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Norm attaining vectors and Hilbert points

by

Konstantinos Bampouras (Trondheim)
and Ole Frederik Brevig (Oslo)

Abstract. Let H be a Hilbert space that can be embedded as a dense subspace of
a Banach space X such that the norm of the embedding is 1. We consider the following
statements for a nonzero vector φ in H:

(A) ∥φ∥X = ∥φ∥H .
(H) ∥φ+ f∥X ≥ ∥φ∥X for every f in H such that ⟨f, φ⟩ = 0.

We use duality arguments to establish that (A)⇒(H), before turning our attention to the
special case when the Hilbert space in question is the Hardy space H2(Td) and the Banach
space is either the Hardy space H1(Td) or the weak product space H2(Td) ⊙H2(Td). If
d = 1, then the two Banach spaces are equal and it is known that (H)⇒(A). If d ≥ 2,
then the Banach spaces do not coincide and a case study of the polynomials φα(z) =
z21 +αz1z2+z22 for α ≥ 0 illustrates that the statements (A) and (H) for these two Banach
spaces describe four distinct sets of functions.

1. Introduction. The purpose of this paper is to introduce and study
an abstract framework, containing as special cases the recently investigated
concepts of minimal norm Hankel operators [3] and Hilbert points [5, 4], in
addition to inner functions in Hardy spaces on polydiscs [10]. Our starting
point is as follows.

Definition. An admissible pair (H,X) is a Hilbert space H that can be
embedded as a dense subspace of a Banach space X such that the norm of
the embedding is 1. A nonzero vector φ in H is called norm attaining in X
if ∥φ∥X = ∥φ∥H .

Suppose that (H,X) is an admissible pair and let X∗ denote the dual
space of X. Since H is a subspace of X and ∥f∥X ≤ ∥f∥H holds for every
f in H, it is plain that every Ψ in X∗ defines a bounded linear functional
on H and ∥Ψ∥H∗ ≤ ∥Ψ∥X∗ . It follows from the Riesz representation theorem
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that there is ψ in H such that

Ψ(f) = ⟨f, ψ⟩
for every f in H. This embeds X∗ as a subspace of H and we say that a
vector ψ in H is in X∗ when ψ belongs to this subspace.

Theorem 1. Let (H,X) be an admissible pair and let φ be a nonzero
vector in H. The following are equivalent:

(a) φ is norm attaining in X.
(b) φ is in X∗ and ∥φ∥X∗ = ∥φ∥H .

The conditions of Theorem 1 capture two (equivalent) ways in which the
Hilbert space properties of the vector in question are preserved under the
embedding in X.

Definition. Let (H,X) be an admissible pair. A nonzero vector φ in
H is called a Hilbert point in X if

∥φ+ f∥X ≥ ∥φ∥X
whenever f is in H and ⟨f, φ⟩ = 0.

The reasoning behind the name is that if f and φ are in H and ⟨f, φ⟩ = 0,
then

∥φ+ f∥H =
√

∥φ∥2H + ∥f∥2H ≥ ∥φ∥H ,

by orthogonality. This definition attempts to capture that the geometry of
X is locally like the geometry of H near the point φ.

Theorem 2. Let (H,X) be an admissible pair and let φ be a nonzero
vector in H. The following are equivalent:

(c) φ is a Hilbert point in X.
(d) φ is in X∗ and ∥φ∥X∥φ∥X∗ = ∥φ∥2H .

Since ∥ψ∥2H ≤ ∥ψ∥X∥ψ∥X∗ plainly holds for every ψ in X∗, the condition
in Theorem 2(d) reformulates the geometric property of a Hilbert point as
a statement about a general estimate that is attained. As a consequence, we
have the following.

Corollary 3. Let (H,X) be an admissible pair. If a nonzero vector φ
in H is norm attaining in X, then φ is a Hilbert point in X.

The proofs of Theorems 1 and 2 are fairly direct consequences of the
Hahn–Banach theorem and the Hilbert space structure of H.

We are particularly interested in two classes of admissible pairs. To set
the stage for the first class, let T denote the unit circle in the complex plane.
The d-fold cartesian product Td = T × · · · × T becomes a compact abelian
group under coordinatewise multiplication and its Haar measure coincides
with the product measure generated by the normalized Lebesgue arc length
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measure on T. For 1 ≤ p < ∞, we define the Hardy space Hp(Td) as the
closure in Lp(Td) of the set of polynomials in d complex variables.

The first admissible pair of interest is (H,X) with H = H2(Td) and
X = H1(Td). Since a nontrivial function in H1(Td) can only vanish on a
set of measure 0 on Td (see e.g. [10, Theorem 3.3.5]), it follows from the
Cauchy–Schwarz inequality that φ is norm attaining in H1(Td) if and only
if |φ| is constant and nonzero almost everywhere on Td. This is equivalent
to the assertion that φ = CI for a constant C ̸= 0 and an inner function I.

For this admissible pair, our definition of a Hilbert point is in agreement
with the definition of Hilbert points in Hardy spaces from [5]. Hence Corol-
lary 3 above supplies a simpler proof of the case p = 1 of [5, Corollary 2.5],
which asserts that constant multiples of inner functions are Hilbert points
in H1(Td). The results in [5] also demonstrate that the converse statement,
that all Hilbert points in H1(Td) are constant multiples of inner functions,
is true if and only if d = 1.

In our second admissible pair of interest, H is a functional Hilbert space
on a nonempty set Ω [7, §36]. We will additionally assume that the constant
functions (on Ω) are elements of H and that the multiplier algebra M(H) is
dense in H. Moreover, we will normalize the norm of H so that ∥1∥H = 1.

The Banach space X in this admissible pair will be the weak product
space H ⊙ H, which is the collection of all functions f on Ω that admit a
weak factorization

(1.1) f =
∞∑
j=1

gjhj ,

for sequences (gj)j≥1 and (hj)j≥1 in H such that

(1.2)
∞∑
j=1

∥gj∥H∥hj∥H <∞.

The norm of H ⊙H is the infimum of (1.2) over all possible weak factoriza-
tions (1.1). We refer to [1, Theorem 2.1] for a proof that H ⊙H is a Banach
space.

We will say that a given weak factorization (1.1) is optimal should it
attain this infimum. The additional assumptions on H ensure that

∥f∥H⊙H ≤ ∥f∥H
for every f in H and that M(H) (and hence H) is dense in H ⊙ H, so
(H,H ⊙ H) is an admissible pair. It is plain that a function φ is norm
attaining in H ⊙H if and only if φ = φ · 1 is an optimal weak factorization
of φ.

The assumptions on H also allow us to invoke [1, Theorem 2.5], which
asserts that there is an antilinear isometric isomorphism from the dual space
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of H ⊙ H to the space of all bounded Hankel operators on H. It follows
from this and Theorem 1 that if H = H2(Td), then the requirement that
φ = φ · 1 is an optimal weak factorization of φ coincides with the definition
of minimal norm Hankel operators from [3].

This point of view was utilized by Ortega-Cerdà and Seip in their counter-
example to an infinite-dimensional analogue of Nehari’s theorem [9]. Their
work implies, and is qualitatively equivalent to, the fact that an optimal weak
factorization of φ(z) = z1 + z2 in the weak product space H2(T2)⊙H2(T2)
is φ = φ · 1.

It is a direct consequence of the well-known inner-outer factorization that
H1(T) = H2(T)⊙H2(T) as sets and with equality of norms. The inner-outer
factorization is also the key ingredient in the proof of [3, Theorem 1], which
asserts that ∥φ∥(H2(T)⊙H2(T))∗ = ∥φ∥H2(T) if and only if φ is a constant
multiple of an inner function. In the present context, this can be more easily
deduced from Theorem 1.

For d ≥ 2, it is an important open problem in harmonic analysis (see [8])
whether there is an absolute constant Cd > 0 such that

∥f∥H1(Td) ≥ Cd∥f∥W (Td)

for every f in W (Td) = H2(Td)⊙H2(Td).
The work of Ortega-Cerdà and Seip discussed above shows that C2 ≤

2
√
2/π < 1. A minor improvement can be found in [3, Theorem 5]. Since

plainly
(1.3) ∥f∥H1(Td) ≤ ∥f∥W (Td) ≤ ∥f∥H2(Td),

the open problem is to ascertain whether H1(Td) and W (Td) are equal as
sets. Note that (1.3) also shows that if φ is norm attaining in H1(Td), then
φ is norm attaining in W (Td). This inspires us to compare the admissible
pairs (H2(T2), H1(T2)) and (H2(T2),W (T2)) in detail. Our case study is
concerned with the polynomials

φα(z) = z21 + αz1z2 + z22

for α ≥ 0. In order to state our result, we let α0 = 1.62420 . . . denote the
unique (see Lemma 6) solution of the equation√

4− α2 =
2

α
arcsin

α

2
on the interval (0, 2).

Theorem 4. Suppose that φα(z) = z21 + αz1z2 + z22 for α ≥ 0. Then

(i) φα is never norm attaining in H1(T2);
(ii) φα is a Hilbert point in H1(T2) if and only if α = 0 or if α = α0;
(iii) φα is norm attaining in W (T2) if and only if 0 ≤ α ≤ 1/2;
(iv) φα is a Hilbert point in W (T2) if and only if 0 ≤ α ≤ 1/2 or if α = 2.
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The main novelty of Theorem 4 is in assertions (ii) and (iv). Assertion (i)
is trivial, since φα does not have constant modulus on T2. Taking into ac-
count Theorem 1, we note that Theorem 4(iii) is equivalent to [3, Theo-
rem 10(a)].

As in the proof of Theorems 1 and 2, the main idea in our approach
to Theorem 4 is duality. In the case of X = H1(T2) we will rely on the
Riesz representation theorem for L1(T2), and in the case of X =W (T2) our
arguments will involve Hankel operators on H2(T2).

1
2

2

3
2

2

Fig. 1. Norms of φα(z) = z21 + αz1z2 + z22 for 0 ≤ α ≤ 2.5. From top to bottom: H2(T2),
H2(T2)⊙H2(T2), and H1(T2).

Our efforts towards the proof of Theorem 4 have two remarkable byprod-
ucts. First, we can determine for which α ≥ 0 either of the equalities in (1.3)
are attained; see Figure 1. Second, we are able to find optimal weak factor-
izations of φα for every α ≥ 0. We defer the precise statements to Section 3
below.

Theorem 4 illustrates in a striking way how norm attaining vectors and
Hilbert points for the two Banach spaces H1(T2) and W (T2) describe four
distinct classes of functions. This stands in stark contrast to the case d = 1
where the four classes all coincide (with constant multiples of inner func-
tions). It is clear that the inner-outer factorization has a strong impact on
the situation in the latter case.

If the functional Hilbert space H is a normalized complete Pick space,
then H and H ⊙H enjoy an analogue of the inner-outer factorization (see
[2, Theorems 1.4 and 1.12]). It would be interesting to know what can be
said of the norm attaining vectors and Hilbert points in this context.
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Organization. The present paper is organized into two further sec-
tions. The next section contains the proofs of Theorems 1 and 2. Section 3
is devoted to the case study of φα and culminates with the proof of Theo-
rem 4.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. We begin with the easiest implication (b)⇒(a).
Suppose that φ is in X∗ and ∥φ∥X∗ = ∥φ∥H . Then

∥φ∥H = ∥φ∥X∗ ≥ |⟨φ,φ⟩|
∥φ∥X

=
∥φ∥2H
∥φ∥X

,

so ∥φ∥X ≥ ∥φ∥H , and consequently ∥φ∥X = ∥φ∥H .
For the implication (a)⇒(b), suppose that φ is in H and that ∥φ∥X

= ∥φ∥H . By the Hahn–Banach theorem, there is some ψ in X∗ such that
∥ψ∥X∗ = 1 and ⟨φ,ψ⟩ = ∥φ∥X . If g is in kerψ (i.e. g is in X and ⟨g, ψ⟩ = 0),
then the properties of ψ ensure that

∥φ+ g∥X ≥ |⟨φ+ g, ψ⟩| = ∥φ∥X .

This means that if g is in H ∩ kerψ, then

∥φ+ αg∥H ≥ ∥φ+ αg∥X ≥ ∥φ∥X = ∥φ∥H
for every complex number α. This is equivalent to

2Re(α⟨g, φ⟩) + |α|2∥g∥2H ≥ 0,

which holds for all complex numbers α if and only if ⟨g, φ⟩ = 0. Every
function f in H may be decomposed as

f =

(
f − ⟨f, ψ⟩

∥φ∥X
φ

)
+

⟨f, ψ⟩
∥φ∥X

φ

by the assumption that φ is in H. The first term is in H ∩ kerψ since
⟨φ,ψ⟩ = ∥φ∥X , and so it is orthogonal to φ by the above. This means that

|⟨f, φ⟩| = |⟨f, ψ⟩|
∥φ∥X

∥φ∥2H ≤ ∥f∥X∥φ∥H ,

where in the final estimate we have used the fact that ∥ψ∥X∗ = 1 and ∥φ∥X
= ∥φ∥H . SinceH is dense inX, we infer that φ is inX∗ and ∥φ∥X∗ ≤∥φ∥H .

Proof of Theorem 2. We begin with the proof that (d)⇒(c). Suppose
that φ is in X∗ and ∥φ∥X∥φ∥X∗ = ∥φ∥2H . If f is in H and ⟨f, φ⟩ = 0, then

∥φ+ f∥X ≥ |⟨φ+ f, φ⟩|
∥φ∥X∗

=
∥φ∥2H
∥φ∥X∗

= ∥φ∥X .
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For the proof that (c)⇒(d), we suppose that φ is a Hilbert point in X.
Since φ is in H by assumption, we can decompose any f in H as

f =

(
f − ⟨f, φ⟩

∥φ∥2H
φ

)
+

⟨f, φ⟩
∥φ∥2H

φ.

The first term is orthogonal to φ by construction, so the assumption that φ
is a Hilbert point in X ensures that

∥f∥X ≥ |⟨f, φ⟩|
∥φ∥2H

∥φ∥X .

Since H is dense in X, it follows that ∥φ∥2H ≥ ∥φ∥X∥φ∥X∗ .

3. A case study. A small amount of preparation is required before we
can approach the proof of Theorem 4. We begin by recalling that a function
f in L1(Td) is uniquely determined by the Fourier coefficients

(3.1) f̂(κ) =
�

[0,2π]d

f(eiθ1 , . . . , eiθd)e−i(κ1θ1+···+κdθd) dθ1
2π

· · · dθd
2π

,

where the multi-index κ = (κ1, . . . , κd) runs over Zd. In particular, a function
f in L1(Td) is in the Hardy space H1(Td) if and only if f̂(κ) = 0 whenever
κj < 0 for at least one 1 ≤ j ≤ d. The set {zκ}κ∈Zd forms an orthonormal
basis for the Hilbert space L2(Td) and we will call it the standard basis. Also,
let P stand for the orthogonal projection from L2(Td) to H2(Td).

The following result is contained in [5, Theorem 2.2(a)], but we include a
complete proof to illustrate its interaction with Theorem 2. In its statement,
we will write sgn z = z/|z| if z is a nonzero complex number and sgn z = 0
if z = 0.

Lemma 5. A nontrivial function φ in H2(Td) is a Hilbert point in H1(Td)
if and only if

(3.2) P (sgnφ) =
∥φ∥H1(Td)

∥φ∥2
H2(Td)

φ.

Proof. Suppose that (3.2) holds. If f is in H2(Td) and ⟨f, φ⟩ = 0, then
⟨f, sgnφ⟩ = 0. Consequently,

∥φ∥H1(Td) = ⟨φ, sgnφ⟩ = ⟨φ+ f, sgnφ⟩ ≤ ∥φ+ f∥H1(Td),

which demonstrates that φ is a Hilbert point in H1(Td).
Conversely, suppose that φ is a Hilbert point in H1(Td). By Theorem 2,

we know that φ is in the dual space of H1(Td). If we consider H1(Td) as
a subspace of L1(Td), then it follows from the Hahn–Banach theorem and
the Riesz representation theorem for L1(Td) that there is a function ψ in
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L∞(Td) such that Pψ = φ and ∥ψ∥L∞(Td) = ∥φ∥(H1(Td))∗ . When combined
with Theorem 2, this shows that

(3.3) ∥ψ∥L∞(Td) = ∥φ∥(H1(Td))∗ =
⟨φ,φ⟩

∥φ∥H1(Td)

=
⟨φ,ψ⟩

∥φ∥H1(Td)

.

Since φ is a nontrivial function in H1(Td) by assumption, it can only vanish
on a set of measure 0 on Td (see e.g. [10, Theorem 3.3.5]). Hence it follows
from (3.3) that φψ = |φ| > 0 almost everywhere on Td, and so there is a
positive constant C such that ψ = C sgnφ almost everywhere on Td. The
constant is determined by (3.3).

Lemma 6. If 0 ≤ α ≤ 2 and
α

2

√
4− α2 = arcsin

α

2
,

then α = 0 or α = 1.62420 . . . .

Proof. It is plain that the equation holds for α = 0. If α > 0, then we
rewrite the equation as √

4− α2 =
2

α
arcsin

α

2
.

The left-hand side decreases from 2 to 0, while the right-hand side increases
(because x 7→ x/sinx is increasing on [0, π/2]) from 1 to π/2. It follows that
there is a unique solution 0 < α < 2, which can easily be estimated.

Let m be an integer. A function f in L1(Td) is called m-homogeneous if

f(eiϑz1, . . . , e
iϑzd) = eimϑf(z1, . . . , zd)

for almost every z on Td. It follows from (3.1) that f ism-homogeneous if and
only if f̂(κ) = 0 whenever κ1+ · · ·+κd ̸= m. Consequently, the Hardy space
H1(Td) only contains nontrivial m-homogeneous functions with m ≥ 0, and
they are all polynomials. The following result corresponds to Theorem 4(ii).

Theorem 7. If φα(z) = z21 + αz1z2 + z22 for α ≥ 0, then φα is a Hilbert
point in H1(T2) if and only if α = 0 or α = 1.62420 . . . .

Proof. We will use Lemma 5. Since φα is 2-homogeneous, it is plain that
sgnφα is also 2-homogeneous. Consequently, it follows that

P (sgnφα) = az21 + bz1z2 + cz22 .

Since φα(z2, z1) = φα(z1, z2), we must have a = c. Hence, Lemma 5 implies
that φα is a Hilbert point in H1(T2) if and only if

(3.4) α ŝgnφα(0, 2) = ŝgnφα(1, 1).

We begin with the latter Fourier coefficient, which is slightly simpler to
compute. Here, we have

(sgnφα(e
iθ1 , eiθ2))e−i(θ1+θ2) = sgn(α+ 2 cos(θ1 − θ2)),
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which means that

ŝgnφα(1, 1) =

2π�

0

sgn(α+ 2 cosϑ)
dϑ

2π
=

{
2
π arcsin

α
2 if 0 ≤ α ≤ 2,

1 if α > 2.

For the former Fourier coefficient, we have

(sgnφα(e
iθ1 , eiθ2))e−2iθ2 = ei(θ1−θ2) sgn(α+ 2 cos(θ1 − θ2)),

which yields

ŝgnφα(0, 2) =

2π�

0

eiϑ sgn(α+ 2 cosϑ)
dϑ

2π
=

{
1
2π

√
4− α2 if 0 ≤ α ≤ 2,

0 if α > 2.

We insert these formulas into (3.4). There are plainly no solutions if α > 2.
If 0 ≤ α ≤ 2, then we get precisely the equation considered in Lemma 6.

Before we proceed to the second part of our case study, let us compute

∥φα∥H1(T2) =

2π�

0

|α+ 2 cosϑ| dϑ
2π

=

{
2
π

(
α arcsin α

2 +
√
4− α2

)
if 0 ≤ α ≤ 2,

α if α > 2.

This computation and Theorem 11 below form the basis for Figure 1.
Let m be an integer and let Pm denote the orthogonal projection from

L2(Td) to its subspace of m-homogeneous functions. By orthogonality, every
f in H2(Td) satisfies the equation

(3.5) ∥f∥2H2(Td) =
∞∑
m=0

∥Pmf∥2H2(Td).

It is clear that Pm is densely defined on the weak product spaceW (Td). Next,
we show that it extends to a norm 1 operator on W (Td), and consequently
on its dual space. This result (in a slightly different context) can be found in
[6, Theorem 5]. In order to make the present paper self-contained, we repeat
the proof.

Lemma 8. If m is a nonnegative integer, then Pm extends to a norm 1
operator on W (Td) and on (W (Td))∗.

Proof. The first assertion implies the other by duality, since Pm is self-
adjoint in the pairing of H2(Td). The function f(z) = zm1 shows that
∥Pm∥W (Td)→W (Td) ≥ 1. Let f be a function in W (Td) and let f =

∑
j≥1 gjhj

be a weak factorization of f . Then

Pmf =
∞∑
j=1

m∑
n=0

PngjPm−nhj ,
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and consequently

∥Pmf∥W (Td) ≤
∞∑
j=1

m∑
n=0

∥Pngj∥H2(Td)∥Pm−nhj∥H2(Td)

≤
∞∑
j=1

∥gj∥H2(Td)∥hj∥H2(Td),

where we have used the Cauchy–Schwarz inequality in the inner sum and
(3.5) twice.

Lemma 9. Suppose that m is a nonnegative integer. If φ is a nontrivial
m-homogeneous polynomial, then there is an m-homogeneous polynomial ψ
such that

(3.6) ∥φ∥W (Td) =
⟨ψ,φ⟩

∥ψ∥(W (Td))∗
.

Proof. Since φ is nontrivial, it follows from the Hahn–Banach theorem
and the fact that (W (Td))∗ is embedded in H2(Td) that there is ψ in H2(Td)
such that (3.6) holds. Since Pm is self-adjoint in the pairing of H2(Td) and
since Pmφ = φ, it follows from Lemma 8 that (3.6) also holds if ψ is replaced
by Pmψ.

Let H2(Td) be the closed subspace of L2(Td) consisting of the complex
conjugates of functions inH2(Td) and let P denote the orthogonal projection
from L2(Td) to H2(Td). Let ψ be a function in H2(Td). The formula

Hψf = P (ψf)

densely defines a Hankel operator Hψ from H2(Td) to H2(Td). In the present
context, [1, Theorem 2.5] asserts that Hψ extends to a bounded linear opera-
tor if and only if ψ is in (W (Td))∗ and that in this case ∥Hψ∥ = ∥ψ∥(W (Td))∗ .
If ψ is in (W (Td))∗ and f, g are in H2(Td), then

⟨Hψf, g⟩ = ⟨fg, ψ⟩.

This formula makes it easy to compute the matrix of Hψ with respect to the
standard basis that H2(Td) and H2(Td) inherit from L2(Td).

Lemma 10. If φα(z) = z21 + αz1z2 + z22 for α ≥ 0, then

∥φα∥(W (T2))∗ = max(
√
2 + α2, 1 + α).

Proof. The matrix of the Hankel operator Hφα with respect to the stan-
dard basis of H2(T2) and H2(T2), with rows and columns containing all
zeros omitted, is
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0 0 0 1 α 1

0 1 α 0 0 0

0 α 1 0 0 0

1 0 0 0 0 0

α 0 0 0 0 0

1 0 0 0 0 0


.

Let (ej)6j=1 be the standard basis of C6. Due to orthogonality and the block
structure of the matrix, it is sufficient to let it act on the subspaces span {e1},
span {e2, e3}, and span {e4, e5, e6}. The norms are, respectively,

√
2 + α2,

1 + α, and
√
2 + α2.

We mention in passing that the block structure of the matrix appearing
in the proof of Lemma 10 is a special case of a general phenomenon that
occurs for Hankel operators on H2(Td) with m-homogeneous symbols (see
[3, Theorem 4]).

Lemma 10 allows us to compute one of the two nontrivial quantities in
the condition of Theorem 2(d) for the polynomials φα. It is also the crucial
ingredient in the following result.

Theorem 11. Suppose that φα(z) = z21 + αz1z2 + z22. Then

∥φα∥W (T2) =


√
2 + α2 if 0 ≤ α ≤ 1/2,

4+α
3 if 1/2 < α ≤ 2,

α if α > 2.

Proof. By Lemma 9 there is a 2-homogeneous polynomial

ψ(z) = az21 + bz1z2 + cz22

such that

∥φα∥W (T2) =
⟨ψ,φα⟩

∥ψ∥(W (T2))∗
.

It follows from triangle inequality (for (W (T2))∗) that if this formula holds
for ψ1 and ψ2, then it also holds for ψ1 + ψ2. Since the coefficients of φα
are real, it follows that a, b, and c are real. Moreover, since φα(z2, z1) =
φα(z1, z2), we must have a = c. We consider first the case that a = c ̸= 0,
where we normalize ψ with a = c = 1 and b = β ≥ 0. Using Lemma 10, we
see that

∥φα∥W (T2) = sup
β≥0

Fα(β) for Fα(β) =


2+αβ√
2+β2

if 0 ≤ β ≤ 1/2,

2+αβ
1+β if β > 1/2.

There are three cases to consider:
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(i) If 0 ≤ α ≤ 1/2, then Fα is increasing until β = α and then decreasing.
(ii) If 1/2 < α ≤ 2, then Fα is increasing until β = 1/2 and then decreasing.
(iii) If α > 2, then Fα is increasing.

Note that to attain supremum in (iii) we have to let β → ∞. This is equiv-
alent to the case a = c = 0 that we excluded above. The proof is completed
by checking that

Fα(α) =
√

2 + α2, Fα(1/2) =
4 + α

3
, Fα(β) → α as β → ∞.

The knowledge of ∥φα∥W from Theorem 11 makes it possible to guess an
optimal weak factorization (1.1) of φα in the three cases.

(i) If 0 ≤ α ≤ 1/2, then an optimal weak factorization is φα = φα · 1.
(ii) If 1/2 < α < 2, then an optimal weak factorization is

φα(z) =
2

3
(α− 1/2)(z1 + z2)(z1 + z2) +

2

3
(2− α)

(
z21 +

z1z2
2

+ z22

)
· 1.

(iii) If α > 2, then an optimal weak factorization is

φα(z) =

(
z1 +

α+
√
α2 − 4

2
z2

)(
z1 +

α−
√
α2 − 4

2
z2

)
.

We conclude the paper by wrapping up the proof of Theorem 4.

Proof of Theorem 4. Statement (i) is trivial since no φα has constant
modulus on T2, and—as noted above—statement (ii) is the same as Theo-
rem 7. It is plain that ∥φα∥H2(T2) =

√
2 + α2. To settle (iii) and (iv), we use,

respectively, Theorems 1 and 2, which requires solving the equations

∥φα∥(W (T2))∗ =
√

2 + α2 and ∥φα∥W (T2)∥φα∥(W (T2))∗ = 2 + α2.

By Lemma 10, the first equality holds if and only if 0 ≤ α ≤ 1/2. We then
use both Lemma 10 and Theorem 11 to see that the second equality holds
if and only if 0 ≤ α ≤ 1/2 or α = 2.
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