] the argument splits according to the size of α and the first range is $1 \leq \alpha<758 / 733$. The integral computed for this region is

$$
\int_{1}^{758 / 733} 1 d \alpha+G_{1}=0.034106 \ldots+G_{1}
$$

where

$$
\begin{aligned}
G_{1} & :=\int_{1}^{758 / 733} \alpha\left(\int_{\sigma}^{\alpha-2 \sigma} \omega(\alpha / \beta-1) \frac{d \beta}{\beta^{2}}+\int_{\xi}^{\alpha / 2} \omega(\alpha / \beta-1) \frac{d \beta}{\beta^{2}}\right) d \alpha \\
& <0.01745 .
\end{aligned}
$$

Here $\omega(u)$ is Buchstab's function, and σ, ξ are certain functions of α given in [19, §2.4.1].

For the proof of our result the contribution from that region is

$$
\int_{1}^{758 / 733} \frac{1}{\alpha} d \alpha+H_{1}=0.033537 \ldots+H_{1}
$$

where

$$
\begin{aligned}
H_{1} & :=\int_{1}^{758 / 733}\left(\int_{\sigma}^{\alpha-2 \sigma} \omega(\alpha / \beta-1) \frac{d \beta}{\beta^{2}}+\int_{\xi}^{\alpha / 2} \omega(\alpha / \beta-1) \frac{d \beta}{\beta^{2}}\right) d \alpha \\
& <0.01706 .
\end{aligned}
$$

Of course, α is still quite close to 1 in this region, so dividing by α has only made a small change here.

To consider the lower bound in (14) we note that the working in [8] shows that

$$
\begin{equation*}
\frac{\rho(x)}{x} \geq(1+o(1)) \int_{\tau}^{2} K(\alpha) d \alpha \tag{15}
\end{equation*}
$$

where τ is the solution to

$$
\int_{\tau}^{2} \alpha K(\alpha) d \alpha=1
$$

In [8] we used an elementary argument to allow the choice

$$
K(\alpha)=\frac{2}{\alpha-1}
$$

If, instead, we use Proposition 2.1 (now with a different smoothing factor $V(k / x)$ providing an upper bound which only loses an η factor in the main term) with $M=x^{1-4 \eta}$ (compare [3, Théorème 1.1]), we can replace this with (ignoring an η term for clarity)

$$
K(\alpha)=\frac{2}{\alpha-\frac{153}{178}}
$$

Calculations then give $\tau=1.73111 \ldots$, leading, via 15 , to the lower bound in (14). We note that the corresponding value of τ in [8] was $1.766249 \ldots$

This change may appear quite small, but subtracting both values from 2 (which is the "starting point", so to speak), this is a 15% improvement.

Acknowledgements. The author thanks the referee for their careful reading of the paper and pertinent remarks.

References

[1] A. Balog, $p+a$ without large prime factors, in: Sém. Théor. Nombres Bordeaux 1983-1984, Univ. Bordeaux I, 1984, exp. no. 31, 5 pp.
[2] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367.
[3] R. de la Bretèche et S. Drappeau, Niveau de reṕartition des polynômes quadratiques et crible majorant pour les entiers friables, J. Eur. Math. Soc. 22 (2020), 1577-1624.
[4] J. W. Bober, D. Fretwell, G. Martin and T. D. Wooley, Smooth values of polynomials, J. Austral. Math. Soc. 108 (2020), 245-261.
[5] C. Dartyge, Entiers de la forme $n^{2}+1$ sans grand facteur premier, Acta Math. Hungar. 72 (1996), 1-34.
[6] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, 1980.
[7] J.-M. Deshouillers and H. Iwaniec, On the greatest prime factor of $n^{2}+1$, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 1-11.
[8] G. R. Everest and G. Harman, On primitive divisors of $n^{2}+b$, in: Number Theory and Polynomials, London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, 2008, 142-154.
[9] G. R. Everest, S. Stevens, D. Tamsett and T. Ward, Primes generated by recurrence sequences, Amer. Math. Monthly 114 (2007), 417-431.
[10] J. B. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, Kluwer, 1989, 393-401.
[11] G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
[12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford Univ. Press, 2008.
[13] G. Harman, On values of $n^{2}+1$ free of large prime factors, Arch. Math. (Basel) 90 (2008), 239-245.
[14] C. Hooley, On the greatest prime factor of a quadratic polynomial, Acta Math. 117 (1967), 281-299.
[15] C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Math. 70, Cambridge Univ. Press, 1976.
[16] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
[17] H. H. Kim, Functoriality for the exterior square of GL_{4} and the symmetric fourth of GL_{2}, J. Amer. Math. Soc. 16 (2003), 139-183.
[18] G. Martin, An asymptotic formula for the number of smooth values of a polynomial, J. Number Theory 93 (2002), 108-182.
[19] J. Merikoski, On the largest prime factor of $n^{2}+1$, J. Eur. Math. Soc. 25 (2023), 1253-1284.
[20] A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arith. 13 (1967), 177-236.

Glyn Harman
Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
E-mail: g.harman@rhul.ac.uk

[^0]: 2020 Mathematics Subject Classification: Primary 11N32.
 Key words and phrases: prime, quadratic polynomial.
 Received 10 July 2023; revised 15 December 2023.
 Published online 21 February 2024.

