Quantum detailed balance conditions with time reversal: the finite-dimensional case

Volume 96 / 2011

Franco Fagnola, Veronica Umanità Banach Center Publications 96 (2011), 159-174 MSC: 46L55, 47D06, 47D07, 82B10, 82C10, 81S25. DOI: 10.4064/bc96-0-10

Abstract

We classify generators of quantum Markov semigroups $\mathcal T$ on $\mathcal{B}(\mathsf h)$, with ${\mathsf{h}}$ finite-dimensional and with a faithful normal invariant state $\rho$ satisfying the standard quantum detailed balance condition with an anti-unitary time reversal $\theta$ commuting with $\rho$, namely $\mathop{\rm tr}(\rho^{1/2}x\rho^{1/2}\mathcal T_t(y)) = \mathop{\rm tr}(\rho^{1/2}\theta y^*\theta\rho^{1/2}\mathcal T_t(\theta x^*\theta))$ for all $x,y\in\mathcal B $ and $t\ge 0$.

Our results also show that it is possible to find a standard form for the operators in the Lindblad representation of the generators extending the standard form of generators of quantum Markov semigroups satisfying the usual quantum detailed balance condition with non-symmetric multiplications $x\mapsto \rho^{s}x\rho^{1-s}$ ($s\in [0,1]$, $s\not=1/2$) whose generators must commute with the modular group associated with $\rho$. This supports our conclusion that the most appropriate non-commutative version of the classical detailed balance condition is the above standard quantum detailed balance condition with an anti-unitary time reversal.

Authors

  • Franco FagnolaDipartimento di Matematica, Politecnico di Milano
    Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
    e-mail
  • Veronica UmanitàDipartimento di Matematica, Università di Genova
    Via Dodecaneso 35, I-16146 Genova, Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image