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Abstract. This paper presents algorithms for quadratic forms over a formally real algebraic
function field K of one variable over a fixed real closed field k. The algorithms introduced in
the paper solve the following problems: test whether an element is a square, respectively a local
square, compute Witt index of a quadratic form and test if a form is isotropic/hyperbolic. Finally,
we remark on a method for testing whether two function fields are Witt equivalent.

1. Introduction. Computational methods have been prominent in the theory of qua-
dratic forms from its early dawn. One may, for example, mention Legendre’s descent
method for solving trivariate quadratic equations. This subjects continues to be an area
of active research today. The problem of finding isotropic vectors and subspaces are
treated (among others) in papers by J. E. Cremona and D. Rusin [5], D. Simon [14] or
P. Castel [4]. Given a base field K, the main aim of the theory is to develop algorithms
for the following tasks:

(1) testing if a non-degenerate quadratic form ξ (with coefficients in K) is isotropic;
(2) testing if ξ is hyperbolic;
(3) computing Witt index of ξ;
(4) determining the anisotropic part of ξ;
(5) finding an isotropic vector of ξ.

The problems listed above are ordered roughly with respect to their level of difficulty.
Indeed, being able to solve (5), one may inductively knock out hyperbolic planes from the
quadratic space (Kn, ξ), until the anisotropic part of ξ is found. Knowing the dimension
of the anisotropic part one immediately computes the Witt index (see Section 3, below)
and knowing the Witt index one verifies whether the form is isotropic/hyperbolic.
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In this paper, we deal with these problems for a formally real algebraic function fieldK
of one variable over a real closed field k. It was proved in [10] that already for the field
k(X) of rational functions, there cannot exist an algorithm solving (4), hence there is
also no such algorithm for (5). Therefore, in this paper we concentrate entirely on the
first three tasks.

A function field K may be presented in various manners. The basic representations
are the following ones:
(1) As a finite extension of a rational function field k(X), i.e. K = k(x, y) = k(X)[Y ]/p,

where p ∈ k(X)[Y ] is an irreducible polynomial. The elements of K are then the
remainders of polynomials modulo p and are represented as polynomials of degrees
smaller than deg p.

(2) As the fraction field of the quotient ring of the bivariate polynomial ring k[X,Y ],
i.e. K = k(x, y) = qf

(
k[X, Y ]/P

)
, where P ∈ k[X,Y ] is a bivariate irreducible

polynomial. This way we may think of K as the function field of an affine curve
C = {P = 0} ⊂ A2k(

√
−1).

(3) As the function field of a projective algebraic curve Ĉ = {Ph = 0} ⊂ P2k(
√
−1),

where Ph ∈ k[X,Y, Z] is a homogeneous polynomial.
Conversions between all these three representations are straightforward and will be im-
plicit in presented algorithms, when needed. The points of Ĉ are in one-to-one correspon-
dence with non-trivial valuation rings of K containing k. We will frequently utilize this
correspondence.

2. Square tests. Our first and most basic task is to develop an algorithm testing
whether a given element α ∈ K is a square. We achieve the goal by the following proce-
dure.
Algorithm 1. Let K = k(x, y) = k(X)[Y ]/p be an algebraic function field over k repre-
sented by an irreducible polynomial p ∈ k(X)[Y ]. For an element α ∈ K̇, represented by
a polynomial a ∈ k(X)[Y ], deg a < deg p, this algorithm returns true, when α is a square
in K and false otherwise.
(1) Take s := 1 and compute

N := resY

(
(T − s · Y )2 − a, p

)
∈ k(X)[T ].

If N is square-free, proceed to the next step. Otherwise increment s and compute
N again. Repeat this step until N becomes a square-free polynomial.

(2) Let T ′ := T − s · Y and let M ∈ k[X] be the gcd of the denominators of the
coefficients of N , considered as a polynomial in T ′ over k(X).

(3) Let F ∈ k(X)[T ′] be the primitive part of M ·N ∈ k(X)[T ′].
(4) Use [1, Alg. 4.4.1] to check if F is irreducible (by checking if the ideal (F ) is prime)

in k[X,T ′] as a bivariate polynomial. If it is irreducible then return false, otherwise
return true.

Proof of correctness. There are only finitely many s ∈ k for which N is not square-free
(see e.g. [16, Theorem 5.4.5]), hence the step (1) terminates in finite time. Now, α is
a square in K if and only if (T ′)2 − α factors in K[T ′] and [16, Theorem 5.4.2] asserts
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that this is the case if and only if N is reducible in k(X)[T ′]. In turn, N is irreducible
in k(X)[T ′] if and only if F is irreducible in k[X,T ′]. Indeed, suppose F is reducible.
Then, since F is primitive, it follows that it can be written as a product GH of two non-
constant polynomials G,H ∈ k[X,T ′], so N = 1

MGH factors in k(X)[T ′]. Conversely, if
F is irreducible in k[X,T ′], it follows from the Gauss lemma that it is also irreducible in
k(X)[T ′] and this is only the case if N is irreducible, since factoring N in k(X)[T ′] would
clearly yield a factorization of F over the same field.

Remark. If the polynomial a in the above algorithm has rational coefficients, then for the
irreducibility test in step (4) one can use [6, §5], which is much faster than [1, Alg. 4.4.1].

The previous algorithm tests whether an element is a square inK. One may consider it
as a “global” problem. Its “local” counterpart is to check if α is a square in the completion
Kp for some real place p of K. Let k be a real closed field. For Q ∈ k[X], deg(Q) > 0, let
us denote by Der(Q) the set {Q,Q′, . . . , Qdeg Q−1} of consecutive derivatives of Q. We
assume the following notation: if (T, σ) is triangular Thom encoding specifying a point
(x0, y0) ∈ k2, we denote elements of the list T by T1 and T2 and elements of the list σ
by σ1, σ2. For the notion of Thom encoding we refer the reader to [2, Chapter 10]. Recall
that T1, T2, σ1, σ2 satisfy the following conditions:

(1) T1 ∈ K[X], T2 ∈ K[X,Y ] and T1(x0) = 0, T2(x0, y0) = 0,
(2) σ1 is a sign condition on Der(T1) specifying x0,
(3) σ2 is a sign condition on Der

(
T2(x0, Y )

)
specifying y0.

Before we present an algorithm for local square test we introduce a method to perform a
particularly useful change of variables in a triangular Thom encoding.

Algorithm 2. Let k be an arbitrary real closed field. Let (T, σ) be a triangular Thom
encoding of a point (x0, y0) ∈ k2. For a given a ∈ k this algorithm returns the triangular
Thom encoding of the point (x0 + ay0, y0).

(1) Let P (Y ) := resX(T1, T2).
(2) Characterize all real roots y1, . . . , ym of P by the sign conditions τ1, . . . , τm on

Der(P ) using [2, Alg. 10.14].
(3) Characterize all real roots x1, . . . , xn of T1 by the sign conditions τ1, . . . , τn on

Der(T1) using [2, Alg. 10.14].
(4) Comparing necessary sign conditions using [2, Alg. 10.16], find j such that τ j = σ1.
(5) Comparing necessary sign conditions using [2, Alg. 10.16], find k such that the sign

condition realized on DerY (T2) at the point specified by
(
(T1, P ), (τ j , τk)

)
is equal

to σ2.
(6) Let Q := T1(X + aY ).
(7) Let R := resY (Q,P ).
(8) Describe all real roots x1, . . . , xl of R by the sing conditions σ1, . . . , σl on Der(R)

realized at these points using [2, Alg. 10.14].
(9) Choose an increasing sequence m1, . . . ,mn of natural numbers, such that points

(xm1 , yk), . . . , (xmn , yk) correspond to common roots of Q and P using [2, Alg. 11.8]
for sign determination.

(10) Return the triangular Thom encoding
(
(R,P ), (σmj

, τk)
)
.
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Proof of correctness. It is clear that the algorithm terminates in finite time. Existence
of j and k in steps (4) and (5) is also clear. After performing a transformation of the
form X 7→ X + aY , the ordinate of every point remains fixed and so does the number of
common roots of T1 and P . Transformations of this form also preserve order on k×{yj}.
Since the abscissa of every common root of Q and P can be encoded using sign conditions
on Der(R) it is sufficient to determine sign conditions of those roots of the form (x, yj)
and then choose k-th of them, which is what the algorithm does.

Recall (see e.g. [7], [3] or [12, Section 1.4]) that a real curve C can be equipped with a
topology (called strong or euclidean topology) in which the elements ofK regarded as real
functions on C are continuous. The curve C consists of finitely many semi-algebraically
connected components. Every component can be independently oriented in two differ-
ent ways. Having an orientation fixed, for every two points p, q belonging to the same
component, one defines an interval (p, q) to be a subset consisting of all the points lying
between p and q with respect to the given orientation. In order to present an algorithm
for a local square test we need one more tool. The following proposition gives a necessary
and sufficient condition for α ∈ K to be a local square at a point p.
Proposition 2.1. Let p be a point on a curve C and α ∈ K. Then α is a square in
the completion Kp of K at point p if and only if it takes strictly positive values in some
neighborhood of p excluding p.
Proof. There exist exactly two orderings of K that are compatible with p (see e.g.
[9, p. 332]), namely:

P−p =
{
α ∈ K : ∃ q < p ∀ r ∈ (q, p) α(r) > 0

}
,

P+
p =

{
α ∈ K : ∃ q > p ∀ r ∈ (p, q) α(r) > 0

}
.

Now, α ∈ K̇p is a square if and only if it belongs to both orderings. This condition is
equivalent to the statement of the proposition.

We are now ready to present an algorithm for local square test.
Algorithm 3. Let P be an irreducible bivariate polynomial over a real closed field k,
representing a function field K = qf(k[X, Y ]/P). Assume that the curve C = {P = 0} has
no self-intersections. Given a real point p lying on C, represented by a triangular Thom
encoding (T, σ) and an element α ∈ K̇ represented by a polynomial a ∈ k[X,Y ], this
algorithm returns true if α is square in the completion Kp of K at p and false otherwise.
(1) Evaluate the sign s of a at the point p using [2, Alg. 11.8].
(2) If s > 0 return true, if s < 0 return false. Proceed to the next step only when s = 0.
(3) Using [2, Alg. 11.8] determine the sign of ∂P

∂Y at the point p, if it is 0, then perform
a change of coordinates (X,Y ) 7→ (Y,X).

(4) Let k := 1.
(5) Determine signs realized by ∂P

∂Y above the point represented by Thom encoding
(T1, σ1) using [2, Alg. 11.12] and [2, Alg. 11.8]. If none of them is 0 go to step (8).

(6) Perform a linear change of coordinates (X,Y ) 7→ (X + kY, Y ) on P and a and
point p using Algorithm 2.



ALGORITHMS FOR QUADRATIC FORMS OVER REAL FUNCTION FIELDS 137

(7) Let k := k + 1, go to step (5).
(8) Use [2, Alg. 11.2] to perform a cylindrical algebraic decomposition adapted to the

system {a, P, T1}. Denote points determining intervals of first level cells by x1 <

. . . < xL and let j be such that xj is the abscissa of the point p. Denote sample
points above xj by A1, . . . , Ad, sample points above (xj−1, xj) by B1, . . . , Be and
sample points above (xj , xj+1) by C1, . . . , Cf (putting x0 = −∞ and xl+1 = +∞
if necessary).

(9) Choose an increasing subsequence m1, . . . ,mn of {1, . . . , d} consisting of all such
indices that the sign of P at points Am1 , . . . , Amn

is 0.
(10) Choose an increasing subsequence m1, . . . ,mn of {1, . . . , e} consisting of all such

indices that the sign of P at points Bm1 , . . . , Bmn
is 0.

(11) Choose an increasing subsequence m̃1, . . . , m̃n of {1, . . . , f} consisting of all such
indices that the sign of P at points Cm̃1 , . . . , Cm̃n

is 0.
(12) Find l such that the point Aml

corresponds to the input point p.
(13) Extract the sings s1 and s2 of a respectively at points Bml

and Cm̃l
, return

s1 > 0 ∧ s2 > 0.

Proof of correctness. Denote the coordinates of p by (px, py). Proposition 2.1 asserts that
it suffices to check if the polynomial a takes only positive values in some neighborhood
of p on curve C except possibly p itself. Therefore, if it is positive at p it is a local square
and if it takes a negative value at this point it certainly is not a local square. The only
remaining case is when curves {P = 0} and {a = 0} intersect at p. In this case we make
sure that tangent to P at p is not vertical. In case it is not, polynomial P crosses line
X = px and we only need to determine sign of a on two intervals of C adjacent to p from
both sides. The algorithm first makes sure that there are no vertical tangent lines to P
above px, and since there are only finitely many points at which it may happen, loop
in steps (4)–(7) clearly stops in finite time. In case when there are no vertical tangents
above the point px, the algorithm performs cylindrical algebraic decomposition adapted
to {a, P, T1}. Since there are no critical points of C above px, the number of cells above px

at which P vanishes is the same as the number of cells at which P vanishes above the
intervals adjacent to px. Thus, in order to determine the required sign conditions for a,
it suffices to find sample points for the cells corresponding to two intervals adjacent to p.
This is what the algorithm does.

It is also worth pointing out that a test if an element is a square can be performed not
only in K, but also in k[X,Y ]. The next algorithm checks whether a given F ∈ k[X,Y ]
is a square.

Recall (see e.g. [16, Ch 5.2]) that Kronecker transform of a polynomial F ∈ k[X,Y ] is
a mapping of the form F (X,Y ) 7→ F (T, T d), where d > 1 is a fixed natural number. For
a given d let us denote this transform by Sd. Observe that Sd is a ring homomorphism
from k[X,Y ] to k[T ]. In general, it is not injective. However, one may get an injective
map by restricting Sd to the family

{
F ∈ k[X,Y ] : max{degX(F ),degY (F )} ≤ d

}
.

It is clear that if F ∈ k[X,Y ] is a square, then for every d ∈ N, d ≥ 2, its image Sd(F )
is also a square. The opposite implication is false in general. Nevertheless, by fixing a
sufficiently large d and computing the square root g of Sd(F ) and finding its preimage
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S−1
d (g), one can eliminate “false positives”. The details of the procedure are formulated

in the following algorithm.
Algorithm 4. Let k be an arbitrary real closed field and let F ∈ k[X,Y ]. This algorithm
returns true if F is a square in k[X,Y ] and false otherwise.
(1) Compute d = max

{
degX(F ),degY (F )

}
.

(2) Perform Kronecker transform Sd(F ) and denote the image by f .
(3) Perform the square-free factorization a1a

2
2 · · · an

n of f .
(4) Using the square-free factorization of f , decide if it is a square in k[T ], if not return

false, otherwise compute g such that f = g2.
(5) Compute the preimage G = S−1

d (g). Check if F = G2, if yes return true, otherwise
return false.

Proof of correctness. Consider f computed in step (2) of the algorithm. If it is not a
square in k[T ] then certainly F cannot be a square in k[X,Y ]. Hence, the only thing
that needs to be shown is that if f = g2 and F 6= G2 then F is not a square. Suppose
otherwise, F = H2 for some H ∈ k[X,Y ]. But then f = Sd(H)2, so Sd(H) = g or
Sd(H) = −g. In both cases F = S−1

d (h)2 = G2.

3. Isotropy, hyperbolicity and Witt index. Our next aim is to develop algorithms
checking if a given form ξ is isotropic/hyperbolic or more generally computing the di-
mension of the anisotropic part (hence consequently also the Witt index) of ξ. To this
end, we need a tool determining the signatures sgnp ξ of ξ at almost all real points p ∈ C.
Clearly, the signatures may possibly change only at the zeros/poles of the coefficients
of the form ξ. Other than that, it is constant on the intervals between the zeros/poles.
Hence, the given form ξ admits only finitely many signatures. We may compute them
using the following variant of cylindrical algebraic decomposition.
Algorithm 5. Let k be a real closed field, let K be a formally real algebraic function
field over k represented by an irreducible polynomial P ∈ k[X,Y ] and let Cr =

{
(x, y) ∈

A2k : P (x, y) = 0
}
. Given a non-degenerate quadratic form ξ = 〈α1, . . . , αd〉, where the

coefficients αi are represented by polynomials A1, . . . , Ad, the algorithm returns the list S
of signatures of ξ at all but finitely many points on Cr.
(1) Compute the resultants rj = resY (P,Aj), for j = 1, . . . , d.
(2) Let R := r1 · · · rd and S := () be an initially empty list.
(3) Compute an ordered list of Thom encodings σ1, . . . , σm of all real roots x1 < x2 <

. . . < xm of R using [2, Alg. 10.14].
(4) Compute Thom encodings σ1, . . . , σl of all the roots x1 < . . . < xl of R′ using

[2, Alg. 10.14].
(5) Using [2, Prop. 2.28] for comparison of Thom encodings in lists {σi} and {σj},

choose an increasing subsequence k1, . . . , km−1 of 1, 2, . . . ,m− 1 such that xkj
lies

between xj and xj+1.
(6) To simplify notation denote Thom encodings σkj

by θj . Compute Thom encodings
θ0 and θm of points q0 and qm respectively smaller and larger than every real
root of R. This can be done for example by encoding respectively smallest root of
R(X + 1) and largest root of R(X − 1).
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(7) For each θj with 0 ≤ j < m which specifies a root of resY (P, ∂P
∂Y ) do the following:

compute Thom encoding of an arbitrary point between the point specified by θj

and xj+1 using [2, Alg. 10.15]. Replace θj by this Thom encoding. Repeat until the
point specified by θj is no more a root of resY (P, ∂P

∂Y ).
(8) For each j ∈ {1, . . . ,m} proceed as follows:

(a) Denote by qj the point specified by θj . Compute triangular Thom encod-
ings σ̃1, . . . , σ̃n−1 specifying points (qj , y1), . . . , (qj , yn−1) where y1, . . . , yn−1 are
points lying in the intervals between the consecutive real roots of the polynomial
f(Y ) = P (qj , Y ) · A1(qj , Y ) · · ·Ad(qj , Y ) (one point in each such interval) using
[2, Alg. 11.11].
(b) Compute Thom encodings σ̃0, σ̃n of arbitrary points (qj , y0), (qj , yn) with the
property that y0 < y1 and yn−1 < yn. This can be done for example by encoding
the smallest root of the polynomial f(Y + 1) and the largest root of the polynomial
f(Y − 1).
(c) For every 0 < i ≤ n if sgnP (qj , yi) · sgnP (qj , yi+1) < 0 (which can be checked
using [2, Alg. 11.8]) compute, using the same algorithm, s1 = sgnA1(qj , yi), . . . ,
sd = sgnAd(qj , yi). Append s1 + . . .+ sd to S.

(9) Return S.

Fig. 1. Illustration of Algorithm 5. Curve Cr is shown with a solid line
and curve {Ak = 0} is shown with a dashed line.

Remark. Figure 1 illustrates how the above algorithm works. Observe that, if C is not
monotonic in the cylinder over some (qi, qi+1), then the signatures of ξ on some intervals
may be computed multiple times. In other words, the algorithm computes the signatures
of ξ on all intervals of C with endpoints either at “critical points” (i.e. points where
tangent to C is strictly vertical) or points with abscissas equal to the projection of some
zero/pole of at least one coefficient of ξ.
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Proof of correctness. The curve C intersects curves {A1 = 0}, . . . , {Ad = 0} in only
finitely many points. By the basic properties of the resultant, the roots of R are pre-
cisely the abscissas of all these intersection points. Fix now a point (qj , yi) as com-
puted in step (6), (7) and (8a) of the algorithm. All the roots of f are distinct, hence
if P (qj , yi) · P (qj , yi+1) is negative, this means that yi is not a root of any Ak(qj , Y ).
Consequently, the sign of Ak(qj , yi), or equivalently the sign of Ak(qj , yi+1), is just the
sign of αk on the whole interval of C lying between (qj , yi) and (qj , yi+1).

Recall (see e.g. [13, Chapter i, §4]) that any non-degenerate quadratic form ξ can be
uniquely (up to an isometry) decomposed as ξ = η ⊥ H, where η is an anisotropic form,
called the anisotropic part of ξ and H is hyperbolic. The number of hyperbolic planes
making up H (i.e. half of the dimension of H) is called the Witt index of ξ and denoted
by ind(ξ), in other words ind ξ = 1/2 ·(dim ξ−dim η). The above algorithm can be used to
answer three questions: about isotropy, hyperbolicity and Witt index of a given quadratic
form.

Proposition 3.1. Let ξ = 〈α1, . . . , αd〉 be a non-degenerate quadratic form over the real
function field K = k(x, y).

(1) If d = 1, then ξ is neither isotropic nor hyperbolic and ind ξ = 0.
(2) If d = 2, then ξ is isotropic, and equivalently hyperbolic, if and only if −α1α2 is a

square in K (this condition can be checked by Algorithm 1). If it is the case then
ind ξ = 1, otherwise ind ξ = 0.

(3) Assume that d > 2 and s = max
{
|σ|

∣∣ σ ∈ S
}
, where S is the list returned by

Algorithm 5. The form ξ is isotropic if and only if s < d. The form ξ is hyperbolic
if and only if s = 0. The Witt index of ξ equals ind ξ = (d− s)/2.

Proof. The first two assertions are trivial, while the third one follows immediately from
the Witt theorem (see e.g. [8, Theorem 9.4]). The computation of the Witt index follows
from the above equality ind ξ = 1/2 · (dim ξ − dim η).

4. Witt equivalence. Recall (see e.g. [13] or [15]) that the Witt ring of a field (resp.
a ring)K is the ring of similarity classes of non-degenerate bilinear forms with the addition
induced by the orthogonal sum and the multiplication induced by the tensor product. Two
fields (resp. rings) are said to beWitt equivalent if their Witt rings are isomorphic (see e.g.
[12, Chapter 5] or [15, Chapter 20] for further information concerning Witt equivalence).
One of the fundamental problems in algebraic theory of quadratic forms is to find criteria
for two fields/rings to be Witt equivalent. It is known (see e.g. [9, Theorem 5.1]) that two
function fields K,L with a common real closed field of constants k are Witt equivalent
if and only if their are both formally real (i.e. the associated real curves are not empty)
or both non-real (i.e. the curves are both empty). Suppose now that both K and L are
formally real. Denote by RK :=

⋂
p – realOp(K) the intersection of all the residually real

valuation rings ofK, and similarly RL :=
⋂

p – realOp(L). These are the rings of functions
regular in all real points of the curves ĈK associated to K and ĈL associated to L. It is
known (see [11, Corollary 4.2]) that RK and RL are Witt equivalent if and only ĈK and
ĈL have the same number of semi-algebraically connected components. The algorithm in
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[6, §6] checks if a real curve is non-empty and the number of components of the curve may
be computed by the means of cylindrical algebraic decomposition1. Hence we proved:
Observation 4.1. Using Algorithm [2, Alg. 15.13] one may verify whether two function
fields K,L with a common real closed field of constants k are Witt equivalent or not. If
they are, the same algorithm may be used to check if their sub-rings RK , RL are Witt
equivalent.
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