Kernel theorems in spaces of generalized functions

Volume 88 / 2010

Antoine Delcroix Banach Center Publications 88 (2010), 77-89 MSC: Primary 47G10; Secondary 45P05, 46F05, 46F30. DOI: 10.4064/bc88-0-7


In analogy to the classical isomorphism between $\mathcal{L}(\mathcal{D}(\mathbb{R}^{n}) ,\mathcal{D}^{\prime}(\mathbb{R}^{m})) $ and $\mathcal{D}^{\prime}(\mathbb{R}^{m+n})$ (resp. $\mathcal{L}(\mathcal{S}(\mathbb{R}^{n}),\mathcal{S} ^{\prime}(\mathbb{R}^{m}))$ and $\mathcal{S}^{\prime}(\mathbb{R}^{m+n})$), we show that a large class of moderate linear mappings acting between the space $\mathcal{G}_{C}(\mathbb{R}^{n}) $ of compactly supported generalized functions and $\mathcal{G}(\mathbb{R}^{n}) $ of generalized functions (resp. the space $\mathcal{G}_{\mathcal{S}}( \mathbb{R}^{n}) $ of Colombeau rapidly decreasing generalized functions and the space $\mathcal{G}_{\tau}(\mathbb{R}^{n}) $ of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of $\mathcal{G}(\mathbb{R}^{m+n})$ (resp. $\mathcal{G} _{\tau}(\mathbb{R}^{m+n})$). The main novelty is to use accelerated $\delta$-nets, which are unit elements for the convolution product in these regular subspaces, to construct the kernels. Finally, we establish a strong relationship between these results and the classical ones.


  • Antoine DelcroixEquipe Analyse Algébrique Non Linéaire
    Laboratoire Analyse, Optimisation, Contrôle
    Faculté des sciences – Université des Antilles et de la Guyane
    97159 Pointe-à-Pitre Cedex
    Guadeloupe (France)

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image