Epsilon factors as algebraic characters on the smooth dual of $\mathrm {GL}_n$

Volume 120 / 2020

Roger Plymen Banach Center Publications 120 (2020), 11-21 MSC: 20G25, 22E50. DOI: 10.4064/bc120-1

Abstract

Let $K$ be a non-archimedean local field and let $G = {\rm GL}_n(K)$. We have shown in previous work that the smooth dual ${\rm Irr}(G)$ admits a complex structure: in this article we show how the epsilon factors interface with this complex structure. The epsilon factors, up to a constant term, factor as invariant characters through the corresponding complex tori. For the arithmetically unramified smooth dual of ${\rm GL}_n$, we provide explicit formulas for the invariant characters.

Authors

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image