Workshop: Kontsevich formality theory and the Duflo isomorphism
Banach Center, 06-09 April 2009
Program
Printer friendly .pdf
Introduction
(15 min)(D. Calaque)
- presentation and goals of the workshop
Lecture 1 (45 min): Introduction to deformation quantization after Kontsevich I (P. Witkowski)
- Definition of a differential graded Lie algebra (DGLA)
- Definition of T_{poly} : vector fields, polyvector fields, Schouten bracket
- Poisson bracket \Leftrightarrow Maurer-Cartan element (MCE) in T_{poly}
- Definition of D_{poly} : differential operators, polydifferential operators, Gerstenhaber bracket, Hochschild coboundary operator
- Associative product \Leftrightarrow MCE in D_{poly}
Lecture 2 (45 min): Introduction to deformation quantization after Kontsevich II (J. Milles)
- Formal deformation \Rightarrow Poisson structure (semi-classical limit)
- Statement of the deformation quantization problem
- Statement of the Hochschild-Kostant-Rosenberg theorem
- Lie algebra morphisms between DGLAs induces a map between MC elements
- Consequence: if H-K-R was a Lie morphism, then we would obtain a solution to the deformation quantization problem
- Default of being a Lie morphism (example)
Lecture 3 (45 min) : Introduction to the formality theorem (A. Kaygun)
- Reminder on cofree coalgebras
- Definition of L_\infty -algebras (example: DGLAs are L_\infty -algebras) and L_\infty -morphisms
- MCE elements are sent to MCE via a L_\infty -morphism
- Statement of the formality theorem (existence of a L_\infty -morphism)
- Consequences for deformation quantization
Lecture 4 (1h) : Kontsevich's graphs and formality (E. Hoffbeck)
- Definition of an admissible graph
- Polydifferential operator associated to an admissible graph (examples)
- Sign ambiguity in the previous definition
- Construction of what-would-be-a-formality-map in terms of graphs (weights of graphs not yet specified)
- Quadratic identities on weights of graphs \Rightarrow L_\infty -condition
Lecture 5 (1h30) : Angle forms on compactified configuration spaces (J.-M. Oudom)
- Configuration spaces C_{n,m}^+ and their compactifications
- Combinatorics of the boundary of the compactified configuration spaces
- Angle forms on configuration spaces
Lecture 6 (45min) : Proof of Kontsevich's formality theorem (Y. Frégier)
- Weights of graphs as integrals of angle forms
- Sign ambiguity in the definition (cancel with the sign ambiguity of Lecture 4)
- Stokes theorem
- Vanishing lemmata (without proofs!)
- Examples of two graphs and their weights
- Proof of the appropriate identities on weights (i.e proof of the L_\infty condition)
Lecture 7 (45min) : Compatibility between cup products I (E. Burgunder)
- The homotopy equation
- Expression of the cup-products in terms of weights and graphs
- A path in \bar{C}_{2,0}
- Expression of the homotopy in terms of weights and graphs
Lecture 8 (45min) : Compatibility between cup products II (M. Livernet)
- Stokes formula
- Proof of the homotopy equation
Lecture 9 (1h30) : Duflo isomorphism (C. Blohmann)
- Statement (without proof!) of the Poincar\'e-Birkhoff-Witt theorem
(isomorphism of vector spaces between
S( g) and U( g) )
- Statement of the Duflo isomorphism (isomorphism of algebras between
S( g)^{ g} and U( g)^{ g} )
- Proof of the statement via the compatibility between cup-products (after Kontsevich)
Lecture 10 (1h30): The combinatorial Kashiwara-Vergne conjecture and the Duflo isomorphism (M. Ronco)
- Baker-Campbell-Hausdorff formula
- Presentation of the KV conjecture
- Statement of the combinatorial KV conjecture
- KV implies Duflo (algebraically)
Lecture 11 (1h30): Proof of the KV conjecture (J.-L. Loday)
- Lie- and wheel-type graphs
- Reformulation of the KV conjecture via deformations (equivalence)
- A deformation of the Baker-Campbell-Hausdorff formula
- Alekseev-Meinrenken proof (sketch)
Lecture 12 (1h30) : Introduction to Drinfeld associators (A. Brochier)
- Universal Lie algebra t_n , relation with semi-simple Lie algebras
- Definition of associators
- Categorical interpretation
- Torsor structure
- Existence/C = existence/Q
Lecture 13 (1h30) : KV associators, after Alekseev-Torossian (D. Calaque)
- tder, sder, tr, kv_2 , kv_3 , etc ...
- Definition of KV-associators
- Relation with Drinfeld associators
- Relation with the KV problem
Lecture 14 (1h30 min): Existence of Drinfeld associators (U. Kraehmer)
- Knizhnik-Zamolodchikov equations
- Construction of the KZ associator
- Proof that it satisfies the axioms of associators
Lecture 15 (45 min): Drinfeld double (P. M. Hajac)
- The Drinfeld double and its quasi-triangular structure
Lecture 16 (45 min): Quantization of Lie bialgebras (T. Maszczyk)
- Lie bialgebras, quantization problem
- Strategy of Etingof-Kazhdan proof
Lecture 17: Alekseev-Enriquez-Torossian explicit proof of the KV conjecture (A. Alekseev)
References :
1, ... & 6 : Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157--216. (ArXiv)
1,2 & 3 : Keller's part in [CKTB]: Déformation, Quantification, Théorie de Lie, Panoramas et Synthèses 20 (2005).
See also here for a premiminary version of Keller's part.
5 : Bruguieres's appendix in [CKTB].
See also here for a premiminary version of Bruguieres's part.
1, ... & 5: Cattaneo, Formality and star products,
Lecture notes taken by D. Indelicato, London Math. Soc. Lecture Note Ser., 323,
Poisson geometry, deformation quantisation and group representations, 79--144, Cambridge Univ. Press, Cambridge, 2005. (ArXiv)
6 : Torossian's part in [CKTB].
6 : Arnal, Manchon & Masmoudi, Choix des signes pour la formalité de M. Kontsevich. (French) [Choice of signs for M. Kontsevich's formality theorem] Pacific J. Math. 203 (2002), no. 1, 23--66.
(ArXiv)
7 & 8 : Manchon & Torossian, Cohomologie tangente et cup-produit pour
la quantification de Kontsevich, Annales Mathématiques Blaise Pascal, Vol 10 (1), 2003, 75-106.
(ArXiv)
7, 8 & 9 : Calaque & Rossi, Lectures on Duflo isomorphisms in
Lie algebras and geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 060.
(Available here).
9: Loday, Série de Hausdorff, idempotents eulériens et algèbres de Hopf. Exposition. Math. 12 (1994), no. 2, 165--178.
9: Torossian, Cours de Master : Formule de Campbell-Haudorff, Isomorphisme de Duflo et Conjecture de Kashiwara-Vergne.
(Available here).
9 : Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157--216. (ArXiv)
10:
10 & 11 : Torossian, La conjecture de Kashiwara-Vergne, séminaire Bourbaki, juin 2007. Available here.
10 & 11 : Alekseev & Meinrenken, On the Kashiwara-Vergne conjecture, Invent. Math. 164 (2006), no. 3, 615--634. (ArXiv)
11 : Torossian, Sur la conjecture combinatoire de Kashiwara-Vergne, Ann. Math. Blaise Pascal 10 (2003), no. 1, 75--106. (ArXiv)
12 : Drinfeld, On quasi-triangular quasi-Hopf algebras and a group closely connected with {\rm Gal}(\overline{Q}/Q) , Leningrad Math. J., vol. 2 no. 4, 829--860, (1991).
12: Kassel, Quantum groups, New York NY : Springer, 1995.
12: Chari, Pressley, A guide to quantum groups. Cambridge University Press, Cambridge, 1994.
13 : Alekseev & Torossian, The Kashiwara-Vergne and Drinfeld associators, preprint arXiv math0802.4300.
13 : Torossian, Kashiwara-Vergne problem and Drinfeld's associators, available here.
14, 15 & 16 : Drinfeld, On quasi-triangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q), Leningrad Math. J., vol. 2 no. 4, 829--860, (1991).
14, 15 & 16 : Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798--820, Amer. Math. Soc., Providence, RI, 1987.
14, 15 & 16 : Etingof, Schiffman, Lectures on Quantum groups, Lectures in Mathematical Physics. International Press, Somerville, MA, 2002.
14, 15 & 16 : Etingof, Kazhdan, Quantization of Lie bialgebras I, Se. Lecta Math. (N.S.) 2 (1996), no. 1, 1--41.