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DECOMPOSITION OF IDEMPOTENT 2-COCYCLES

CHRISTOS LAMPRAKIS and
THEODORA THEOHARI-APOSTOLIDI (Thessaloniki)

Abstract. Let L be a finite Galois field extension of K with Galois group G. We
decompose any idempotent 2-cocycle f using finite sequences of descending two-sided
ideals of the corresponding weak crossed product algebra Ay. We specialize the results in
case f is the corresponding idempotent 2-cocycle f, for some semilinear map r : G — {2,
where (2 is a multiplicative monoid with minimum element.

1. Introduction. Let L be a finite Galois field extension of K with Ga-
lois group G. A function f : G X G — L is called a normalized weak 2-cocycle
(of G over L) if it satisfies the conditions f(o,7)f(oT, p) = f7(7,p)f(0,Tp)
for o,7,p € G and f(1,0) = f(o,1) =1 for o € G. Associated to a weak
2-cocycle f is a K-algebra Ay called the weak crossed product algebra asso-
ciated to f, first introduced in [HLS83]. The K-algebra Ay is defined as an
L-vector space Ay = )~ Lz, having the symbols z,, o € G, as an L-basis
and multiplication defined by the rules x,l = [°z, and z,2; = f(0,T)Tsr for
0,7 € Gand !l € L. The inertial group H(f) (or H if is clear from the context)
is defined as H(f) = {oc € G: f(0,071) # 0}. Then Ay = Yoen(p LratJy,
where Jy (or J if f is clear from the context) is the Jacobson radical of Ay and
the unique maximal two-sided ideal of Ay. By the notation I <Ay we always
mean that I is a two-sided ideal of Af. D. E. Haile [H82] gave the structure
of the two-sided ideals of A;. In particular, he proved that if I # (0) is a
two-sided ideal of Ay, then I = )" Lx,, where the sum is taken over those
o € G such that z, € I [H82, Lemma 2.2|. Moreover, if f is an idempotent
2-cocycle, i.e. taking only the values 0 and 1, then every ideal I of Ay is of
the form I = ) I, where I, is the ideal of Ay generated by z, [H82,
Proposition 2.4].

We recall some results from [LT17]. We denote by E?(G, L) the set of
idempotent 2-cocycles and by E?(G, L; H) the set of idempotent 2-cocycles
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2 C. LAMPRAKIS AND T. THEOHARI-APOSTOLIDI

with inertial group H. We set G* = G\ H. To avoid trivialities we suppose
that G* # 0 and so Ay is not a simple algebra. Let 2 be a multiplicative
totally ordered monoid with minimum element 1 satisfying the relations
x<y=xz<yzand zx < zy for all x,y,z € 2. We denote by SI(G) the
set of functions r : G — 2 satisfying the relations r(1) = 1 and r(o7) <
r(o)r(r) for every o,7 € G. Let M, = {0 € G : r(0) = 1}. It was shown in
|[LT17, Proposition 4.2 and Theorem 5.2| that M, is a group and the function
fr+ G Xx G — L defined by the rule

fr(on7) = {1 if r(or) =r(o)r(r),

0 ifr(or) < r(o)r(r),

is an element of E%(G, L; M,.).

Let t + 1 be the nilpotency of J. To every f we associate a partition
{N;}!_, of G* defined by Ni(f) = {0 € G* 1z, € J¥\ JF 1} for 1 <k < t.
We observe that [LT17, Lemma 3.1]

Ni(f) ={0 € G*: f(o1,02) =0 for all 01,09 € G* with o109 = 0}.

An ordered set (o1,...,01) of elements of Ni(f) is called a generator of
o € G* with respect to f if x5 = x4, ... 2,,. We denote by g, a generator of
o € G* and by I'y the set of all generators of all elements of G* with respect
to f. So the elements of I'y are words with letters from Ny (f). The product
of two generators is defined by concatenation.

Pick any f € E?(G,L; H). In order to find a function s : G — {2, for
some (2, such that f = fs it was shown in [LT17, Proposition 6.10 and
Theorem 6.12] that one has to start from a map s’ : Ni(f) — 2\ {1}
satisfying certain conditions and then extend it over the whole of G by

g/ g F?
slo) = {11#(9 | i:Hf

where ¢(g) = [, ¢, 5'(0) for any generator g. The first condition is that for
every p € G* such that x, is a left-right annihilator of Jy, all the generators g,
of p must map to the same value through v (i.e. 9(g,) = constant). Ignoring
the elements whose classes lie exactly above H in the graph of f (in this case
the equalities are trivial since from |[LT17, Remark 6.4] every such element
has exactly one generator), we see that the fewer the elements corresponding
to maximal classes the fewer the equations that must be satisfied, and that
the fewer the generators of each p the fewer the terms in each equation. The
second condition is that for every such p, 1(g,) must be minimum among
all the words w, with letters from Ny (f). More formally, ¢ (g,) < ¥ (w),) for
all w, ¢ I'y. Finally, s’ must be constant for all the elements Ho H, that is,
s'(hiohg) = §'(0) for every o € N1(f) and hq,he € H.
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The problem we are interested in is which elements f of E?(G, L) afford
the relation f = fs for some s € SI(G). In this article, as a first step, we
decompose f in such a way that its constituents can take the form fs. The
decomposition that we are going to demonstrate is intended to simplify the
system of equations implied by the first condition mentioned above [LT17,
Proposition 6.10]. The main tool that will be used is a new construction of
an idempotent 2-cocycle from an existing one by means of a finite sequence
of descending two-sided ideals of Ay (Definition . We investigate the
particular case of the family of ideals {J, I} and examine the corresponding
algebra. Using certain ideals we construct weak crossed product algebras
whose graphs have a unique maximal class. We specialize the results for the
case f = f, for some r € SI(G).

2. Idempotent 2-cocycles arising from a finite sequence of de-
scending ideals. Let f € E%(G, L), and let I be a two-sided ideal of A7 and
H the inertial group of f. For o,7 € G and h, hy, hy € H it is easy to prove
that f(hio,The) = f(o,7) and f(oh,7) = f(o,h7). Also, if f(o,7) =1 and
o € G* or 7 € G*, then o7 ¢ H. Moreover, a direct consequence of these
formulas is that if x, € I, then xp,,n, € I for every hy,ha € H. Also, if
Thyohy, € I for some hi,hy € H, then x, € I. Another useful observation
that we will use frequently is that if x; € I, then there exist p1,p2 € G
such that z, = x, x57p,.

Let Ann(J) be the ideal of left-right annihilators of J. We state the
following proposition which will be used frequently.

PROPOSITION 2.1. Let f € E*(G, L; H) and o € G*. Then:

(i) {zr€l, :TEG*} = Ugg{x.r :3dg- €1y and hy, ho € H with h1gsh2 < g-}.
(i) If z, € Ann(J), then xh,on, € Ann(J) for hi,he € H, and also

Iy= Y Lapon,

hi,ho€H

Proof. (i) Let x, € I, for 7 € G*, and g, € I'y. There exist p1,p2 € G
such that x; = x, 252,,. If p1,p2 € H, then p1g,p2 = gp,0p, = gr € I'y and
the claim is true; similarly for the other possible cases, that is, p; € H and
p2 & H, pr ¢ H and py € H, or p1,p2 € G™.

For the opposite direction, suppose that there exist g,,g, € Iy and
hi, he € H with higsho <g;. Ifgg:(al, - ,O’l) then (hlUl, 02,y ...,00—1, Uth)
< gr. We remark that

(Tla <oy Tay hlaly 02,..-,0]-1, Ulh277a+17 s 77—b)7 or
TlyewsTayh101,09,...,01_1,01h2), or
h10'1, 09y...,0]_1, O'lhg, Tlye-- ,Tb), or

gr = E
(

hio1,09,...,01-1,01h2),
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where 0;,7; € G*, a,b > 1. We examine the first case and similarly we work
for the second and third. We set g,, = (71,...,7q) and ¢, = (Tas1,---,Tp)-
Then g, = 9p19h1oha9p2 = gmhlgoh?gpz = 9p1h1909hsp2> hence z; € Io.
For the fourth case g, = higsh2 and so z; = xp, Tsxp,. Therefore in any
case r, € I, and we conclude that in order to calculate the ideal I, we are
restricted to the elements of G* whose generators contain a generator of an
element of the set HoH.

(ii) Let 5, € Ann(J) and hi,he € H. For any 7 € G* it follows that
thy € G* and z:ZTh,ohy, = Trh ToTh, = 0. Similarly xp,sp,2; = 0 and
hence zp,on, € Ann(J). To prove the equality let x; € I,. From (i) there
exist g,,9- € Iy and hy,hy € H such that gy o, = h1gsh2 < gr. Since
Thioh, € Ann(J) and the generators of the annihilators have maximum
length, it follows that gx, 1, = gr and so 7 = hyohy. The opposite direction
is obvious. =

The following construction is the main tool which we use throughout this
article. All ideals are assumed to be two-sided.

DEFINITION 2.2. Let f € E?(G,L; H) and I = {I;}}_,, k > 2, be a finite
sequence of descending ideals of Ay, that is, I1 2 --- 2 Ij,. We set
1, c€e HorT € H,
1, f(o,7)=1and zs, 27,25 € I; \ I;11

for some i € {1,...,k — 1},

filo, 1) =

0, elsewhere,

for 0,7 € G. Also, for 0 € G* such that z, € I, let s(o) = max {a € N*:
Ty € I, 1 < a < k}.

DEFINITION 2.3. In E%(G, L) we define the relation
f<g < {(o0,7)eGxG: flo,7) =1} C{(0,7) € GXG:g(o,7) =1},
which is a partial order.

REMARK 2.4. Let fi(o,7) =1 for some o,7 € G. From Definition it
follows that f(o,7) =1 or o € H or 7 € H. In any case f(o,7) = 1 and
so fi1 < f. Also, for x5, 2, € I3, if s(0) =k or s(1) = k or s(o7) = k, then
fi(o,7) = 0.

Our aim is to prove that f; is an idempotent 2-cocycle. We need the
following lemma.

LEMMA 2.5. Let I = {L,}¥_,, k > 2, be a finite sequence of descending
ideals of Ay and fy the function of Definition 2.2} Then:

(i) S(hthQ) = S(U) fOT‘ Ty € Il, hl,hQ € H.
(i) If xg,xr € I1 and f(o,7) =1, then s(o) < s(oT) and s(1) < s(oT).
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(iii) fr(hio,7Ths) = fi(o,T) for o,7 € G and h1,hy € H.
(iv) fi(oh,7) = fi(o,h1) for o,7 € G and h € H.

Proof. (i) If s(0) = k, the proof is immediate. Suppose that 1 < s(o)
< k—1. Since z, € IS(U), we have Thiohy € Is(a)~ If we had Thiohs € Is(o-)+17
then Ty AT hyohy Tyt = Lo € I5(5)41, a contradiction. Hence s(hiohs)=s(o).

(ii) We have x5 = 2527 € Iy(5)Tr € I4(») and so s(oT) > s(0). Similarly
s(oT) > s(1).

(iii) Let 0,7 € G. If 0 € H, then by definition, fi(hio,7h2) = fi(o, 1)
= 1. Similarly if 7 € H. Next let 0,7 € G*. If x5 ¢ I, then z3,, ¢ I; and
so fi(hio,Thy) = fi(o,7) = 0. Similarly if z, ¢ I or z,r ¢ I;. Next
suppose that z,,2,,2,r € I;. From (i), s(hio) = s(o0), s(the) = s(1)
and s(hyothe) = s(o7). If s(0) = k or s(r) = k or s(or) = k, then
fi(hio,Tha) = fi(o,7) = 0. Suppose that 1 < s(o0),s(7),s(or) < k— 1. If
flo,7) =1and s(c) = s(7) = s(o7), then s(hio) = s(tha) = s(hioThs). So
f(hio,Thy) =1 and by definition fi(o,7) = fi(h1o,7hy) = 1. If f(o,7) =0
or s(0),s(1),s(o7) are not all equal, then fi(o,7) = fi(hio,7he) = 0.

(iv) The proof is similar to (iii) above with slight modifications. In par-
ticular, we need to examine cases for s(o), s(7) and s(cht). =

THEOREM 2.6. Let f € E*(G, L; H). For every finite descending sequence
I ={L;}} | of ideals of Ay, the function fi of Deﬁmtion is an element
of B*(G,L; H).

Proof. First we prove that the 2-cocycle condition holds for fy. Let
o,7,p € G. If 0 € H, then by definition fi(o,7) = fi(o,7p) = 1. Also,
from Lemma [2.5(iii), fi(o7,p) = fi(7, p) and the 2-cocycle condition is true.
Similarly if 7€ H or p € H.

Next suppose that o,7,p € G*. If f(o,7) =0, then fi(o,7) = 0. Since f
is an idempotent 2-cocycle, either f(7, p) or f(o, 7p) is zero, so either fi(7, p)
or fi(o,7p) is zero and the 2-cocycle condition is true. The same argument
applies when f(o7,p) =0 or f(o,7p) =0 or f(1,p) =0.

Suppose that f(o,7) = f(or,p) = f(r,p) = flo,7p) = 1. lf 2z, ¢ I
or x, € Iy, then fi(o,7) = fi(o,7p) = 0. Similarly in the following cases:
xr ¢ Lyorar € ly; 0, ¢ Iy or oy, €Iy 2or € 11 O Tgr € Ity 27y ¢ 11 OF
Trp € I; and w47, ¢ I or Zgrp € Ii. Therefore in all the above cases the
2-cocycle condition holds.

Finally, we suppose that 24, 27, T, Tor, Trp, Torp € It \ 1. We distinguish
several cases for the natural numbers s(o),s(7),s(p). If s(o) < s(7), then
s(0) < s(tp) (Lemma [2.5(ii)) and so fi(o,7) = fi(o,7p) = 0. Hence the
2-cocycle condition holds for fi. If s(p) < s(7), then s(p) < s(o7) and so
filor,p) = fi(r,p) = 0. If s(7) < s(0) and s(7) < s(p), we distinguish the
following cases:
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. SET) < i((;) < s(p). Then fi(o,7) = fi(r,p) = 0. Similarly if s(7) <
s(p) < s(o0).

e 5(1) = s(o) < s(p). Then fi(r,p) = 0. If s(7) = s(o) = s(o7), then
filor,p) = 0. If s(1) = s(0) < s(o7), then fi(o,7) = 0. Similarly if
s(T) = s(p) < s(0).

o (1) = s(o) = s(p). If s(o) < s(o7p), then fi(o,7p) = fi(or,p) = 0.

<
If s(o) = s(oTp), then s(o) < s(o7) < s(oTp) and so s(o1) = s(o71p)
and similarly s(7p) = s(otp). Then fi(o,7) = fi(or,p) = fi(r,p) =
fi(o,mp) = 1.

Therefore again in all the above cases the 2-cocycle condition holds. For the
inertial group we see that if o € H(f1) then fi(o,0~!) = 1. From Remark
flo,ocoY=1andsooc € H. m

For any subgroup H of G we set

1 ifcoeHorTeH,
folo,m) =
0 elsewhere,

the Waterhouse idempotent. The following proposition will be used frequently.
The appropriate 2-cocycle fy (and its inertial group) will be clear from the
context.

PROPOSITION 2.7. fi = fo if and only if I? C I, 1 for every a €
{1,...,k—1}.

Proof. We set H = H(f1) = H(fy) and G* = G\ H. First, suppose that
I2 C Iy for every a € {1,...,k — 1}, and let 0,7 € G*. Let f(o,7) = 1.
Ifz, ¢ I) or &y € Iy or &y ¢ Iy or x; € I, or xor ¢ Iy Or x5 € I, then
fi(o,7) =0 in these cases.

Next suppose that x4, 27, z5r € I1 \ If. If the natural numbers s(o), s(7),
s(oT) are not all equal, then by definition fi(o,7) = 0. If s(o) = s(7) =
s(or) = a for some 1 < a <k — 1, then 75, = 2527 € Iy Ls(r) = I2. From
the assumption it follows that z4r € Io+1 = I4(gr)41, @ contradiction, which
implies that this case is impossible. Therefore in any case fi(o,7) = 0 for
o, T € G*.

Next suppose that f; = fo. Let a € {1,...,k—1}. If IZ # 0 and z, € I2,
then there exist z,,,%,, € I, such that f(o1,02) = 1 with o100 = 0. If
Ty ¢ Iot1, then s(o) < a. Since from Lemma [2.5[(ii) we have a < s(o1) <
s(o) < a, it follows that s(o1) = s(0) = a and similarly s(o2) = s(o) = a.
But then fi(o1,02) = 1, contrary to assumption. So z, € [441. =

We will need a new operation.

DEFINITION 2.8. For {fi}¥_, a finite family of elements of F?(G, L) we
define
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\/fZUT filo,T)V -V fr(o,T)

)0 if fi(o,7) =0, Vi=1,...,k,
|1 if3ie{1,...,k} such that f;(o,7) = 1.

The set E%(G,L) in general is not closed under the operation V. We
will encounter some instance where the result of the operation is indeed an
idempotent 2-cocycle. We remark that inside E2(G, L; H) we have f V fo =
foV f = f for H the inertial group of fp.

LEMMA 2.9. Let f € E*(G,L;H) and {L;}}_,, k > 3, be a finite de-
scending sequence of ideals of Af Then for a € {2,...,k — 1} we get
fintanony = Finetay YV fge,

Proof. We set f' = f{[l,...,za,...,fk}, o= fin,ny and fo = fi,.n-
First let o, 7 € G* be such that f’(0,7) = 1. Then f(o,7) = 1 and 25, 27, Tor
€ Iy \ Ippq for some 1 <b<k—1.1f1<b<a-1,then fi(o,7) = 1. If
a<b<k—1,then fa(o,7)=1.

For the opposite direction, let o, 7 € G be such that fi(o,7)V fa(o, 7) = 1.
Ifo,7 € G*, then f(o,7) = land x4, 2+, Tor € I;\Li+1 for some 1 < i < a—1,
Or Ty, Tr,Zer € I; \ Ij11 for some a < ¢ < k — 1. Therefore in any case
fllo,7)=1.m

By repeated application of Lemma we obtain

COROLLARY 2.10. Let {I}¥_,, k > 2, be a finite descending sequence of
ideals of Ay. Then

k—1
f{]h...,fk} - \/ f{Ii7[i+l}' .

i=1
The following proposition establishes a decomposition formula for an
idempotent 2-cocycle. We will need the fact that if z, € Zle I;, then
s € I; for some i € {1,...,k}. Also, if z, ¢ Zle I;, then z, ¢ I; for
every i € {1,...,k}.
PROPOSITION 2.11. Let I and I, ..., I, k > 2, be ideals of Ay such that
I; C I for everyi € {1,...,k}. The following identities hold:

O fus, 1y = i oy,
Proof. We set P= Zle I;<9A¢. Then from TheoremWe get H(f{I,P})

= H(fr1,y) = H(f) = H for every i. We set G* = G\ H. Let 0,7 € G*. If

f(o,7) =0, then from Remark|2.4/we have f(; py(0,7) = f{;1,3(0,7) = 0 for
every i. Next suppose that f(o,7)=1.If z, ¢ [ or z, ¢ I or x5, ¢ I, then
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by definition fi; py(0,7) = fir1,y(0,7) = 0 for every i. If x4, 27,257 € I,
then:

o If v, ¢ P, then x,, 2, ¢ P. Also z,. ¢ I; for every i, and so z,, 2, ¢ I;
for every i. It follows that f{; py(0,7) = fi1,1,3(0,7) = 1 for every i.
o If 2,; € P, then f{; py(0,7) = 0. Also there exists a € {1,...,k} such

that 2,7 € Io. Then fi7;.1(0,7) = 0 and so Hle firry(o,7) = 0.

Therefore we get the first statement. For the second we set P = ﬂle I; <Ay,
The proof is identical in all cases except when f(o,7) = 1 and z,, 27, 257 € 1.
In this case, if x,; ¢ P, then fi; py(0,7) = fr1,3(0,7) = L. If 257 € P,
then fi7 py(o,7) = fi1,1,3(0,7) = 0 for every i. m

3. The crossed product algebra Ay,

3.1. The idempotent 2-cocycle f(;}. The special case of Theo-
rem for the family of ideals {I; = J, Iy = I} for some ideal I of Ay
is of interest so we restate it as a separate proposition.

PROPOSITION 3.1. Let f € E*(G,L;H) and I < A¢. Then the function
defined by

1 ifoeHorteH,

filo,7) = fun(om)=q1 if flo,7) =1, 20 ¢ 1,0 ¢ H, 7 ¢ H,
0 elsewhere

is an element of E*(G, L; H).

Despite the new notation, fy will still denote the Waterhouse idempo-
tent and not the idempotent 2-cocycle fy oy corresponding to the zero ideal
(which is equal to f). The following proposition calculates the set Ny (fr)
explicitly.

PROPOSITION 3.2. If I < Ay, then Ni(fr) = Ni(f)U{oc € G* 12, € I}.

Proof. Let H be the inertial group of both f and fr as in Proposition 3.1
We set G* = G\ H. First we prove that Ni(f) € Ni(fr). For this pick any
o € Ni(f). Suppose there exist 7, p € G* with 7p =0 such that f;(7,p)=1.
From Remark [2.4]it follows that f(7, p) = 1, which is impossible. So fr(7, p)
=0 for all 7,p € G* with 7p = o, and hence o € Ny(f;).

Next we prove that {o¢ € G* : z, € I} C Ni(fr). For this choose o € G*
such that z, € I and 7,p € G* with 7p = o. If we had f;(r,p) = 1, then
f(r,p) =1and z,x, = x, € I. So by definition f;(7, p) = 0, a contradiction.

For the converse, let 0 € Ny (fr). If there exist 7, p € G* such that Tp = o
and f(r,p) =1, then z,2, = z, € I (since z, ¢ I would imply f;(7,p) =1,
a contradiction). If f(7,p) = 0 for all 7,p € G* such that 7p = o, then
(S Nl(f) u
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Let z, € Ann(J). We call 0 € G* a trivial annihilator of f if o € Ny(f).
Otherwise o is a non-trivial annihilator of f. All annihilators correspond
to maximal elements in both graphs of f. Intuitively, the classes of trivial
annihilators lie above H in both graphs of f. We recall that every ordered
part of a generator is also a generator [LT17, Proposition 6.3|. If f(o,7) =1
for some 0,7 € G*, then g,9; = gor. We set Ay, = > o Ly,, where
{yo : 0 € G} is an L-basis of Ay,.

LEMMA 3.3. If I < Ay and x, € I, then p is a trivial annihilator of fr.

Proof. From Proposition we know that p € Ni(f7). The only genera-
tor of p with respect to fris (p) (see [LT17, Remark 6.4]). It remains to prove
that y, is an annihilator of Jy,. Suppose it is not. We extend (p) to a genera-
tor (with respect to fr) of an annihilator, say g- = (p1,...,p,...,px) € I'f,,

k=1 [OI‘ (paplv'-',pk) or (pla'-'apkap)]' Since Yor---Yp - -Ypp = Y7y from
Remark[2.4]it follows that x,, ...z, ...z, = 2,. Butz, € I, so z, € I. From

Proposition it would follow that 7 € Ni(fr) and so the only generator of
T with respect to fr would be (7), a contradiction. m

THEOREM 3.4. Let I < Ay.
(i) Let a: G — L be the function defined by

()_ 1 if550¢[7
“=N0 ifa, el

Then the function ¢ : Ay — Ay, defined by ¢(x,) = a(0)ys, and ex-
tended by linearity is a K-algebra homomorphism with ker(¢) = I.
(i) The function v : Ay, — Ay /I defined by

¢<Z la?/a) = Z 65,
ceG ceG
where Ty = x5+ 1, is a K-algebra epimorphism with kernel ngel Ly,

(ili) Ay, = (A¢/I) ® I as L-modules.

Proof. (i) If I =0, then f; = f, a(o0) = 1 for 0 € G and the statement
is true. So suppose that I # 0. First we prove that for o, 7 € G,

flo,m)a(or) = a(o)a(T) f1(o, 7).

If ce H, then f(o,7)= fr(o,7)=1 and a(c)=1. In this case a(o7)=a(r1),
since both x,, = xrs2,, x, are elements of I or both are not. So the equal-
ity holds. Similarly if 7 € H. Next suppose that 0,7 € G*. Suppose that
floy1) = 1. If 257 = zoxr ¢ I, then x5,z ¢ I, a(o) = a(7) = aloT) =1
and the equality is true. If z,, € I, then a(o7) = 0, fr(o,7) = 0 and
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again the equality is true. But ¢(z,2;) = f(0,7)a(07)ysr and ¢(zy)p(x;) =
a(o)o(a(r)) fr(o, T)ysr so ¢ is K-algebra homomorphism.

For the kernel of ¢ we see that if x = > l,x, € I for 0 € G with [, #0
for every o, then z, € I and so a(o) = 0. Hence ¢(x) = >l a(0)y, = 0 and
so x € ker(¢). Also, if z = ) l,x, € ker(¢) with [, # 0 for every o, then
d(x) = lsa(0)ys = 0, from which a(c) = 0 for every o, and so x, € I for
every o. It follows that x € I.

(ii) ¢ is obviously an L-module homomorphism. Let y,,yr € Af,. Then
V(Yoyr) = f1(0,7)20r + I and Y (Yo ) (yr) = ToTr = f(0,7)Tor + 1. If
fr(o,7) = 1, then f(o,7) = 1 and so Y(yoyr) = Y(Wo)V(yr) = Tor + 1.
Suppose next that fr(o,7) = 0. If 2, € I, then ¥(yoy-) = ¥(ys)¥(y-) = 0.
If x5 ¢ I, then by the definition of f; we must have f(o,7) = 0 and so
again ¥ (Yoyr) = ¥(Yo ) (y-) = 0. Finally,

ker(y) = {Z loYo : Z Ty = 0}

geG ceG
:{Zloyg:lgzoorxgel}: ZLyU.
oeG sy

iii) Consider the function i : Ay — Af, defined by
f fr

z(Z lU:UU) = Z loYos

ceG ceG

which is obviously an L-module isomorphism. Then the sequence
i 4
0—1— Ay, §Af/l—>0

is exact, ¢ of (ii) is surjective and ker(v)) = > ; Ly, = i(I). Let 0 :
As/I — Ay, be the identity homomorphism when Ay/I is viewed as a
subalgebra of Ay, through ¢ of (i). Then, for any o € G, ¥ 0 §(Z,) =
Y(a(0)ys) = a(0)Te = Ty. So 1 o § is the identity map of Ay/I, and the
above sequence is split. The result follows.

REMARK 3.5. Let ¢ € Endg(Ay). From Theorem by selecting I =
ker(¢) it follows that ¢(Ar) = Ar/ker(¢) = Ay/ker(¢) = ¢(Ay). So ¢(Ay)
can be viewed as a subalgebra of Ay, . hence A = ¢(Ay) ® ker (o).

3.2. Ideals of Af,. The idempotent 2-cocycle of Deﬁnition involves
a finite family of ideals. It turns out that to study it, we can focus only
on two types of idempotent 2-cocycles, namely fr;n and f{;oy. The next
proposition is a key ingredient to this claim. Let {Ii}le be a finite descending
sequence of ideals of A¢. Then {I;/1, k1%, is a finite descending sequence of
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ideals of Ay/I},. We set Ay, = Af[k =Y v Lyo. Let ¥y 2 Ay — Ag/I}; be
the epimorphism of Theorem [3.4{(ii).

PROPOSITION 3.6. In the above notation,

f{117---71k} = (f]k){P17...7Pk_1,Pk:ker(’¢k)}7

where { P;}¥_, is a finite descending sequence of ideals of Ay, such that 1y(P;)
=11 for1 <i<k.

Proof. Let Ay =5 o Lxs. We set

fi=funonys  fo=(n)gp,. Py, Pamker(up)}

and H = H(f) = H(f1) = H(fr,) = H(f2). Let 0,7 € G* be such that
f2(o,7)=1. We have ot € G*. Then f1,(o,7)=1 and Y5, Y7, Yor € P \ Pit1
for some 1 < ¢ < k—1. So f(o,7) = 1 and zs,27,26r € J \ Ij
and Yr (Yo ), Yk (Yr)s Ye(Yor) € (Li/Ix) \ (Lit1/Ix) for some 1 < i < k — 1.
Then f(o,7) = 1 and x4, 2,25 ¢ I and z, + I, 27 + I, Tor + I €
(Li/Ik)\(Li+1/Ix) for some 1 < i < k—1. So f(o,7) =1 and x4, T+, Tor €
I;\ Ij1 for some 1 < i < k—1. It follows that fi(o,7) = 1. For the opposite
direction we note that 1, (2o + Ix) = {yo + 2 : @ € ker(y)} and we follow
the arguments backwards. =

LEMMA 3.7. Let Iy <Ay and Iy = ) I, for some x, € 11 such that o is
a trivial annihilator of f. Then f(1, 1,y = fi1,,0}-

Proof. From the identity f(7, 1,40y = fi1 1} f{1,0y of Proposition [2.11{(i)
it follows that fi7, 1,3 < f{1, 0y- Next let o, 7€ G* be such that fir, o1(0,7)=1.
Then f(o,7) =1 and 24,2, 25 € I1. It could not be x, € Io, since z, is
not an annihilator of J. Similarly x, ¢ I». Finally, since o7 ¢ Ny(f) [LT17,
Lemma 3.1], it follows that z,- ¢ I2. So f(o,7) =1 and x4, 7, Tsr € 11\ I2.
From the definition f{;, ;,1(0,7) =1 and so f(7, 0y < fi1,,1,}- ™

REMARK 3.8. Using Corollarywe can decompose any f1 € E?(G, L)
into idempotent 2-cocycles of the type f{p ry, which in turn, from Propo-
sition take the form (fr){prer(y)}, Where ¢ : Ay — Ay/I and P is
an ideal of Ay, containing ker(z)) such that ¢(P) = I’/I. From Lemma
we know that if x, € I, then o is a trivial annihilator of f;. From Theo-

rem (ii) and Lemma we have (f1){pker(v)} = (f1){po}- In essence, the
only idempotent 2-cocycles that are needed are of the types fr;n and fi oy

Another useful fact derived from Proposition [3.6] is that repeated appli-
cations of Proposition [3.1] can be avoided.

PROPOSITION 3.9. Let f € E*(G,L), I 9 Ay, P < Ay, and v : Ay, —
Ay/I be the algebra epimorphism of Theorem [3.4(ii). Then (f1)p = fr,,
where Iy is an ideal of Ay such that Iy /I = (P).
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Proof. We note that Jy, is the unique maximal ideal in Ay,, and so by
the lattice isomorphism theorem we have ¢ (Jy,) = Jy/I, which is the unique
maximal ideal in Af/I.

First we prove the claim for P containing the kernel of . Since ¥ (P) is
an ideal of Af/I, there exists an ideal I; of Ay containing I such that (P)
= I, /I. Since I; is nilpotent, let k& be the smallest positive integer such that
.7121c C I. Suppose that k > 2. Then {Ill/l}i:ll is a finite descending sequence
of ideals of A;/I. Let {P;}}~} be a finite descending sequence of ideals of
Ay, containing ker(¢) such that (P;) = I¥'/I for i = 1,...,k — 1. We set
Py = P. Since (I'/I)? C I"*/I for any ideal I’ 2 I, for every i € {0,...,k—2}
we have

G(PE) C(P)® € (IF /1P € (I /1 = IF /T = (Piya),
It follows that P2 C P,yy. For i = k — 1 we have ¢(P2_,) C (I ' /I)? =
and so P2 | C ker(t). Then from Propositions and [2.7| we have

Fopn et 1y = D05 PP P e ()

= (f1)gay,,mp ¥V (F) (o, Py VooV (P (P eer(u))
= (f1)gs,,,py = (fD)P-

But f{Jf .2l = f{‘]f7[1}\/f{]17112}\/' -‘\/f{IIQk_lJ} = f1, as claimed.
The cases for k =0 [I; = I and P = ker(+))] and k = 1 [I? C I] are handled
accordingly by omitting the irrelevant terms.

Now suppose that P does not contain ker(¢)). Then for the ideal P’ =
P +ker(v), taking into consideration that (f1)xer(p) = (f1)(J; 0} fr asin

Remark -, 8 from the first part of the proof and Proposition ( ) we have
(f1)p = (fD) P(fDxer(w) = (f1)p = fr, where I is an ideal of Ay such that
L/T=4(P)=v¢(P). =

4. Decomposition of idempotent 2-cocycles using ideals. Propo-
sition M(u) together with the next proposition, whose proof is immediate,
imply that for every f € E*(G, L; H) the subset {f7 : I <Ay} is a monoid
with respect to V with unit element fo = f{; 51 and zero element f = fi;0}.

PROPOSITION 4.1. Let {I;}¥_, be a finite family of two-sided ideals of Ag.

If ﬂle I; = {0}, then .
f = \/ f[i. n
i=1

Proposition [4.] leads to the following result.

PROPOSITION 4.2. Let I < Ay. Then fr = f if and only if I = 0 or
I =>"1, for some trivial annihilators o € G* of f.
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Proof. First suppose that fr = f. Since H(fr) = H(f), from the defini-
tion it follows that x,, ¢ I for every o, 7 ¢ H such that f(o,7) = 1. Suppose
that I # 0 and let z, € I for p € G*. We notice that if p ¢ Ni(f), then there
exist 0,7 € G* such that p = o7 with f(o,7) = 1. But 2, = 25r € I, C I
and so fr(o,7) = 0, contrary to the assumption that f; = f. So p € Ni(f). If
p is not an annihilator of f, then there exists 7 € G* such that f(p,7) =1 or
f(r,p) = 1. Consider the first case (the second is handled similarly). We have
xpr = xpx, € I and so fr(p,7) = 0, again contrary to assumption. It follows
that p is a trivial annihilator of f for every z, € I. Since I = prel I,, we
are done. The opposite direction is a direct consequence of Lemma and
the definition of f7. =

REMARK 4.3. The relation ¢ ~ 7 < ¢ € H7TH is an equivalence relation
on G. We denote by [o] the class of 0 € G. Let A be the subset of G such
that for every 0 € A, x, is an annihilator of J. Then A is not empty. If
o € A, then from Proposition we have HoH C A. So A = |J*_Ho;H,
where A" = {o1,...,01} is a complete set of representatives of the classes
of A.

PROPOSITION 4.4. Let f € E*(G, L). For every p€ G* such that p¢ N1(f),
there exists an ideal I of Ay such that [p] is the unique class of non-trivial
annihilators of fr, with respect to the equivalence relation of Remark [£.3]

Proof. Let I = Engéla I,. We remark that z, ¢ I. First we prove that p
is an annihilator of f;. For this, let 7 € G*. If f(p,7) =0, then fr(p,7) =0
(Remark [2.4). Suppose that f(p,7) = 1. Then x, ¢ I,r and so z,, € I.
From the definition of f; it follows that f;(p,7) = 0. Similarly we prove
that f7(r,p) = 0 for every 7 € G*. Since by the assumption p ¢ Ny(f) and
also x, ¢ I, from Proposition it follows that p ¢ Ni(fr) and so p is a
non-trivial annihilator of f7.

Finally we prove that [p] is the unique class of non-trivial annihilators
of fr. Suppose there exists ¢ € G* such that o is a non-trivial annihila-
tor of fr with [p] # [o]. If we had z, ¢ I, then z, € I,. So there exist
01,02 € G such that &, 2,24, = x,. If both 01,09 are in H, then [p] = [0]
contrary to assumption. So at least one of the two is an element of G*,
say o1. Then f(o1,0) =1 and z,,, ¢ I (otherwise, z, € I, impossible). So
fr(o1,0) = 1, contrary to the assumption that o is an annihilator of f;. If
we had z, € I, then ¢ would be a trivial annihilator of f;, again a contra-
diction. m

Aljouiee [AQ5] studied weak crossed product algebras whose graphs have
a unique maximal element, i.e. have no trivial annihilators, and a unique class
of non-trivial annihilators. In particular, he showed that such an algebra is
Frobenius [A05, Theorem 1.6]. In the next theorem we give a procedure
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to decompose any idempotent 2-cocyle to idempotent 2-cocycles having a
unique class of non-trivial annihilators.

THEOREM 4.5. Let f € E?(G, L), f # fo. Then f has a unique class of

non-trivial annihilators or there evist ideals {I;}¥_, such that f = \/ I
fo < fr, < f and each f1, has a unique class of non-trivial annihilators.

Proof. Let A = {p1,...,px} for some k > 1 be a complete set of repre-
sentatives of the classes of elements of G* such that z,, € J? (4 # 0 since
f# fo). If k=1, then [p1] is the unique class of non-trivial annihilators. So
suppose that k£ > 2. We set I; = pri¢10' I,. From Proposition f1, has
[pi] as the unique class of non-trivial annihilators for every i = 1,... k. If
ﬂle I; = {0}, then by Proposition , f= \/f:1 fr,. If ﬂle I; # {0}, then
let z, € (", ;. If z; € J2, then 7 € [,oj} for some j € {1,...,k} and so

= hipjha, h1,he € H. Since z,, ¢ I;, we have xp,xp xp, = x, ¢ I
which contradicts the assumption that z, € ﬂle I;. Hence z, ¢ J? and so
7 € N1(f). If 7 is not an annihilator of f, then there exists p € G* such that
f(r,p) =1 [or f(p,7) = 1]. Then x,, € J? and so z, & I, for some a. But
this contradicts the choice of x,. It follows that for every x, € ﬂf 1L, Tis
a trivial annihilator of f. From Propositions [2.11] and [1.2] we have

\/ fIi = fﬂle I; = fZ]T = f
=1

We now prove that fo < fr, < f for every i = 1,..., k. We know that
fr < f, for any ideal I. First suppose that p; is a non-trivial annihilator of f.
Since the class [p;] is not unique, let p be another non-trivial annihilator
such that p ¢ [p;]. Then from Proposition [2.1](ii) we get z,, ¢ I, and so
x, € I;. Since p ¢ Ny(f), it follows that there exist 01,09 € G* such that
f(o1,02) = 1 with o109 = p. But then fr,(01,02) = 0, which proves that
fr, < f. If p; is not an annihilator where p; € Ni(f) for some k > 2, then
there exists 7 € G* such that f(p;,7) =1 [or f(7,p;) = 1]. Then z,, ¢ I,
and so x,,7 € I;. Hence fr,(p;,7) = 0, and so again fr, < f.

Finally, since z,, ¢ I; and x,, € J?, it follows that J? C I; and so, from
Proposition [2.7, we have f7, > fo. =

EXAMPLE 4.6. Let G = Z/9Z and r = {0,1,2,3,4,1,2,3,3} € SI(G)
with set of generators

={(D}. { (L DA, LD} A{:8),(8,5), (1 ,T,T,1)
{(1.5), (5. D} {(1,1,5),(1,5,1), 5, 1, )}, {(8)}}-

The corresponding table of values and the graph of f, are

1{G)}
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1111111
1101100
1001000
0000000
0000000
1000001
0000000
0000000

8 1
0001000 \\/
0

The representatives of the classes of the non-trivial annihilators of f,. are

— N — Wl — R

e e e
O O K O = =
ol — ol — |

=21 = nggla I, = Lxg + Lxg + Las + Lxg + La= + Lrg. Similarly
for po =3, Iy = Lag + Lag + Lag + La= + Lag; for ps = 4, I3 = Lag + La=;
for ps = 6, Iy = Lzg + Lzg + Lzg + Lz= + Lzg; and for ps = 7, Iy =
Lxs + Lxg + Lrg. We know that f, = \/?:1 f1,- Bach fr,,i=1,...,5, has
[pi] as the unique class of non-trivial annihilators. The corresponding graphs
are

: I R B
8 1 5 3 4.6-7 2 3 8 1 5 2.3 4.7 2 6
N1/ \ \ N1/ | /|
0 8 1 5 6_7 0
NyZZd
0

5. Cartesian product of elements of SI(G). In this section we spe-
cialize the previous results in the case where f = f,. for some r € SI(G)
taking values in some {2 as in the introduction. We denote by SI(G; H) the
elements of SI(G) with M, = H.

DEFINITION 5.1. Let r € SI(G; H) take values in 2, and I = {;}}_,,
k > 2, be a finite sequence of descending ideals of Ay, . Let r1 : G — X LaRN?)
be the function defined by

'(T(U),...,T(U)), Lo ¢Ila
—_———
k—+1 times
(r(e)y...,r(0),1,...,1), xo € 4\ Ioy1,1 <a<k-—1,
—_— —

k—a+1 times a times

(r(o),1,...,1), Ty € I.
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Let {£2;, <;}¥_, be a finite family of multiplicative totally ordered monoids
with minimum elements. Then the cartesian product xF ie1 $2i = (1 x-x 0,
is a multiplicative monoid with minimum element 1 = (1¢,,...,10,) totally
ordered by the lexicographic relation (x1,...,2x) < (y1,...,yx) if and only
if either (z1,...,2%) = (y1,...,yx) or there exists a € {1,...,k} such that,
for any i < a, (z; = y; and z, < y,). If each 2;, ¢ = 1,..., k, satisfies the
relations mentioned in the introduction, then so does f2.

THEOREM 5.2. The function in Definition[5.1]is an element of SI(G; H).

Proof. As xp, ¢ I for h € H, we have ri(h) = 1. In particular, rf(1) = 1.
For ease of calculations we set Iy = Jy, and Iy = {0}. Then 7 takes the
form

(1,...,1), o€ H,
——
TI(O') _ k+1 times
(r(o),...,r(0),1,...,1), x5 € Ig\ Iot1,0<a<k.
——— N——
k—a+1times atimes

First we show that ri(ho) = ri(ch) = ri(o) forc € Gand h€ H. If o0 € H,
then ho,oh € H and so ri(ho) = ri(ch) = ri(o) = 1. If x5 € I, \ L4471,
0 <a <k, then also zp,, xep € Iy \ Ig4+1 and hence

ri(ho) = (r(ho),...,r(ho),1,...,1) =ri(o);

1(ho) = (r(ho) (ho) ) =r1(o)

k—a+1times a times

similarly r1(ch) = ri(o).

Now we show that r1(o7) < ri(o)ri(r) for o,7 € G. If 0 € H, then
ri(or) = ri(t) = ri(o)ri(7), and similarly if 7 € H. If o7 € H, then
ri(or) =1 < ri(o)ri(r). Next let o,7,07 € G*. For p € G* we set s(p) =
{a e N:z, € I,\ I41,0 < a < k}. We distinguish two cases. First, if
r(or) < r(o)r(r) for o,7 € G*, then

ri(or) < (r(o7),...,r(o71)) < (r(o)r(r),1,...,1) < ri(o)ri(1).
Next suppose that r(o7) = r(o)r(r) for o,7 € G*. Then f,(o,7) = 1. Since
Ty € Iy, it follows that z,2; = 2,7 € Iy4), and so s(o) < s(or) and
similarly s(7) < s(o7). We thus have
- 1, 1) = 1,..1).
ri(o7r) = (r(o7),...,r(o7) ) = (r(o)r(7),...,r(0)r(r) )
k—s(oT)+1 s(oT) k—s(oT)+1 s(oT)
Also, for 0,7 € G,
ri(o)ri(t) = (r(o),...,r(0),1,..., )(r(7),...,r(7),1,...,1).
—_—
—s(o)+1 s(o) k—s(T)+1 s(T)

Again we distinguish two cases, for o,7 € G*:
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(a) s(o7) > max{s(c),s(7)}. Then k—s(o7)+1 < k—s(o)+1 and k—s(o7)+
1 < k—s(t)+1. Since 1 < r(o)r(r), it follows that ri(o7) < r1(o)ry )

(b) s(o7) = max{s(o),s(7)}. If s(0) = s(7), then k—s(o7)+1 = k—s(0)+
and so ry(o7)=r(o)ri(r). If s(o)>s(7), then k—s(o7)+1 = k—s(0)+
and s(o) — s(7) > 0. Since 1 < r(7), it follows that r1(o7) < ri(o)ri(r )
Similarly if s(o) < s(7).

Finally, if 0 € M,,, then ri(c) = 1. By definition, the only possibility is
r(c)=1andsooc € H. m

COROLLARY 5.3. Let I ={L;}t_,, k > 2, be a finite descending sequence
of ideals of Ay,. Then (fr)1 < frp < fr-

Proof. We set (fy)1=f". Weset H=H(f")=H(f,)=M,=M,;=H(f).
Let 0,7 € G* be such that f'(0,7) = 1. Then f,.(0,7) =1 and x4, 2+, Tor €
r

I, \ 141 for some 1 < a <k —1. Thus r(o71) = r(o)r(r)
ri(or) = (r(o),...,r(0),1,...,1)(r ;1. =ri(o)r1(7).
1(o7) = (r(o) (o) )(r(7), ..., 7(7) ;1) = ri(o)ri(7)
k—a+1 times atimes k—a+1times atimes

So fr (o, 7) = 1, which proves the first part of the inequality. For the second
part, if f.(o,7) = 0, then r(o7) < r(o)r(r) and as in the proof of Theo-
rem 5.2, we deduce that r(o7) < ri(o)ri(r) and so fr (o,7) = 0. Therefore
fru < fr.m

PROPOSITION 5.4. LetI = {I;}%_,, k > 2, be a finite descending sequence
of ideals of Ay, such that Iy = J¢ and I, = 0. Then (fr)1 = fiy.

Proof. We set fi = (f;)1 and fo = f;;. We must show that fo < f.
Let 0,7 € G be such that fy(o,7) = 1. Let 0,7 € G*. We have ri(o7) =
r1(o)r1(7). From the proof of Theorem [5.2|(case (b)), we deduce that r(o7) =
r(o)r(r) and Zy, &r,Tor € Jp \ I1 OF Zg,Zr,Tor € Io \ Iop1 for some 1 <
a<k—1orzs, 2,25 € I}. Since I1 = Jy and I}, = 0, the only possibility
IS T, Ty Xor € Iy \ Igq1 for some 1 < a < k—1. So f.(o,7) = 1 and, by
Definition fi(o,7) =1 as required. =

THEOREM 5.5. Let r € SI(G) in any 2 and let I = {I;}¥_, be a finite

descending sequence of ideals of Ay. There exists ' € SI(G) in x!, 1 e N¥,
such that (fi)1 = fr.

Proof. Since J, I}, are niblpotent, let a, b be the smallest positive integers

such that J2* C I and Ilf =0,a >2and b > 1. From Proposition

we notice that J? C J%+ I) and so (f,) {241} = fo. Also (J¥ 4 )2
i—1 7 .

(J¥ )2+ L =J% 41 fori€{2,...,a}, and so (fr){‘]2i71+]17(]2i+]1} = fo.

Finally, (I,fi_l)2 - Iki for i € {1,...,b}, and so (f',‘){lgi—l 2y = fo. Then
k Tk
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from Corollary 2.10] we have

(fT){],JQJrIl,...,JQa_l+Il,11,...,116,[,3,‘..,11?_1,I,zb}
= ey VoV ) et gy
V), Y )y Voo v (fr){I,g”*l,o}
= (fr)1-

From Proposition [5.4] it follows that the theorem is true for
I __
P T T T2 T S e D 2, T 0}
There are a+k+b—21ideals,sol =a+k+b—1.Ifa=0(J=L)ora=1
(J2C ) or b= 0 (I = 0), the proof is identical by omitting the irrelevant
terms. m

EXAMPLE 5.6. We return to Example . We notice that I3 = I2 = 0,
I} =13 = 1§ = Loy # 0 and I} = Iy = I} = 0. We set r; = 7{;, 01
for i = 3,5 and r; = T(J,1;,12,0} for i = 1,2,4. Then fr, = (fr)is1,) =
(fr)grn0p = fr, for i = 3,5, and f1, = (fr)(sr120y = fry fori =1,2,4.
More specifically, for i = 1, z1,25 € J\ L1, z3,25,75, 25,25 € L1 \ I3,
Tz € I12; for i =2, x1,25,25 € J\ Iy, o5, 05, 27,205 € I\ 122, r7 € I22; for
i =3, o1, T3, T3, T, T5, g € J \ I3, x5, 27 € I3; for i = 4, xq, x5, 25 € J \ 14,
Ty, Ty, Tr, g € Iy \ If, T3 € IZ; and for ¢ = 5, a1, 25, 25,25, 2= € J \ Is,
xs, 77,25 € I5. So we have the following table:

o r(o) ri(o) ro(o) r3(o) ra(o) rs(o)

0 0 (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0) (0,0,0,0,0) (0,0,0,0)
1 1 (1,1,1,1,0) (1,1,1,1,0) (1,1,1,0) (1,1,1,1,0) (1,1,1,0)
22 (2,2,2,2,0) (2,2,2,2,0) (2,2,2,0) (2,2,2,0,0) (2,2,2,0)
3 3 (33,300 (3,3,330 (3,330 (3,3300) (33,00
I 4 (4,4,0,0,0) (4,4,0,0,0) (4,4,4,0) (4,4,0,0,0) (4,4,0,0)
5 1 (1,1,1,0,0) (1,1,1,0,0) (1,1,1,0) (1,1,1,1,0) (1,1,1,0)
6 2 (22,2000 (22,200 (2,200 (22220 (2220)
7 3 (3,3,30,0) (3,3,3,0,0) (33,00 (3,33,0,0 (3,33,0)
8§ 3 (3,3,30,0) (33,300 (33,30 (3,33,0,0 (3,30,0)

6. The ideal I,. Once we decompose f into idempotent 2-cocycles hav-
ing a unique class of non-trivial annihilators, we can proceed further based
on the different generators of those non-trivial annihilators. Let B;ﬁ be the
set of generators of the elements of G* with respect to f which are non-trivial
annihilators of f (for more details on the set By see [LT17, Section 6]). The
elements of B;‘Z are maximal inside I'y with respect to inclusion of ordered

sets. For g € I'y, we denote Iy =3 . Io.
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PROPOSITION 6.1. Let f € E?(G,L;H). Then f = \/WeB; for,01-

Proof. We set fy = f(sr1,0y, B* = B} and H = H(f) = H(fy). Since
I, <Ay, we know that f, < f for every v € B* and so \/yeB* fy < f. For the
opposite direction, let o, 7 € G be such that f(o,7) = 1. If f = foy, then the
equality is immediate. So suppose that f # fy (i.e. there exists a generator
with at least two elements). If o € H, then f,(o,7) = 1 for every v € B*,
and similarly if 7 € H. If o7 € H, then 0,7 € H and so again f,(o,7) = 1.
So let o,7,07 € G*. Moreover, let g,,g9, € Iy, where g, = (01,...,04),
gr = (11,...,m), a,b > 1. Since f(o,7) = 1, we have g,9r = gor € I}
[ILT17, Remark 6.2]. We extend g, to an element of B*, say v = g19or92
(or v = g19gor OF ¥ = gorg2 O ¥ = gor if already g, € B*). We note that
Ty € I, C I, and that x; € I, C I,. Then 2, = z,2; € I, and so by
definition f, (o, 7) = 1, which proves that f <\ cp. fy. =

EXAMPLE 6.2. Consider the idempotent 2-cocycle fr, of Example [4.6]
with 4 as unique non-trivial annihilator. In Example we had fr, = frs.
We now observe that f., = f for v = {0,9,18,27,36,9,17,24,27}. The
generators of the elements of G* with respect to f,» are

={DO} {11 } {(LLD}{(5,8),8,5),(1, L, LD} {(5)},
{©)} A} A{®)}}-
For the three generators of z7, v1 = (5,8), 72 = (8,5) and v3 = (1,1,1,1),
we have P, = I’ﬁ = Iﬁ =E+L= Lx4—|—L:L'g—|—Lx§ and Py = LY§ = Lxg+
Lz + Lxz + Lxg. Since (fi)15p,00 = fr = 1,2 (Proposition ,
from Proposition we have f,, = f. fT{Jp with the respective

{J,P; 0}

{J,P,0}
graphs
i ] |
3 4 2 3
! RN !
2 8.5 1 6 7 2
LR N7 I
8\i%7 0 Si\i/}7
0 0
and generators
FT'{ 0}
= {OMEDIHTL,D}LAG,8), 8.5 {G)LAG LML A®)}H,
7{[JP20}

= {OMHCDIACLDITLLDE{G) {6} {(M}{B)}}. =
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Suppose that we are given an idempotent 2-cocycle f € E?(G, L) and
we want to find some s € SI(G) such that f = f;. For this we must
find a function s’ : N1(f) — 2\ {1} and apply |[LT17, Proposition 6.10].
For f of Example the elements {s'(1), s'(5), s'(8)} must satisfy the equa-
tions s'(5)s'(8) = s'(8)s'(5) = &'(1)* and s'(1)s'(1)s'(5) = s'(1)s'(5)s(1) =
s'(5)s'(1)s'(1) (choosing a commutative {2 simplifies the situation but may
not lead to the desired s, if it exists, as shown in [LT17, Example 8.5]). But if
f has a unique class of non-trivial annihilators, then we are left with a single
equation. For fr, of the same example, we would only have the first of the
two equations mentioned above. Simpler yet, for the idempotent 2-cocycle
frap 0y of Example we have the equation s'(5)s'(8) = s'(8)s(5) and
the trivial equation s’(1)® = constant, and for f{J,p,,0y the trivial equation
s'(1)* = constant.

REMARK 6.3. Suppose that f has a unique class of non-trivial annihila-
tors, say [p]. If I, is a constant for every generator 7 of p, then the equality
in Proposition is trivial, since every term [y oy of the second part
equals f, as in the following example.

For g1, g2 € I, the relation g; < g9 if and only if g; is an ordered part
of go is a partial ordering with least element the empty word (). We call the
Hasse diagram with regard to this ordering the graph of generators of f.

EXAMPLE 6.4. Let
D3 ={a,b:a>=0b*=¢e, bab=a"'} = {e,a,a® b,ab, a®b}
be the dihedral group of order 6. Let f € E?(G, L) be defined by the table

e a a*> b ab a?b
e |1 1 1 1 1 1
a |1 1 0 1 0 0
|1 0 0 0 0 0
b |1 1 1 0 0 0
ab |1 0 0 O 0 O
|1 1 0 0 0 0

with generators I, = {(a)}, I, = {(b)}, L2 = {(b,a)}, I,z = {(a,a)},
I'yy ={(a,b),(b,a,a)} and graphs (of generators, left, right)

(bya,a) (a,b) ab ab

(a,a) (ba) @ a?b o a?b

T NS NS
0



DECOMPOSITION OF IDEMPOTENT 2-COCYCLES 21

We notice that the only non-trivial annihilator of f is ab with generators
v = (a,b) and 2 = (b,a,a). Since they contain exactly the same letters
(a and b with different multiplicities) we have I,, = I,, = I, + I;. No
r € SI(G) is now such that f = f,.. To prove that no such r exists, one must
prove that there does not exist a monoid {2 with the properties mentioned
in the introduction such that r(b)r(a)r(a) = r(a)r(b).
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