
COLLOQU IUM MATHEMAT ICUM
Online First version

DECOMPOSITION OF IDEMPOTENT 2-COCYCLES
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Abstract. Let L be a finite Galois field extension of K with Galois group G. We
decompose any idempotent 2-cocycle f using finite sequences of descending two-sided
ideals of the corresponding weak crossed product algebra Af . We specialize the results in
case f is the corresponding idempotent 2-cocycle fr for some semilinear map r : G → Ω,
where Ω is a multiplicative monoid with minimum element.

1. Introduction. Let L be a finite Galois field extension of K with Ga-
lois group G. A function f : G×G→ L is called a normalized weak 2-cocycle
(of G over L) if it satisfies the conditions f(σ, τ)f(στ, ρ) = fσ(τ, ρ)f(σ, τρ)
for σ, τ, ρ ∈ G and f(1, σ) = f(σ, 1) = 1 for σ ∈ G. Associated to a weak
2-cocycle f is a K-algebra Af called the weak crossed product algebra asso-
ciated to f , first introduced in [HLS83]. The K-algebra Af is defined as an
L-vector space Af =

∑
σ∈G Lxσ having the symbols xσ, σ ∈ G, as an L-basis

and multiplication defined by the rules xσl = lσxσ and xσxτ = f(σ, τ)xστ for
σ, τ ∈ G and l ∈ L. The inertial groupH(f) (orH if is clear from the context)
is defined asH(f) = {σ ∈ G : f(σ, σ−1) ̸= 0}. Then Af =

∑
σ∈H(f) Lxσ+Jf ,

where Jf (or J if f is clear from the context) is the Jacobson radical of Af and
the unique maximal two-sided ideal of Af . By the notation I ◁Af we always
mean that I is a two-sided ideal of Af . D. E. Haile [H82] gave the structure
of the two-sided ideals of Af . In particular, he proved that if I ̸= (0) is a
two-sided ideal of Af , then I =

∑
Lxσ, where the sum is taken over those

σ ∈ G such that xσ ∈ I [H82, Lemma 2.2]. Moreover, if f is an idempotent
2-cocycle, i.e. taking only the values 0 and 1, then every ideal I of Af is of
the form I =

∑
xσ∈I Iσ, where Iσ is the ideal of Af generated by xσ [H82,

Proposition 2.4].
We recall some results from [LT17]. We denote by E2(G,L) the set of

idempotent 2-cocycles and by E2(G,L;H) the set of idempotent 2-cocycles
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with inertial group H. We set G∗ = G\H. To avoid trivialities we suppose
that G∗ ̸= ∅ and so Af is not a simple algebra. Let Ω be a multiplicative
totally ordered monoid with minimum element 1 satisfying the relations
x < y ⇒ xz < yz and zx < zy for all x, y, z ∈ Ω. We denote by Sl(G) the
set of functions r : G → Ω satisfying the relations r(1) = 1 and r(στ) ≤
r(σ)r(τ) for every σ, τ ∈ G. Let Mr = {σ ∈ G : r(σ) = 1}. It was shown in
[LT17, Proposition 4.2 and Theorem 5.2] that Mr is a group and the function
fr : G×G→ L defined by the rule

fr(σ, τ) =

{
1 if r(στ) = r(σ)r(τ),

0 if r(στ) < r(σ)r(τ),

is an element of E2(G,L;Mr).
Let t + 1 be the nilpotency of J . To every f we associate a partition

{Ni}ti=1 of G∗ defined by Nk(f) = {σ ∈ G∗ : xσ ∈ Jk \ Jk+1} for 1 ≤ k ≤ t.
We observe that [LT17, Lemma 3.1]

N1(f) = {σ ∈ G∗ : f(σ1, σ2) = 0 for all σ1, σ2 ∈ G∗ with σ1σ2 = σ}.

An ordered set (σ1, . . . , σk) of elements of N1(f) is called a generator of
σ ∈ G∗ with respect to f if xσ = xσ1 . . . xσk . We denote by gσ a generator of
σ ∈ G∗ and by Γf the set of all generators of all elements of G∗ with respect
to f . So the elements of Γf are words with letters from N1(f). The product
of two generators is defined by concatenation.

Pick any f ∈ E2(G,L;H). In order to find a function s : G → Ω, for
some Ω, such that f = fs it was shown in [LT17, Proposition 6.10 and
Theorem 6.12] that one has to start from a map s′ : N1(f) → Ω \ {1}
satisfying certain conditions and then extend it over the whole of G by

s(σ) =

{
ψ(gσ), gσ ∈ Γf ,

1, σ ∈ H,

where ψ(g) =
∏
σ∈g s

′(σ) for any generator g. The first condition is that for
every ρ ∈ G∗ such that xρ is a left-right annihilator of Jf , all the generators gρ
of ρ must map to the same value through ψ (i.e. ψ(gρ) = constant). Ignoring
the elements whose classes lie exactly above H in the graph of f (in this case
the equalities are trivial since from [LT17, Remark 6.4] every such element
has exactly one generator), we see that the fewer the elements corresponding
to maximal classes the fewer the equations that must be satisfied, and that
the fewer the generators of each ρ the fewer the terms in each equation. The
second condition is that for every such ρ, ψ(gρ) must be minimum among
all the words wρ with letters from N1(f). More formally, ψ(gρ) < ψ(wρ) for
all wρ /∈ Γf . Finally, s′ must be constant for all the elements HσH, that is,
s′(h1σh2) = s′(σ) for every σ ∈ N1(f) and h1, h2 ∈ H.
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The problem we are interested in is which elements f of E2(G,L) afford
the relation f = fs for some s ∈ Sl(G). In this article, as a first step, we
decompose f in such a way that its constituents can take the form fs. The
decomposition that we are going to demonstrate is intended to simplify the
system of equations implied by the first condition mentioned above [LT17,
Proposition 6.10]. The main tool that will be used is a new construction of
an idempotent 2-cocycle from an existing one by means of a finite sequence
of descending two-sided ideals of Af (Definition 2.2). We investigate the
particular case of the family of ideals {J, I} and examine the corresponding
algebra. Using certain ideals we construct weak crossed product algebras
whose graphs have a unique maximal class. We specialize the results for the
case f = fr for some r ∈ Sl(G).

2. Idempotent 2-cocycles arising from a finite sequence of de-
scending ideals. Let f ∈ E2(G,L), and let I be a two-sided ideal of Af and
H the inertial group of f . For σ, τ ∈ G and h, h1, h2 ∈ H it is easy to prove
that f(h1σ, τh2) = f(σ, τ) and f(σh, τ) = f(σ, hτ). Also, if f(σ, τ) = 1 and
σ ∈ G∗ or τ ∈ G∗, then στ /∈ H. Moreover, a direct consequence of these
formulas is that if xσ ∈ I, then xh1σh2 ∈ I for every h1, h2 ∈ H. Also, if
xh1σh2 ∈ I for some h1, h2 ∈ H, then xσ ∈ I. Another useful observation
that we will use frequently is that if xτ ∈ Iσ, then there exist ρ1, ρ2 ∈ G
such that xτ = xρ1xσxρ2 .

Let Ann(J) be the ideal of left-right annihilators of J . We state the
following proposition which will be used frequently.

Proposition 2.1. Let f ∈ E2(G,L;H) and σ ∈ G∗. Then:

(i) {xτ ∈Iσ : τ ∈G∗} =
⋃
gσ
{xτ : ∃gτ ∈Γf and h1, h2∈H with h1gσh2≤gτ}.

(ii) If xσ ∈ Ann(J), then xh1σh2 ∈ Ann(J) for h1, h2 ∈ H, and also

Iσ =
∑

h1,h2∈H
Lxh1σh2 .

Proof. (i) Let xτ ∈ Iσ for τ ∈ G∗, and gσ ∈ Γf . There exist ρ1, ρ2 ∈ G
such that xτ = xρ1xσxρ2 . If ρ1, ρ2 ∈ H, then ρ1gσρ2 = gρ1σρ2 = gτ ∈ Γf and
the claim is true; similarly for the other possible cases, that is, ρ1 ∈ H and
ρ2 /∈ H, ρ1 /∈ H and ρ2 ∈ H, or ρ1, ρ2 ∈ G∗.

For the opposite direction, suppose that there exist gσ, gτ ∈ Γf and
h1, h2∈H with h1gσh2≤gτ . If gσ=(σ1, . . . , σl) then (h1σ1, σ2, . . . , σl−1, σlh2)
≤ gτ . We remark that

gτ =


(τ1, . . . , τa, h1σ1, σ2, . . . , σl−1, σlh2, τa+1, . . . , τb), or

(τ1, . . . , τa, h1σ1, σ2, . . . , σl−1, σlh2), or

(h1σ1, σ2, . . . , σl−1, σlh2, τ1, . . . , τb), or

(h1σ1, σ2, . . . , σl−1, σlh2),
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where σi, τj ∈ G∗, a, b ≥ 1. We examine the first case and similarly we work
for the second and third. We set gρ1 = (τ1, . . . , τa) and gρ2 = (τa+1, . . . , τb).
Then gτ = gρ1gh1σh2gρ2 = gρ1h1gσh2gρ2 = gρ1h1gσgh2ρ2 , hence xτ ∈ Iσ.
For the fourth case gτ = h1gσh2 and so xτ = xh1xσxh2 . Therefore in any
case xτ ∈ Iσ and we conclude that in order to calculate the ideal Iσ we are
restricted to the elements of G∗ whose generators contain a generator of an
element of the set HσH.

(ii) Let xσ ∈ Ann(J) and h1, h2 ∈ H. For any τ ∈ G∗ it follows that
τh1 ∈ G∗ and xτxh1σh2 = xτh1xσxh2 = 0. Similarly xh1σh2xτ = 0 and
hence xh1σh2 ∈ Ann(J). To prove the equality let xτ ∈ Iσ. From (i) there
exist gσ, gτ ∈ Γf and h1, h2 ∈ H such that gh1σh2 = h1gσh2 ≤ gτ . Since
xh1σh2 ∈ Ann(J) and the generators of the annihilators have maximum
length, it follows that gh1σh2 = gτ and so τ = h1σh2. The opposite direction
is obvious.

The following construction is the main tool which we use throughout this
article. All ideals are assumed to be two-sided.

Definition 2.2. Let f ∈ E2(G,L;H) and I = {Ii}ki=1, k ≥ 2, be a finite
sequence of descending ideals of Af , that is, I1 ⊇ · · · ⊇ Ik. We set

fI(σ, τ) =


1, σ ∈ H or τ ∈ H,

1, f(σ, τ) = 1 and xσ, xτ , xστ ∈ Ii \ Ii+1

for some i ∈ {1, . . . , k − 1},
0, elsewhere,

for σ, τ ∈ G. Also, for σ ∈ G∗ such that xσ ∈ I1, let s(σ) = max {a ∈ N∗ :
xσ ∈ Ia, 1 ≤ a ≤ k}.

Definition 2.3. In E2(G,L) we define the relation

f ≤ g ⇐⇒ {(σ, τ) ∈ G×G : f(σ, τ) = 1} ⊆ {(σ, τ) ∈ G×G : g(σ, τ) = 1},
which is a partial order.

Remark 2.4. Let fI(σ, τ) = 1 for some σ, τ ∈ G. From Definition 2.2 it
follows that f(σ, τ) = 1 or σ ∈ H or τ ∈ H. In any case f(σ, τ) = 1 and
so fI ≤ f . Also, for xσ, xτ ∈ I1, if s(σ) = k or s(τ) = k or s(στ) = k, then
fI(σ, τ) = 0.

Our aim is to prove that fI is an idempotent 2-cocycle. We need the
following lemma.

Lemma 2.5. Let I = {Ii}ki=1, k ≥ 2, be a finite sequence of descending
ideals of Af and fI the function of Definition 2.2. Then:

(i) s(h1σh2) = s(σ) for xσ ∈ I1, h1, h2 ∈ H.
(ii) If xσ, xτ ∈ I1 and f(σ, τ) = 1, then s(σ) ≤ s(στ) and s(τ) ≤ s(στ).
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(iii) fI(h1σ, τh2) = fI(σ, τ) for σ, τ ∈ G and h1, h2 ∈ H.
(iv) fI(σh, τ) = fI(σ, hτ) for σ, τ ∈ G and h ∈ H.

Proof. (i) If s(σ) = k, the proof is immediate. Suppose that 1 ≤ s(σ)
≤ k− 1. Since xσ ∈ Is(σ), we have xh1σh2 ∈ Is(σ). If we had xh1σh2 ∈ Is(σ)+1,
then xh−1

1
xh1σh2xh−1

2
=xσ∈Is(σ)+1, a contradiction. Hence s(h1σh2)=s(σ).

(ii) We have xστ = xσxτ ∈ Is(σ)xτ ⊆ Is(σ) and so s(στ) ≥ s(σ). Similarly
s(στ) ≥ s(τ).

(iii) Let σ, τ ∈ G. If σ ∈ H, then by definition, fI(h1σ, τh2) = fI(σ, τ)
= 1. Similarly if τ ∈H. Next let σ, τ ∈G∗. If xσ /∈ I1, then xh1σ /∈ I1 and
so fI(h1σ, τh2) = fI(σ, τ) = 0. Similarly if xτ /∈ I1 or xστ /∈ I1. Next
suppose that xσ, xτ , xστ ∈ I1. From (i), s(h1σ) = s(σ), s(τh2) = s(τ)
and s(h1στh2) = s(στ). If s(σ) = k or s(τ) = k or s(στ) = k, then
fI(h1σ, τh2) = fI(σ, τ) = 0. Suppose that 1 ≤ s(σ), s(τ), s(στ) ≤ k − 1. If
f(σ, τ) = 1 and s(σ) = s(τ) = s(στ), then s(h1σ) = s(τh2) = s(h1στh2). So
f(h1σ, τh2) = 1 and by definition fI(σ, τ) = fI(h1σ, τh2) = 1. If f(σ, τ) = 0
or s(σ), s(τ), s(στ) are not all equal, then fI(σ, τ) = fI(h1σ, τh2) = 0.

(iv) The proof is similar to (iii) above with slight modifications. In par-
ticular, we need to examine cases for s(σ), s(τ) and s(σhτ).

Theorem 2.6. Let f ∈ E2(G,L;H). For every finite descending sequence
I = {Ii}ki=1 of ideals of Af , the function fI of Definition 2.2 is an element
of E2(G,L;H).

Proof. First we prove that the 2-cocycle condition holds for fI. Let
σ, τ, ρ ∈ G. If σ ∈ H, then by definition fI(σ, τ) = fI(σ, τρ) = 1. Also,
from Lemma 2.5(iii), fI(στ, ρ) = fI(τ, ρ) and the 2-cocycle condition is true.
Similarly if τ ∈ H or ρ ∈ H.

Next suppose that σ, τ, ρ ∈ G∗. If f(σ, τ) = 0, then fI(σ, τ) = 0. Since f
is an idempotent 2-cocycle, either f(τ, ρ) or f(σ, τρ) is zero, so either fI(τ, ρ)
or fI(σ, τρ) is zero and the 2-cocycle condition is true. The same argument
applies when f(στ, ρ) = 0 or f(σ, τρ) = 0 or f(τ, ρ) = 0.

Suppose that f(σ, τ) = f(στ, ρ) = f(τ, ρ) = f(σ, τρ) = 1. If xσ /∈ I1
or xσ ∈ Ik, then fI(σ, τ) = fI(σ, τρ) = 0. Similarly in the following cases:
xτ /∈ I1 or xτ ∈ Ik; xρ /∈ I1 or xρ ∈ Ik; xστ /∈ I1 or xστ ∈ Ik; xτρ /∈ I1 or
xτρ ∈ Ik; and xστρ /∈ I1 or xστρ ∈ Ik. Therefore in all the above cases the
2-cocycle condition holds.

Finally, we suppose that xσ, xτ , xρ, xστ , xτρ, xστρ ∈ I1\Ik. We distinguish
several cases for the natural numbers s(σ), s(τ), s(ρ). If s(σ) < s(τ), then
s(σ) < s(τρ) (Lemma 2.5(ii)) and so fI(σ, τ) = fI(σ, τρ) = 0. Hence the
2-cocycle condition holds for fI. If s(ρ) < s(τ), then s(ρ) < s(στ) and so
fI(στ, ρ) = fI(τ, ρ) = 0. If s(τ) ≤ s(σ) and s(τ) ≤ s(ρ), we distinguish the
following cases:
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• s(τ) < s(σ) ≤ s(ρ). Then fI(σ, τ) = fI(τ, ρ) = 0. Similarly if s(τ) <
s(ρ) ≤ s(σ).

• s(τ) = s(σ) < s(ρ). Then fI(τ, ρ) = 0. If s(τ) = s(σ) = s(στ), then
fI(στ, ρ) = 0. If s(τ) = s(σ) < s(στ), then fI(σ, τ) = 0. Similarly if
s(τ) = s(ρ) < s(σ).

• s(τ) = s(σ) = s(ρ). If s(σ) < s(στρ), then fI(σ, τρ) = fI(στ, ρ) = 0.
If s(σ) = s(στρ), then s(σ) ≤ s(στ) ≤ s(στρ) and so s(στ) = s(στρ)
and similarly s(τρ) = s(στρ). Then fI(σ, τ) = fI(στ, ρ) = fI(τ, ρ) =
fI(σ, τρ) = 1.

Therefore again in all the above cases the 2-cocycle condition holds. For the
inertial group we see that if σ ∈ H(fI) then fI(σ, σ−1) = 1. From Remark 2.4,
f(σ, σ−1) = 1 and so σ ∈ H.

For any subgroup H of G we set

f0(σ, τ) =

{
1 if σ ∈ H or τ ∈ H,

0 elsewhere,

the Waterhouse idempotent. The following proposition will be used frequently.
The appropriate 2-cocycle f0 (and its inertial group) will be clear from the
context.

Proposition 2.7. fI = f0 if and only if I2a ⊆ Ia+1 for every a ∈
{1, . . . , k − 1}.

Proof. We set H = H(fI) = H(f0) and G∗ = G\H. First, suppose that
I2a ⊆ Ia+1 for every a ∈ {1, . . . , k − 1}, and let σ, τ ∈ G∗. Let f(σ, τ) = 1.
If xσ /∈ I1 or xσ ∈ Ik or xτ /∈ I1 or xτ ∈ Ik or xστ /∈ I1 or xστ ∈ Ik, then
fI(σ, τ) = 0 in these cases.

Next suppose that xσ, xτ , xστ ∈ I1 \Ik. If the natural numbers s(σ), s(τ),
s(στ) are not all equal, then by definition fI(σ, τ) = 0. If s(σ) = s(τ) =
s(στ) = a for some 1 ≤ a ≤ k − 1, then xστ = xσxτ ∈ Is(σ)Is(τ) = I2a . From
the assumption it follows that xστ ∈ Ia+1 = Is(στ)+1, a contradiction, which
implies that this case is impossible. Therefore in any case fI(σ, τ) = 0 for
σ, τ ∈ G∗.

Next suppose that fI = f0. Let a ∈ {1, . . . , k− 1}. If I2a ̸= 0 and xσ ∈ I2a ,
then there exist xσ1 , xσ2 ∈ Ia such that f(σ1, σ2) = 1 with σ1σ2 = σ. If
xσ /∈ Ia+1, then s(σ) ≤ a. Since from Lemma 2.5(ii) we have a ≤ s(σ1) ≤
s(σ) ≤ a, it follows that s(σ1) = s(σ) = a and similarly s(σ2) = s(σ) = a.
But then fI(σ1, σ2) = 1, contrary to assumption. So xσ ∈ Ia+1.

We will need a new operation.

Definition 2.8. For {fi}ki=1 a finite family of elements of E2(G,L) we
define
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k∨
i=1

fi(σ, τ) = f1(σ, τ) ∨ · · · ∨ fk(σ, τ)

=

{
0 if fi(σ, τ) = 0, ∀i = 1, . . . , k,

1 if ∃i ∈ {1, . . . , k} such that fi(σ, τ) = 1.

The set E2(G,L) in general is not closed under the operation ∨. We
will encounter some instance where the result of the operation is indeed an
idempotent 2-cocycle. We remark that inside E2(G,L;H) we have f ∨ f0 =
f0 ∨ f = f for H the inertial group of f0.

Lemma 2.9. Let f ∈ E2(G,L;H) and {Ii}ki=1, k ≥ 3, be a finite de-
scending sequence of ideals of Af . Then for a ∈ {2, . . . , k − 1} we get
f{I1,...,Ia,...,Ik} = f{I1,...,Ia} ∨ f{Ia,...,Ik}.

Proof. We set f ′ = f{I1,...,Ia,...,Ik}, f1 = f{I1,...,Ia} and f2 = f{Ia,...,Ik}.
First let σ, τ ∈ G∗ be such that f ′(σ, τ) = 1. Then f(σ, τ) = 1 and xσ, xτ , xστ
∈ Ib \ Ib+1 for some 1 ≤ b ≤ k − 1. If 1 ≤ b ≤ a − 1, then f1(σ, τ) = 1. If
a ≤ b ≤ k − 1, then f2(σ, τ) = 1.

For the opposite direction, let σ, τ ∈ G be such that f1(σ, τ)∨f2(σ, τ) = 1.
If σ, τ ∈ G∗, then f(σ, τ) = 1 and xσ, xτ , xστ ∈ Ii\Ii+1 for some 1 ≤ i ≤ a−1,
or xσ, xτ , xστ ∈ Ii \ Ii+1 for some a ≤ i ≤ k − 1. Therefore in any case
f ′(σ, τ) = 1.

By repeated application of Lemma 2.9 we obtain

Corollary 2.10. Let {Ii}ki=1, k ≥ 2, be a finite descending sequence of
ideals of Af . Then

f{I1,...,Ik} =
k−1∨
i=1

f{Ii,Ii+1}.

The following proposition establishes a decomposition formula for an
idempotent 2-cocycle. We will need the fact that if xσ ∈

∑k
i=1 Ii, then

xσ ∈ Ii for some i ∈ {1, . . . , k}. Also, if xσ /∈
∑k

i=1 Ii, then xσ /∈ Ii for
every i ∈ {1, . . . , k}.

Proposition 2.11. Let I and I1, . . . , Ik, k ≥ 2, be ideals of Af such that
Ii ⊆ I for every i ∈ {1, . . . , k}. The following identities hold:

(i) f{I,∑k
i=1 Ii}

=
∏k
i=1 f{I,Ii},

(ii) f{I,⋂k
i=1 Ii}

=
∨k
i=1 f{I,Ii}.

Proof. We set P =
∑k

i=1 Ii◁Af . Then from Theorem 2.6 we getH(f{I,P})
= H(f{I,Ii}) = H(f) = H for every i. We set G∗ = G \H. Let σ, τ ∈ G∗. If
f(σ, τ) = 0, then from Remark 2.4 we have f{I,P}(σ, τ) = f{I,Ii}(σ, τ) = 0 for
every i. Next suppose that f(σ, τ) = 1. If xσ /∈ I or xτ /∈ I or xστ /∈ I, then



8 C. LAMPRAKIS AND T. THEOHARI-APOSTOLIDI

by definition f{I,P}(σ, τ) = f{I,Ii}(σ, τ) = 0 for every i. If xσ, xτ , xστ ∈ I,
then:

• If xστ /∈ P , then xσ, xτ /∈ P . Also xστ /∈ Ii for every i, and so xσ, xτ /∈ Ii
for every i. It follows that f{I,P}(σ, τ) = f{I,Ii}(σ, τ) = 1 for every i.

• If xστ ∈ P , then f{I,P}(σ, τ) = 0. Also there exists a ∈ {1, . . . , k} such
that xστ ∈ Ia. Then f{I,Ia}(σ, τ) = 0 and so

∏k
i=1 f{I,Ii}(σ, τ) = 0.

Therefore we get the first statement. For the second we set P =
⋂k
i=1 Ii◁Af .

The proof is identical in all cases except when f(σ, τ) = 1 and xσ, xτ , xστ ∈ I.
In this case, if xστ /∈ P , then f{I,P}(σ, τ) = f{I,Ia}(σ, τ) = 1. If xστ ∈ P ,
then f{I,P}(σ, τ) = f{I,Ii}(σ, τ) = 0 for every i.

3. The crossed product algebra AfI

3.1. The idempotent 2-cocycle f{J, I}. The special case of Theo-
rem 2.6 for the family of ideals {I1 = J, I2 = I} for some ideal I of Af
is of interest so we restate it as a separate proposition.

Proposition 3.1. Let f ∈ E2(G,L;H) and I ◁ Af . Then the function
defined by

fI(σ, τ) = f{J,I}(σ, τ) =


1 if σ ∈ H or τ ∈ H,

1 if f(σ, τ) = 1, xστ /∈ I, σ /∈ H, τ /∈ H,

0 elsewhere

is an element of E2(G,L;H).

Despite the new notation, f0 will still denote the Waterhouse idempo-
tent and not the idempotent 2-cocycle f{J,0} corresponding to the zero ideal
(which is equal to f). The following proposition calculates the set N1(fI)
explicitly.

Proposition 3.2. If I ◁Af , then N1(fI) = N1(f) ∪ {σ ∈ G∗ : xσ ∈ I}.
Proof. Let H be the inertial group of both f and fI as in Proposition 3.1.

We set G∗ = G \H. First we prove that N1(f) ⊆ N1(fI). For this pick any
σ ∈N1(f). Suppose there exist τ, ρ∈G∗ with τρ= σ such that fI(τ, ρ) = 1.
From Remark 2.4 it follows that f(τ, ρ) = 1, which is impossible. So fI(τ, ρ)
= 0 for all τ, ρ ∈ G∗ with τρ = σ, and hence σ ∈ N1(fI).

Next we prove that {σ ∈ G∗ : xσ ∈ I} ⊆ N1(fI). For this choose σ ∈ G∗

such that xσ ∈ I and τ, ρ ∈ G∗ with τρ = σ. If we had fI(τ, ρ) = 1, then
f(τ, ρ) = 1 and xτxρ = xσ ∈ I. So by definition fI(τ, ρ) = 0, a contradiction.

For the converse, let σ ∈ N1(fI). If there exist τ, ρ ∈ G∗ such that τρ = σ
and f(τ, ρ) = 1, then xτxρ = xσ ∈ I (since xσ /∈ I would imply fI(τ, ρ) = 1,
a contradiction). If f(τ, ρ) = 0 for all τ, ρ ∈ G∗ such that τρ = σ, then
σ ∈ N1(f).
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Let xσ ∈ Ann(J). We call σ ∈ G∗ a trivial annihilator of f if σ ∈ N1(f).
Otherwise σ is a non-trivial annihilator of f . All annihilators correspond
to maximal elements in both graphs of f . Intuitively, the classes of trivial
annihilators lie above H in both graphs of f . We recall that every ordered
part of a generator is also a generator [LT17, Proposition 6.3]. If f(σ, τ) = 1
for some σ, τ ∈ G∗, then gσgτ = gστ . We set AfI =

∑
σ∈G Lyσ, where

{yσ : σ ∈ G} is an L-basis of AfI .

Lemma 3.3. If I ◁Af and xρ ∈ I, then ρ is a trivial annihilator of fI .

Proof. From Proposition 3.2 we know that ρ ∈ N1(fI). The only genera-
tor of ρ with respect to fI is (ρ) (see [LT17, Remark 6.4]). It remains to prove
that yρ is an annihilator of JfI . Suppose it is not. We extend (ρ) to a genera-
tor (with respect to fI) of an annihilator, say gτ = (ρ1, . . . , ρ, . . . , ρk) ∈ ΓfI ,
k ≥ 1 [or (ρ, ρ1, . . . , ρk) or (ρ1, . . . , ρk, ρ)]. Since yρ1 . . . yρ . . . yρk = yτ , from
Remark 2.4 it follows that xρ1 . . . xρ . . . xρk = xτ . But xρ ∈ I, so xτ ∈ I. From
Proposition 3.2 it would follow that τ ∈ N1(fI) and so the only generator of
τ with respect to fI would be (τ), a contradiction.

Theorem 3.4. Let I ◁Af .

(i) Let a : G→ L be the function defined by

a(σ) =

{
1 if xσ /∈ I,

0 if xσ ∈ I.

Then the function ϕ : Af → AfI defined by ϕ(xσ) = a(σ)yσ and ex-
tended by linearity is a K-algebra homomorphism with ker(ϕ) = I.

(ii) The function ψ : AfI → Af/I defined by

ψ
(∑
σ∈G

lσyσ

)
=

∑
σ∈G

lσxσ,

where xσ = xσ+I, is a K-algebra epimorphism with kernel
∑

xσ∈I Lyσ,
(iii) AfI ∼= (Af/I)⊕ I as L-modules.

Proof. (i) If I = 0, then fI = f , a(σ) = 1 for σ ∈ G and the statement
is true. So suppose that I ̸= 0. First we prove that for σ, τ ∈ G,

f(σ, τ)a(στ) = a(σ)a(τ)fI(σ, τ).

If σ∈H, then f(σ, τ)= fI(σ, τ)=1 and a(σ)=1. In this case a(στ)=a(τ),
since both xστ = xσxτ , xτ are elements of I or both are not. So the equal-
ity holds. Similarly if τ ∈ H. Next suppose that σ, τ ∈ G∗. Suppose that
f(σ, τ) = 1. If xστ = xσxτ /∈ I, then xσ, xτ /∈ I, a(σ) = a(τ) = a(στ) = 1
and the equality is true. If xστ ∈ I, then a(στ) = 0, fI(σ, τ) = 0 and
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again the equality is true. But ϕ(xσxτ ) = f(σ, τ)a(στ)yστ and ϕ(xσ)ϕ(xτ ) =
a(σ)σ(a(τ))fI(σ, τ)yστ so ϕ is K-algebra homomorphism.

For the kernel of ϕ we see that if x =
∑
lσxσ ∈ I for σ ∈ G with lσ ̸= 0

for every σ, then xσ ∈ I and so a(σ) = 0. Hence ϕ(x) =
∑
lσa(σ)yσ = 0 and

so x ∈ ker(ϕ). Also, if x =
∑
lσxσ ∈ ker(ϕ) with lσ ̸= 0 for every σ, then

ϕ(x) =
∑
lσa(σ)yσ = 0, from which a(σ) = 0 for every σ, and so xσ ∈ I for

every σ. It follows that x ∈ I.
(ii) ψ is obviously an L-module homomorphism. Let yσ, yτ ∈ AfI . Then

ψ(yσyτ ) = fI(σ, τ)xστ + I and ψ(yσ)ψ(yτ ) = xσxτ = f(σ, τ)xστ + I. If
fI(σ, τ) = 1, then f(σ, τ) = 1 and so ψ(yσyτ ) = ψ(yσ)ψ(yτ ) = xστ + I.
Suppose next that fI(σ, τ) = 0. If xστ ∈ I, then ψ(yσyτ ) = ψ(yσ)ψ(yτ ) = 0.
If xστ /∈ I, then by the definition of fI we must have f(σ, τ) = 0 and so
again ψ(yσyτ ) = ψ(yσ)ψ(yτ ) = 0. Finally,

ker(ψ) =
{∑
σ∈G

lσyσ :
∑
σ∈G

lσxσ = 0
}

=
{∑
σ∈G

lσyσ : lσ = 0 or xσ ∈ I
}
=

∑
xσ∈I

Lyσ.

(iii) Consider the function i : Af → AfI defined by

i
(∑
σ∈G

lσxσ

)
=

∑
σ∈G

lσyσ,

which is obviously an L-module isomorphism. Then the sequence

0 → I
i−→ AfI

ψ // Af/I
θ
oo → 0

is exact, ψ of (ii) is surjective and ker(ψ) =
∑

xσ∈I Lyσ = i(I). Let θ :
Af/I → AfI be the identity homomorphism when Af/I is viewed as a
subalgebra of AfI through ϕ of (i). Then, for any σ ∈ G, ψ ◦ θ(xσ) =
ψ(a(σ)yσ) = a(σ)xσ = xσ. So ψ ◦ θ is the identity map of Af/I, and the
above sequence is split. The result follows.

Remark 3.5. Let ϕ ∈ EndK(Af ). From Theorem 3.4, by selecting I =
ker(ϕ) it follows that ϕ(Af ) ∼= Af/ker(ϕ) = Af/ker(ϕ) ∼= ϕ(Af ). So ϕ(Af )
can be viewed as a subalgebra of Afker(ϕ) , hence Afker(ϕ) = ϕ(Af )⊕ ker(ϕ).

3.2. Ideals of AfI . The idempotent 2-cocycle of Definition 2.2 involves
a finite family of ideals. It turns out that to study it, we can focus only
on two types of idempotent 2-cocycles, namely f{J,I} and f{I,0}. The next
proposition is a key ingredient to this claim. Let {Ii}ki=1 be a finite descending
sequence of ideals of Af . Then {Ii/Ik}ki=1 is a finite descending sequence of
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ideals of Af/Ik. We set Ak = AfIk =
∑

σ∈G Lyσ. Let ψk : Ak → Af/Ik be
the epimorphism of Theorem 3.4(ii).

Proposition 3.6. In the above notation,

f{I1,...,Ik} = (fIk){P1,...,Pk−1,Pk=ker(ψk)},

where {Pi}ki=1 is a finite descending sequence of ideals of Ak such that ψk(Pi)
= Ii/Ik for 1 ≤ i ≤ k.

Proof. Let Af =
∑

σ∈G Lxσ. We set

f1 = f{I1,...,Ik}, f2 = (fIk){P1,...,Pk−1,Pk=ker(ψk)}

and H = H(f) = H(f1) = H(fIk) = H(f2). Let σ, τ ∈ G∗ be such that
f2(σ, τ)=1. We have στ ∈G∗. Then fIk(σ, τ)=1 and yσ, yτ , yστ ∈Pi \ Pi+1

for some 1 ≤ i ≤ k − 1. So f(σ, τ) = 1 and xσ, xτ , xστ ∈ J \ Ik
and ψk(yσ), ψk(yτ ), ψk(yστ ) ∈ (Ii/Ik) \ (Ii+1/Ik) for some 1 ≤ i ≤ k − 1.
Then f(σ, τ) = 1 and xσ, xτ , xστ /∈ Ik and xσ + Ik, xτ + Ik, xστ + Ik ∈
(Ii/Ik)\(Ii+1/Ik) for some 1 ≤ i ≤ k − 1. So f(σ, τ) = 1 and xσ, xτ , xστ ∈
Ii \ Ii+1 for some 1 ≤ i ≤ k− 1. It follows that f1(σ, τ) = 1. For the opposite
direction we note that ψ−1

k (xσ + Ik) = {yσ + x : x ∈ ker(ψk)} and we follow
the arguments backwards.

Lemma 3.7. Let I1 ◁ Af and I2 =
∑
Iσ for some xσ ∈ I1 such that σ is

a trivial annihilator of f . Then f{I1,I2} = f{I1,0}.

Proof. From the identity f{I1,I2+0} = f{I1,I2}f{I1,0} of Proposition 2.11(i)
it follows that f{I1,I2}≤f{I1,0}. Next let σ, τ ∈G∗ be such that f{I1,0}(σ, τ)=1.
Then f(σ, τ) = 1 and xσ, xτ , xστ ∈ I1. It could not be xσ ∈ I2, since xσ is
not an annihilator of J . Similarly xτ /∈ I2. Finally, since στ /∈ N1(f) [LT17,
Lemma 3.1], it follows that xστ /∈ I2. So f(σ, τ) = 1 and xσ, xτ , xστ ∈ I1 \I2.
From the definition f{I1,I2}(σ, τ) = 1 and so f{I1,0} ≤ f{I1,I2}.

Remark 3.8. Using Corollary 2.10 we can decompose any fI ∈ E2(G,L)
into idempotent 2-cocycles of the type f{I′,I}, which in turn, from Propo-
sition 3.6, take the form (fI){P,ker(ψ)}, where ψ : AfI → Af/I and P is
an ideal of AfI containing ker(ψ) such that ψ(P ) = I ′/I. From Lemma 3.3
we know that if xσ ∈ I, then σ is a trivial annihilator of fI . From Theo-
rem 3.4(ii) and Lemma 3.7 we have (fI){P,ker(ψ)} = (fI){P,0}. In essence, the
only idempotent 2-cocycles that are needed are of the types f{J,I} and f{I,0}.

Another useful fact derived from Proposition 3.6 is that repeated appli-
cations of Proposition 3.1 can be avoided.

Proposition 3.9. Let f ∈ E2(G,L), I ◁ Af , P ◁ AfI and ψ : AfI →
Af/I be the algebra epimorphism of Theorem 3.4(ii). Then (fI)P = fI1,
where I1 is an ideal of Af such that I1/I = ψ(P ).
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Proof. We note that JfI is the unique maximal ideal in AfI , and so by
the lattice isomorphism theorem we have ψ(JfI ) = Jf/I, which is the unique
maximal ideal in Af/I.

First we prove the claim for P containing the kernel of ψ. Since ψ(P ) is
an ideal of Af/I, there exists an ideal I1 of Af containing I such that ψ(P )
= I1/I. Since I1 is nilpotent, let k be the smallest positive integer such that
I2

k

1 ⊆ I. Suppose that k ≥ 2. Then {I2i1 /I}
k−1
i=1 is a finite descending sequence

of ideals of Af/I. Let {Pi}k−1
i=1 be a finite descending sequence of ideals of

AfI containing ker(ψ) such that ψ(Pi) = I2
i

1 /I for i = 1, . . . , k − 1. We set
P0 = P . Since (I ′/I)2 ⊆ I ′2/I for any ideal I ′ ⊋ I, for every i ∈ {0, . . . , k−2}
we have

ψ(P 2
i ) ⊆ ψ(Pi)

2 ⊆ (I2
i

1 /I)
2 ⊆ (I2

i

1 )2/I = I2
i+1

1 /I = ψ(Pi+1).

It follows that P 2
i ⊆ Pi+1. For i = k − 1 we have ψ(P 2

k−1) ⊆ (I2
k−1

1 /I)2 = 0

and so P 2
k−1 ⊆ ker(ψ). Then from Propositions 3.6 and 2.7 we have

f{Jf ,I1,I21 ,...,I2
k−1

1 ,I} = (fI){JfI ,P0,P1,...,Pk−1,ker(ψ)}

= (fI){JfI ,P0} ∨ (fI){P0,P1} ∨ · · · ∨ (fI){Pk−1,ker(ψ)}

= (fI){JfI ,P} = (fI)P .

But f{Jf ,I1,I21 ,...,I2
k−1

1 ,I} = f{Jf ,I1}∨f{I1,I21}∨· · ·∨f{I2k−1
1 ,I} = fI1 as claimed.

The cases for k = 0 [I1 = I and P = ker(ψ)] and k = 1 [I21 ⊆ I] are handled
accordingly by omitting the irrelevant terms.

Now suppose that P does not contain ker(ψ). Then for the ideal P ′ =
P + ker(ψ), taking into consideration that (fI)ker(ψ) = (fI){JfI ,0}

= fI as in
Remark 3.8, from the first part of the proof and Proposition 2.11(i) we have
(fI)P = (fI)P (fI)ker(ψ) = (fI)P ′ = fI1 where I1 is an ideal of Af such that
I1/I = ψ(P ′) = ψ(P ).

4. Decomposition of idempotent 2-cocycles using ideals. Propo-
sition 2.11(ii) together with the next proposition, whose proof is immediate,
imply that for every f ∈ E2(G,L;H) the subset {fI : I ◁ Af} is a monoid
with respect to ∨ with unit element f0 = f{J,J} and zero element f = f{J,0}.

Proposition 4.1. Let {Ii}ki=1 be a finite family of two-sided ideals of Af .
If

⋂k
i=1 Ii = {0}, then

f =
k∨
i=1

fIi .

Proposition 4.1 leads to the following result.

Proposition 4.2. Let I ◁ Af . Then fI = f if and only if I = 0 or
I =

∑
Iσ for some trivial annihilators σ ∈ G∗ of f .
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Proof. First suppose that fI = f . Since H(fI) = H(f), from the defini-
tion it follows that xστ /∈ I for every σ, τ /∈ H such that f(σ, τ) = 1. Suppose
that I ̸= 0 and let xρ ∈ I for ρ ∈ G∗. We notice that if ρ /∈ N1(f), then there
exist σ, τ ∈ G∗ such that ρ = στ with f(σ, τ) = 1. But xρ = xστ ∈ Iρ ⊆ I
and so fI(σ, τ) = 0, contrary to the assumption that fI = f . So ρ ∈ N1(f). If
ρ is not an annihilator of f , then there exists τ ∈ G∗ such that f(ρ, τ) = 1 or
f(τ, ρ) = 1. Consider the first case (the second is handled similarly). We have
xρτ = xρxτ ∈ I and so fI(ρ, τ) = 0, again contrary to assumption. It follows
that ρ is a trivial annihilator of f for every xρ ∈ I. Since I =

∑
xρ∈I Iρ, we

are done. The opposite direction is a direct consequence of Lemma 3.7 and
the definition of fI .

Remark 4.3. The relation σ ∼ τ ⇔ σ ∈ HτH is an equivalence relation
on G. We denote by [σ] the class of σ ∈ G. Let A be the subset of G such
that for every σ ∈ A, xσ is an annihilator of J . Then A is not empty. If
σ ∈ A, then from Proposition 2.1 we have HσH ⊆ A. So A =

⋃· ki=1HσiH,
where A′ = {σ1, . . . , σk} is a complete set of representatives of the classes
of A.

Proposition 4.4. Let f ∈E2(G,L). For every ρ∈G∗ such that ρ /∈N1(f),
there exists an ideal I of Af such that [ρ] is the unique class of non-trivial
annihilators of fI , with respect to the equivalence relation of Remark 4.3.

Proof. Let I =
∑

xρ /∈Iσ Iσ. We remark that xρ /∈ I. First we prove that ρ
is an annihilator of fI . For this, let τ ∈ G∗. If f(ρ, τ) = 0, then fI(ρ, τ) = 0
(Remark 2.4). Suppose that f(ρ, τ) = 1. Then xρ /∈ Iρτ and so xρτ ∈ I.
From the definition of fI it follows that fI(ρ, τ) = 0. Similarly we prove
that fI(τ, ρ) = 0 for every τ ∈ G∗. Since by the assumption ρ /∈ N1(f) and
also xρ /∈ I, from Proposition 3.2 it follows that ρ /∈ N1(fI) and so ρ is a
non-trivial annihilator of fI .

Finally we prove that [ρ] is the unique class of non-trivial annihilators
of fI . Suppose there exists σ ∈ G∗ such that σ is a non-trivial annihila-
tor of fI with [ρ] ̸= [σ]. If we had xσ /∈ I, then xρ ∈ Iσ. So there exist
σ1, σ2 ∈ G such that xσ1xσxσ2 = xρ. If both σ1, σ2 are in H, then [ρ] = [σ]
contrary to assumption. So at least one of the two is an element of G∗,
say σ1. Then f(σ1, σ) = 1 and xσ1σ /∈ I (otherwise, xρ ∈ I, impossible). So
fI(σ1, σ) = 1, contrary to the assumption that σ is an annihilator of fI . If
we had xσ ∈ I, then σ would be a trivial annihilator of fI , again a contra-
diction.

Aljouiee [A05] studied weak crossed product algebras whose graphs have
a unique maximal element, i.e. have no trivial annihilators, and a unique class
of non-trivial annihilators. In particular, he showed that such an algebra is
Frobenius [A05, Theorem 1.6]. In the next theorem we give a procedure
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to decompose any idempotent 2-cocyle to idempotent 2-cocycles having a
unique class of non-trivial annihilators.

Theorem 4.5. Let f ∈ E2(G,L), f ̸= f0. Then f has a unique class of
non-trivial annihilators or there exist ideals {Ii}ki=1 such that f =

∨k
i=1 fIi ,

f0 < fIi < f and each fIi has a unique class of non-trivial annihilators.

Proof. Let A = {ρ1, . . . , ρk} for some k ≥ 1 be a complete set of repre-
sentatives of the classes of elements of G∗ such that xρi ∈ J2 (A ̸= ∅ since
f ̸= f0). If k = 1, then [ρ1] is the unique class of non-trivial annihilators. So
suppose that k ≥ 2. We set Ii =

∑
xρi /∈Iσ

Iσ. From Proposition 4.4, fIi has
[ρi] as the unique class of non-trivial annihilators for every i = 1, . . . , k. If⋂k
i=1 Ii = {0}, then by Proposition 4.1, f =

∨k
i=1 fIi . If

⋂k
i=1 Ii ̸= {0}, then

let xτ ∈
⋂k
i=1 Ii. If xτ ∈ J2, then τ ∈ [ρj ] for some j ∈ {1, . . . , k} and so

τ = h1ρjh2, h1, h2 ∈ H. Since xρj /∈ Ij , we have xh1xρjxh2 = xτ /∈ Ij ,
which contradicts the assumption that xτ ∈

⋂k
i=1 Ii. Hence xτ /∈ J2 and so

τ ∈ N1(f). If τ is not an annihilator of f , then there exists ρ ∈ G∗ such that
f(τ, ρ) = 1 [or f(ρ, τ) = 1]. Then xτρ ∈ J2 and so xτ /∈ Ia for some a. But
this contradicts the choice of xτ . It follows that for every xτ ∈

⋂k
i=1 Ii, τ is

a trivial annihilator of f . From Propositions 2.11 and 4.2 we have
k∨
i=1

fIi = f⋂k
i=1 Ii

= f∑ Iτ = f.

We now prove that f0 < fIi < f for every i = 1, . . . , k. We know that
fI ≤ f , for any ideal I. First suppose that ρi is a non-trivial annihilator of f .
Since the class [ρi] is not unique, let ρ be another non-trivial annihilator
such that ρ /∈ [ρi]. Then from Proposition 2.1(ii) we get xρi /∈ Iρ and so
xρ ∈ Ii. Since ρ /∈ N1(f), it follows that there exist σ1, σ2 ∈ G∗ such that
f(σ1, σ2) = 1 with σ1σ2 = ρ. But then fIi(σ1, σ2) = 0, which proves that
fIi < f . If ρi is not an annihilator where ρi ∈ Nk(f) for some k ≥ 2, then
there exists τ ∈ G∗ such that f(ρi, τ) = 1 [or f(τ, ρi) = 1]. Then xρi /∈ Iρiτ
and so xρiτ ∈ Ii. Hence fIi(ρi, τ) = 0, and so again fIi < f .

Finally, since xρi /∈ Ii and xρi ∈ J2, it follows that J2 ⊊ Ii and so, from
Proposition 2.7, we have fIi > f0.

Example 4.6. Let G = Z/9Z and r = {0, 1, 2, 3, 4, 1, 2, 3, 3} ∈ Sl(G)
with set of generators

Γfr =
{
{(1)}, {(1, 1)}, {(1, 1, 1)}, {(5, 8), (8, 5), (1, 1, 1, 1)}, {(5)},
{(1, 5), (5, 1)}, {(1, 1, 5), (1, 5, 1), (5, 1, 1)}, {(8)}

}
.

The corresponding table of values and the graph of fr are
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1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 0
1 1 1 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0

4

3 7

2 6

8 1 5

0

The representatives of the classes of the non-trivial annihilators of fr are
{4, 7}. We have A = {2, 3, 4, 6, 7}. In the terminology of Theorem 4.5, for
ρ1 = 2, I1 =

∑
x2 /∈Iσ

Iσ = Lx3 + Lx4 + Lx5 + Lx6 + Lx7 + Lx8. Similarly
for ρ2 = 3, I2 = Lx4 + Lx5 + Lx6 + Lx7 + Lx8; for ρ3 = 4, I3 = Lx6 + Lx7;
for ρ4 = 6, I4 = Lx2 + Lx3 + Lx4 + Lx7 + Lx8; and for ρ5 = 7, I5 =

Lx3 + Lx4 + Lx8. We know that fr =
∨5
i=1 fIi . Each fIi , i = 1, . . . , 5, has

[ρi] as the unique class of non-trivial annihilators. The corresponding graphs
are

2

8 1 5 3 4 6 7

0

3

2

8 1 5 4 6 7

0

4

3

2

8 1 5 6 7

0

6

8 1 5 2 3 4 7

0

7

2 6

8 1 5 3 4

0

5. Cartesian product of elements of Sl(G). In this section we spe-
cialize the previous results in the case where f = fr for some r ∈ Sl(G)
taking values in some Ω as in the introduction. We denote by Sl(G;H) the
elements of Sl(G) with Mr = H.

Definition 5.1. Let r ∈ Sl(G;H) take values in Ω, and I = {Ii}ki=1,
k ≥ 2, be a finite sequence of descending ideals of Afr . Let rI : G→

Śk+1Ω
be the function defined by

rI(σ) =



(r(σ), . . . , r(σ)︸ ︷︷ ︸
k+1 times

), xσ /∈ I1,

(r(σ), . . . , r(σ)︸ ︷︷ ︸
k−a+1 times

, 1, . . . , 1︸ ︷︷ ︸
a times

), xσ ∈ Ia \ Ia+1, 1 ≤ a ≤ k − 1,

(r(σ), 1, . . . , 1︸ ︷︷ ︸
k times

), xσ ∈ Ik.
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Let {Ωi,≤i}ki=1 be a finite family of multiplicative totally ordered monoids
with minimum elements. Then the cartesian product

Śk
i=1Ωi = Ω1×· · ·×Ωk

is a multiplicative monoid with minimum element 1 = (1Ω1 , . . . , 1Ωk
) totally

ordered by the lexicographic relation (x1, . . . , xk) ≤ (y1, . . . , yk) if and only
if either (x1, . . . , xk) = (y1, . . . , yk) or there exists a ∈ {1, . . . , k} such that,
for any i < a, (xi = yi and xa < ya). If each Ωi, i = 1, . . . , k, satisfies the
relations mentioned in the introduction, then so does Ω.

Theorem 5.2. The function in Definition 5.1 is an element of Sl(G;H).

Proof. As xh /∈ I1 for h ∈ H, we have rI(h) = 1. In particular, rI(1) = 1.
For ease of calculations we set I0 = Jfr and Ik+1 = {0}. Then rI takes the
form

rI(σ) =


(1, . . . , 1︸ ︷︷ ︸
k+1 times

), σ ∈ H,

(r(σ), . . . , r(σ)︸ ︷︷ ︸
k−a+1 times

, 1, . . . , 1︸ ︷︷ ︸
a times

), xσ ∈ Ia \ Ia+1, 0 ≤ a ≤ k.

First we show that rI(hσ) = rI(σh) = rI(σ) for σ ∈ G and h ∈ H. If σ ∈ H,
then hσ, σh ∈ H and so rI(hσ) = rI(σh) = rI(σ) = 1. If xσ ∈ Ia \ Ia+1,
0 ≤ a ≤ k, then also xhσ, xσh ∈ Ia \ Ia+1 and hence

rI(hσ) = (r(hσ), . . . , r(hσ)︸ ︷︷ ︸
k−a+1 times

, 1, . . . , 1︸ ︷︷ ︸
a times

) = rI(σ);

similarly rI(σh) = rI(σ).
Now we show that rI(στ) ≤ rI(σ)rI(τ) for σ, τ ∈ G. If σ ∈ H, then

rI(στ) = rI(τ) = rI(σ)rI(τ), and similarly if τ ∈ H. If στ ∈ H, then
rI(στ) = 1 ≤ rI(σ)rI(τ). Next let σ, τ, στ ∈ G∗. For ρ ∈ G∗ we set s(ρ) =
{a ∈ N : xρ ∈ Ia \ Ia+1, 0 ≤ a ≤ k}. We distinguish two cases. First, if
r(στ) < r(σ)r(τ) for σ, τ ∈ G∗, then

rI(στ) ≤ (r(στ), . . . , r(στ)) < (r(σ)r(τ), 1, . . . , 1) ≤ rI(σ)rI(τ).

Next suppose that r(στ) = r(σ)r(τ) for σ, τ ∈ G∗. Then fr(σ, τ) = 1. Since
xσ ∈ Is(σ), it follows that xσxτ = xστ ∈ Is(σ), and so s(σ) ≤ s(στ) and
similarly s(τ) ≤ s(στ). We thus have

rI(στ) = (r(στ), . . . , r(στ)︸ ︷︷ ︸
k−s(στ)+1

, 1, . . . , 1︸ ︷︷ ︸
s(στ)

) = (r(σ)r(τ), . . . , r(σ)r(τ)︸ ︷︷ ︸
k−s(στ)+1

, 1, . . . , 1︸ ︷︷ ︸
s(στ)

).

Also, for σ, τ ∈ G,

rI(σ)rI(τ) = (r(σ), . . . , r(σ)︸ ︷︷ ︸
k−s(σ)+1

, 1, . . . , 1︸ ︷︷ ︸
s(σ)

)(r(τ), . . . , r(τ)︸ ︷︷ ︸
k−s(τ)+1

, 1, . . . , 1︸ ︷︷ ︸
s(τ)

).

Again we distinguish two cases, for σ, τ ∈ G∗:
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(a) s(στ) > max {s(σ), s(τ)}. Then k−s(στ)+1 < k−s(σ)+1 and k−s(στ)+
1 < k− s(τ)+ 1. Since 1 < r(σ)r(τ), it follows that rI(στ) < rI(σ)rI(τ).

(b) s(στ) = max{s(σ), s(τ)}. If s(σ) = s(τ), then k−s(στ)+1 = k−s(σ)+1
and so rI(στ)=rI(σ)rI(τ). If s(σ)>s(τ), then k−s(στ)+1 = k−s(σ)+1
and s(σ)− s(τ) > 0. Since 1 < r(τ), it follows that rI(στ) < rI(σ)rI(τ).
Similarly if s(σ) < s(τ).

Finally, if σ ∈ MrI , then rI(σ) = 1. By definition, the only possibility is
r(σ) = 1 and so σ ∈ H.

Corollary 5.3. Let I = {Ii}ki=1, k ≥ 2, be a finite descending sequence
of ideals of Afr . Then (fr)I ≤ frI ≤ fr.

Proof. We set (fr)I=f ′. We set H=H(f ′)=H(fr)=Mr=MrI =H(frI).
Let σ, τ ∈ G∗ be such that f ′(σ, τ) = 1. Then fr(σ, τ) = 1 and xσ, xτ , xστ ∈
Ia \ Ia+1 for some 1 ≤ a ≤ k − 1. Thus r(στ) = r(σ)r(τ)

rI(στ) = (r(σ), . . . , r(σ)︸ ︷︷ ︸
k−a+1 times

, 1, . . . , 1︸ ︷︷ ︸
a times

)(r(τ), . . . , r(τ)︸ ︷︷ ︸
k−a+1 times

, 1, . . . , 1︸ ︷︷ ︸
a times

) = rI(σ)rI(τ).

So frI(σ, τ) = 1, which proves the first part of the inequality. For the second
part, if fr(σ, τ) = 0, then r(στ) < r(σ)r(τ) and as in the proof of Theo-
rem 5.2, we deduce that rI(στ) < rI(σ)rI(τ) and so frI(σ, τ) = 0. Therefore
frI ≤ fr.

Proposition 5.4. Let I = {Ii}ki=1, k ≥ 2, be a finite descending sequence
of ideals of Afr such that I1 = Jf and Ik = 0. Then (fr)I = frI .

Proof. We set f1 = (fr)I and f2 = frI . We must show that f2 ≤ f1.
Let σ, τ ∈ G be such that f2(σ, τ) = 1. Let σ, τ ∈ G∗. We have rI(στ) =
rI(σ)rI(τ). From the proof of Theorem 5.2 (case (b)), we deduce that r(στ) =
r(σ)r(τ) and xσ, xτ , xστ ∈ Jf \ I1 or xσ, xτ , xστ ∈ Ia \ Ia+1 for some 1 ≤
a ≤ k − 1 or xσ, xτ , xστ ∈ Ik. Since I1 = Jf and Ik = 0, the only possibility
is xσ, xτ , xστ ∈ Ia \ Ia+1 for some 1 ≤ a ≤ k − 1. So fr(σ, τ) = 1 and, by
Definition 2.2, f1(σ, τ) = 1 as required.

Theorem 5.5. Let r ∈ Sl(G) in any Ω and let I = {Ii}ki=1 be a finite
descending sequence of ideals of Af . There exists r′ ∈ Sl(G) in ×lΩ, l ∈ N∗,
such that (fr)I = fr′ .

Proof. Since J, Ik are nilpotent, let a, b be the smallest positive integers
such that J2a ⊆ I1 and I2

b

k = 0, a ≥ 2 and b ≥ 1. From Proposition 2.7
we notice that J2 ⊆ J2 + I1 and so (fr){J,J2+I1} = f0. Also (J2i−1

+ I1)
2 ⊆

(J2i−1
)2 + I1 = J2i + I1 for i ∈ {2, . . . , a}, and so (fr){J2i−1+I1,J2i+I1} = f0.

Finally, (I2i−1

k )2 ⊆ I2
i

k for i ∈ {1, . . . , b}, and so (fr){I2i−1
k ,I2

i
k } = f0. Then
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from Corollary 2.10 we have

(fr){J,J2+I1,...,J2a−1+I1,I1,...,Ik,I
2
k ,...,I

2b−1
k ,I2

b
k }

= (fr){J,J2+I1} ∨ · · · ∨ (fr){J2a−1+I1,I1}

∨ (fr){I1,...,Ik} ∨ (fr){Ik,I2k}
∨ · · · ∨ (fr){I2b−1

k ,0}

= (fr)I.

From Proposition 5.4 it follows that the theorem is true for

r′ = r{J,J2+I1,...,J2a−1+I1,I1,...,Ik,I
2
k ,...,I

2b−1
k ,0}.

There are a+k+ b− 2 ideals, so l = a+k+ b− 1. If a = 0 (J = I1) or a = 1
(J2 ⊆ I1) or b = 0 (Ik = 0), the proof is identical by omitting the irrelevant
terms.

Example 5.6. We return to Example 4.6. We notice that I23 = I25 = 0,
I21 = I22 = I24 = Lx4 ̸= 0 and I41 = I42 = I44 = 0. We set ri = r{J,Ii,0}
for i = 3, 5 and ri = r{J,Ii,I2i ,0}

for i = 1, 2, 4. Then fIi = (fr){J,Ii} =

(fr){J,Ii,0} = fri for i = 3, 5, and fIi = (fr){J,Ii,I2i ,0}
= fri for i = 1, 2, 4.

More specifically, for i = 1, x1, x2 ∈ J \ I1, x3, x5, x6, x7, x8 ∈ I1 \ I21 ,
x4 ∈ I21 ; for i = 2, x1, x2, x3 ∈ J \ I2, x5, x6, x7, x8 ∈ I2 \ I22 , x4 ∈ I22 ; for
i = 3, x1, x2, x3, x4, x5, x8 ∈ J \ I3, x6, x7 ∈ I3; for i = 4, x1, x5, x6 ∈ J \ I4,
x2, x3, x7, x8 ∈ I4 \ I24 , x4 ∈ I24 ; and for i = 5, x1, x2, x5, x6, x7 ∈ J \ I5,
x3, x4, x8 ∈ I5. So we have the following table:

σ r(σ) r1(σ) r2(σ) r3(σ) r4(σ) r5(σ)

0 0 (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0)

1 1 (1, 1, 1, 1, 0) (1, 1, 1, 1, 0) (1, 1, 1, 0) (1, 1, 1, 1, 0) (1, 1, 1, 0)

2 2 (2, 2, 2, 2, 0) (2, 2, 2, 2, 0) (2, 2, 2, 0) (2, 2, 2, 0, 0) (2, 2, 2, 0)

3 3 (3, 3, 3, 0, 0) (3, 3, 3, 3, 0) (3, 3, 3, 0) (3, 3, 3, 0, 0) (3, 3, 0, 0)

4 4 (4, 4, 0, 0, 0) (4, 4, 0, 0, 0) (4, 4, 4, 0) (4, 4, 0, 0, 0) (4, 4, 0, 0)

5 1 (1, 1, 1, 0, 0) (1, 1, 1, 0, 0) (1, 1, 1, 0) (1, 1, 1, 1, 0) (1, 1, 1, 0)

6 2 (2, 2, 2, 0, 0) (2, 2, 2, 0, 0) (2, 2, 0, 0) (2, 2, 2, 2, 0) (2, 2, 2, 0)

7 3 (3, 3, 3, 0, 0) (3, 3, 3, 0, 0) (3, 3, 0, 0) (3, 3, 3, 0, 0) (3, 3, 3, 0)

8 3 (3, 3, 3, 0, 0) (3, 3, 3, 0, 0) (3, 3, 3, 0) (3, 3, 3, 0, 0) (3, 3, 0, 0)

6. The ideal Ig. Once we decompose f into idempotent 2-cocycles hav-
ing a unique class of non-trivial annihilators, we can proceed further based
on the different generators of those non-trivial annihilators. Let B∗

f be the
set of generators of the elements of G∗ with respect to f which are non-trivial
annihilators of f (for more details on the set Bf see [LT17, Section 6]). The
elements of B∗

f are maximal inside Γf with respect to inclusion of ordered
sets. For g ∈ Γf , we denote Ig =

∑
σ∈g Iσ.
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Proposition 6.1. Let f ∈ E2(G,L;H). Then f =
∨
γ∈B∗

f
f{J,Iγ ,0}.

Proof. We set fγ = f{J,Iγ ,0}, B
∗ = B∗

f and H = H(f) = H(fγ). Since
Iγ◁Af , we know that fγ ≤ f for every γ ∈ B∗ and so

∨
γ∈B∗ fγ ≤ f . For the

opposite direction, let σ, τ ∈ G be such that f(σ, τ) = 1. If f = f0, then the
equality is immediate. So suppose that f ̸= f0 (i.e. there exists a generator
with at least two elements). If σ ∈ H, then fγ(σ, τ) = 1 for every γ ∈ B∗,
and similarly if τ ∈ H. If στ ∈ H, then σ, τ ∈ H and so again fγ(σ, τ) = 1.
So let σ, τ, στ ∈ G∗. Moreover, let gσ, gτ ∈ Γf , where gσ = (σ1, . . . , σa),
gτ = (τ1, . . . , τb), a, b ≥ 1. Since f(σ, τ) = 1, we have gσgτ = gστ ∈ Γf
[LT17, Remark 6.2]. We extend gστ to an element of B∗, say γ = g1gστg2
(or γ = g1gστ or γ = gστg2 or γ = gστ if already gστ ∈ B∗). We note that
xσ ∈ Iσ1 ⊆ Iγ and that xτ ∈ Iτ1 ⊆ Iγ . Then xστ = xσxτ ∈ Iγ , and so by
definition fγ(σ, τ) = 1, which proves that f ≤

∨
γ∈B∗ fγ .

Example 6.2. Consider the idempotent 2-cocycle fI3 of Example 4.6
with 4 as unique non-trivial annihilator. In Example 5.6 we had fI3 = fr3 .
We now observe that fr3 = fr′ for r′ = {0, 9, 18, 27, 36, 9, 17, 24, 27}. The
generators of the elements of G∗ with respect to fr′ are

Γfr′ =
{
{(1)}, {(1, 1)}, {(1, 1, 1)}, {(5, 8), (8, 5), (1, 1, 1, 1)}, {(5)},
{(6)}, {(7)}, {(8)}

}
.

For the three generators of x4, γ1 = (5, 8), γ2 = (8, 5) and γ3 = (1, 1, 1, 1),
we have P1 = Iγ1 = Iγ2 = I5 + I8 = Lx4 +Lx5 +Lx8 and P2 = Iγ3 = Lx1 +
Lx2 + Lx3 + Lx4. Since (fr′){J,Pi,0} = fr′{J,Pi,0}

, i = 1, 2 (Proposition 5.4),
from Proposition 6.1 we have fr′ = fr′{J,P1,0}

∨ fr′{J,P2,0}
with the respective

graphs
4

3

2

8 1 5 6 7

0

3

4 2

8 5 1 6 7

0

4

3

2

8 5 1 6 7

0

and generators

Γfr′{J,P1,0}

=
{
{(1)}, {(1, 1)}, {(1, 1, 1)}, {(5, 8), (8, 5)}, {(5)}, {(6)}, {(7)}, {(8)}

}
,

Γfr′{J,P2,0}

=
{
{(1)}, {(1, 1)}, {(1, 1, 1)}, {(1, 1, 1, 1)}, {(5)}, {(6)}, {(7)}, {(8)}

}
.
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Suppose that we are given an idempotent 2-cocycle f ∈ E2(G,L) and
we want to find some s ∈ Sl(G) such that f = fs. For this we must
find a function s′ : N1(f) → Ω \ {1} and apply [LT17, Proposition 6.10].
For f of Example 4.6, the elements {s′(1), s′(5), s′(8)} must satisfy the equa-
tions s′(5)s′(8) = s′(8)s′(5) = s′(1)4 and s′(1)s′(1)s′(5) = s′(1)s′(5)s(1) =
s′(5)s′(1)s′(1) (choosing a commutative Ω simplifies the situation but may
not lead to the desired s, if it exists, as shown in [LT17, Example 8.5]). But if
f has a unique class of non-trivial annihilators, then we are left with a single
equation. For fI3 of the same example, we would only have the first of the
two equations mentioned above. Simpler yet, for the idempotent 2-cocycle
f{J,P1,0} of Example 6.2 we have the equation s′(5)s′(8) = s′(8)s(5) and
the trivial equation s′(1)3 = constant, and for f{J,P2,0} the trivial equation
s′(1)4 = constant.

Remark 6.3. Suppose that f has a unique class of non-trivial annihila-
tors, say [ρ]. If Iγ is a constant for every generator γ of ρ, then the equality
in Proposition 6.1 is trivial, since every term f{J,Iγ ,0} of the second part
equals f , as in the following example.

For g1, g2 ∈ Γf , the relation g1 ≤ g2 if and only if g1 is an ordered part
of g2 is a partial ordering with least element the empty word (). We call the
Hasse diagram with regard to this ordering the graph of generators of f .

Example 6.4. Let

D3 = {a, b : a3 = b2 = e, bab = a−1} = {e, a, a2, b, ab, a2b}
be the dihedral group of order 6. Let f ∈ E2(G,L) be defined by the table

e a a2 b ab a2b

e 1 1 1 1 1 1
a 1 1 0 1 0 0
a2 1 0 0 0 0 0
b 1 1 1 0 0 0
ab 1 0 0 0 0 0
a2b 1 1 0 0 0 0

with generators Γa = {(a)}, Γb = {(b)}, Γa2b = {(b, a)}, Γa2 = {(a, a)},
Γab = {(a, b), (b, a, a)} and graphs (of generators, left, right)

(b, a, a) (a, b)

(a, a) (b, a)

(a) (b)

()

ab

a2 a2b

a b

e

ab

a2 a2b

a b

e
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We notice that the only non-trivial annihilator of f is ab with generators
γ1 = (a, b) and γ2 = (b, a, a). Since they contain exactly the same letters
(a and b with different multiplicities) we have Iγ1 = Iγ2 = Ia + Ib. No
r ∈ Sl(G) is now such that f = fr. To prove that no such r exists, one must
prove that there does not exist a monoid Ω with the properties mentioned
in the introduction such that r(b)r(a)r(a) = r(a)r(b).
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