Workshop: Kontsevich formality theory and the Duflo isomorphism
Banach Center, 06-09 April 2009

Program

Printer friendly .pdf

Introduction (15 min)(D. Calaque)

  1. presentation and goals of the workshop


Lecture 1 (45 min): Introduction to deformation quantization after Kontsevich I (P. Witkowski)

  1. Definition of a differential graded Lie algebra (DGLA)
  2. Definition of T_{poly} : vector fields, polyvector fields, Schouten bracket
  3. Poisson bracket \Leftrightarrow Maurer-Cartan element (MCE) in T_{poly}
  4. Definition of D_{poly} : differential operators, polydifferential operators, Gerstenhaber bracket, Hochschild coboundary operator
  5. Associative product \Leftrightarrow MCE in D_{poly}


Lecture 2 (45 min): Introduction to deformation quantization after Kontsevich II (J. Milles)

  1. Formal deformation \Rightarrow Poisson structure (semi-classical limit)
  2. Statement of the deformation quantization problem
  3. Statement of the Hochschild-Kostant-Rosenberg theorem
  4. Lie algebra morphisms between DGLAs induces a map between MC elements
  5. Consequence: if H-K-R was a Lie morphism, then we would obtain a solution to the deformation quantization problem
  6. Default of being a Lie morphism (example)


Lecture 3 (45 min) : Introduction to the formality theorem (A. Kaygun)

  1. Reminder on cofree coalgebras
  2. Definition of L_\infty -algebras (example: DGLAs are L_\infty -algebras) and L_\infty -morphisms
  3. MCE elements are sent to MCE via a L_\infty -morphism
  4. Statement of the formality theorem (existence of a L_\infty -morphism)
  5. Consequences for deformation quantization


Lecture 4 (1h) : Kontsevich's graphs and formality (E. Hoffbeck)

  1. Definition of an admissible graph
  2. Polydifferential operator associated to an admissible graph (examples)
  3. Sign ambiguity in the previous definition
  4. Construction of what-would-be-a-formality-map in terms of graphs (weights of graphs not yet specified)
  5. Quadratic identities on weights of graphs \Rightarrow L_\infty -condition


Lecture 5 (1h30) : Angle forms on compactified configuration spaces (J.-M. Oudom)

  1. Configuration spaces C_{n,m}^+ and their compactifications
  2. Combinatorics of the boundary of the compactified configuration spaces
  3. Angle forms on configuration spaces


Lecture 6 (45min) : Proof of Kontsevich's formality theorem (Y. Frégier)

  1. Weights of graphs as integrals of angle forms
  2. Sign ambiguity in the definition (cancel with the sign ambiguity of Lecture 4)
  3. Stokes theorem
  4. Vanishing lemmata (without proofs!)
  5. Examples of two graphs and their weights
  6. Proof of the appropriate identities on weights (i.e proof of the L_\infty condition)


Lecture 7 (45min) : Compatibility between cup products I (E. Burgunder)

  1. The homotopy equation
  2. Expression of the cup-products in terms of weights and graphs
  3. A path in \bar{C}_{2,0}
  4. Expression of the homotopy in terms of weights and graphs


Lecture 8 (45min) : Compatibility between cup products II (M. Livernet)

  1. Stokes formula
  2. Proof of the homotopy equation


Lecture 9 (1h30) : Duflo isomorphism (C. Blohmann)

  1. Statement (without proof!) of the Poincar\'e-Birkhoff-Witt theorem (isomorphism of vector spaces between S( g) and U( g) )
  2. Statement of the Duflo isomorphism (isomorphism of algebras between S( g)^{ g} and U( g)^{ g} )
  3. Proof of the statement via the compatibility between cup-products (after Kontsevich)


Lecture 10 (1h30): The combinatorial Kashiwara-Vergne conjecture and the Duflo isomorphism (M. Ronco)

  1. Baker-Campbell-Hausdorff formula
  2. Presentation of the KV conjecture
  3. Statement of the combinatorial KV conjecture
  4. KV implies Duflo (algebraically)


Lecture 11 (1h30): Proof of the KV conjecture (J.-L. Loday)

  1. Lie- and wheel-type graphs
  2. Reformulation of the KV conjecture via deformations (equivalence)
  3. A deformation of the Baker-Campbell-Hausdorff formula
  4. Alekseev-Meinrenken proof (sketch)


Lecture 12 (1h30) : Introduction to Drinfeld associators (A. Brochier)

  1. Universal Lie algebra t_n , relation with semi-simple Lie algebras
  2. Definition of associators
  3. Categorical interpretation
  4. Torsor structure
  5. Existence/C = existence/Q


Lecture 13 (1h30) : KV associators, after Alekseev-Torossian (D. Calaque)

  1. tder, sder, tr, kv_2 , kv_3 , etc ...
  2. Definition of KV-associators
  3. Relation with Drinfeld associators
  4. Relation with the KV problem


Lecture 14 (1h30 min): Existence of Drinfeld associators (U. Kraehmer)

  1. Knizhnik-Zamolodchikov equations
  2. Construction of the KZ associator
  3. Proof that it satisfies the axioms of associators


Lecture 15 (45 min): Drinfeld double (P. M. Hajac)

  1. The Drinfeld double and its quasi-triangular structure


Lecture 16 (45 min): Quantization of Lie bialgebras (T. Maszczyk)

  1. Lie bialgebras, quantization problem
  2. Strategy of Etingof-Kazhdan proof


Lecture 17: Alekseev-Enriquez-Torossian explicit proof of the KV conjecture (A. Alekseev)


References :

1, ... & 6 : Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157--216. (ArXiv)
1,2 & 3 : Keller's part in [CKTB]: Déformation, Quantification, Théorie de Lie, Panoramas et Synthèses 20 (2005). See also here for a premiminary version of Keller's part.
5 : Bruguieres's appendix in [CKTB]. See also here for a premiminary version of Bruguieres's part.
1, ... & 5: Cattaneo, Formality and star products, Lecture notes taken by D. Indelicato, London Math. Soc. Lecture Note Ser., 323, Poisson geometry, deformation quantisation and group representations, 79--144, Cambridge Univ. Press, Cambridge, 2005. (ArXiv)
6 : Torossian's part in [CKTB].
6 : Arnal, Manchon & Masmoudi, Choix des signes pour la formalité de M. Kontsevich. (French) [Choice of signs for M. Kontsevich's formality theorem] Pacific J. Math. 203 (2002), no. 1, 23--66. (ArXiv)
7 & 8 : Manchon & Torossian, Cohomologie tangente et cup-produit pour la quantification de Kontsevich, Annales Mathématiques Blaise Pascal, Vol 10 (1), 2003, 75-106. (ArXiv)
7, 8 & 9 : Calaque & Rossi, Lectures on Duflo isomorphisms in Lie algebras and geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 060. (Available here).
9: Loday, Série de Hausdorff, idempotents eulériens et algèbres de Hopf. Exposition. Math. 12 (1994), no. 2, 165--178. 9: Torossian, Cours de Master : Formule de Campbell-Haudorff, Isomorphisme de Duflo et Conjecture de Kashiwara-Vergne. (Available here).
9 : Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157--216. (ArXiv)
10: 10 & 11 : Torossian, La conjecture de Kashiwara-Vergne, séminaire Bourbaki, juin 2007. Available here.
10 & 11 : Alekseev & Meinrenken, On the Kashiwara-Vergne conjecture, Invent. Math. 164 (2006), no. 3, 615--634. (ArXiv)
11 : Torossian, Sur la conjecture combinatoire de Kashiwara-Vergne, Ann. Math. Blaise Pascal 10 (2003), no. 1, 75--106. (ArXiv)
12 : Drinfeld, On quasi-triangular quasi-Hopf algebras and a group closely connected with {\rm Gal}(\overline{Q}/Q) , Leningrad Math. J., vol. 2 no. 4, 829--860, (1991).
12: Kassel, Quantum groups, New York NY : Springer, 1995.
12: Chari, Pressley, A guide to quantum groups. Cambridge University Press, Cambridge, 1994.
13 : Alekseev & Torossian, The Kashiwara-Vergne and Drinfeld associators, preprint arXiv math0802.4300.
13 : Torossian, Kashiwara-Vergne problem and Drinfeld's associators, available here.
14, 15 & 16 : Drinfeld, On quasi-triangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q), Leningrad Math. J., vol. 2 no. 4, 829--860, (1991).
14, 15 & 16 : Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798--820, Amer. Math. Soc., Providence, RI, 1987.
14, 15 & 16 : Etingof, Schiffman, Lectures on Quantum groups, Lectures in Mathematical Physics. International Press, Somerville, MA, 2002.
14, 15 & 16 : Etingof, Kazhdan, Quantization of Lie bialgebras I, Se. Lecta Math. (N.S.) 2 (1996), no. 1, 1--41.