Spinors in braided geometry

Volume 37 / 1996

Mićo Đurđević, Zbigniew Oziewicz Banach Center Publications 37 (1996), 315-325 DOI: 10.4064/-37-1-315-325


Let V be a ℂ-space, $σ ∈ End(V^{⊗2})$ be a pre-braid operator and let $F ∈ lin(V^{⊗2},ℂ).$ This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra $Cl(V,σ,0) ≡ V^{∧}(σ)$. If $σ ≠ σ^{-1}$ and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation is faithful and irreducible.


  • Mićo Đurđević
  • Zbigniew Oziewicz

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image