Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Uncountable sets of unit vectors that are separated by more than 1

Tom 232 / 2016

Tomasz Kania, Tomasz Kochanek Studia Mathematica 232 (2016), 19-44 MSC: Primary 46B20, 46B04; Secondary 46E15, 46B26. DOI: 10.4064/sm8353-2-2016 Opublikowany online: 2 March 2016

Streszczenie

Let $X$ be a Banach space. We study the circumstances under which there exists an uncountable set $\mathcal A\subset X$ of unit vectors such that $\|x-y\| \gt 1$ for any distinct $x,y\in \mathcal A$. We prove that such a set exists if $X$ is quasi-reflexive and non-separable; if $X$ is additionally super-reflexive then one can have $\|x-y\|\geqslant 1+\varepsilon$ for some $\varepsilon \gt 0$ that depends only on $X$. If $K$ is a non-metrisable compact, Hausdorff space, then the unit sphere of $X=C(K)$ also contains such a subset; if moreover $K$ is perfectly normal, then one can find such a set with cardinality equal to the density of $X$; this solves a problem left open by S. K. Mercourakis and G. Vassiliadis (2015).

Autorzy

  • Tomasz KaniaMathematics Institute
    University of Warwick
    Gibbet Hill Rd
    Coventry, CV4 7AL, England
    e-mail
  • Tomasz KochanekInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-656 Warszawa, Poland
    and
    Institute of Mathematics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek