Fractional integral operators on $\boldsymbol{B^{p,\lambda}}$ with Morrey-Campanato norms

Volume 92 / 2011

Katsuo Matsuoka, Eiichi Nakai Banach Center Publications 92 (2011), 249-264 MSC: Primary 42B35; Secondary 46E35, 46E30, 26A33. DOI: 10.4064/bc92-0-17

Abstract

We introduce function spaces $B^{p,\lambda}$ with Morrey-Campanato norms, which unify $B^{p,\lambda}$, $\newcommand{\CMO}{\mathrm{CMO}}\CMO^{p,\lambda}$ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator $I_{\alpha}$ on these spaces.

Authors

  • Katsuo MatsuokaCollege of Economics
    Nihon University
    1-3-2 Misaki-cho, Chiyoda-ku
    Tokyo 101-8360, Japan
    e-mail
  • Eiichi NakaiDepartment of Mathematics
    Osaka Kyoiku University
    Kashiwara
    Osaka 582-8582, Japan
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image