PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Order eight non-symplectic automorphisms on elliptic K3 surfaces

Volume 116 / 2018

Dima Al Tabbaa, Alessandra Sarti Banach Center Publications 116 (2018), 11-24 MSC: Primary: 14J28; Secondary: 14J50, 14J10. DOI: 10.4064/bc116-1

Abstract

In this paper we classify complex $K3$ surfaces with non-symplectic automorphism of order 8 that leaves invariant a smooth elliptic curve. We show that the rank of the Picard group is either $10$, $14$ or $18$ and the fixed locus is the disjoint union of elliptic curves, rational curves and points, whose number does not exceed $1$, $2$, respectively $14$. We give examples corresponding to several types of fixed locus in the classification.

Authors

  • Dima Al TabbaaLaboratoire de Mathématiques et Applications
    UMR CNRS 7348
    Université de Poitiers
    Téléport 2
    Boulevard Marie et Pierre Curie
    86962 Futuroscope Chasseneuil, France
    e-mail
  • Alessandra SartiLaboratoire de Mathématiques et Applications
    UMR CNRS 7348
    Université de Poitiers
    Téléport 2
    Boulevard Marie et Pierre Curie
    86962 Futuroscope Chasseneuil, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image