A+ CATEGORY SCIENTIFIC UNIT

Arbitrarily long strings of consecutive primes in special sets

Sai Sanjeev Balakrishnan, Félix Houde, Vahagn Hovhannisyan, Maryna Manskova, Yiqing Wang Acta Arithmetica MSC: Primary 11N05; Secondary 11N36 DOI: 10.4064/aa240201-25-5 Published online: 24 September 2025

Abstract

Let $F(x)$ be a function of the form $ \sum_{i=1}^r d_i x^{\rho_i}$, where $d_1,\ldots ,d_r\in \mathbb {R}$, $0 \leq \rho_1 \lt \cdots \lt \rho_r$, $\rho _r \notin \mathbb Z$, $\rho _i \in \mathbb R$ for $ 1 \leq i \leq r$ and $d_r\ne 0$. We prove that the sets of the form $\{ n \in \mathbb N: \{ F(n) \} \in U \}$ for any non-empty open set $U \subset [0,1)$ contain arbitrarily long strings of consecutive primes.

Authors

  • Sai Sanjeev BalakrishnanDepartment of Mathematics
    University of California, Berkeley
    Berkeley, CA 94720, USA
    e-mail
  • Félix HoudeDepartment of Mathematics and Statistics
    Concordia University
    Montréal, QC, Canada, H3G 1M8
    e-mail
  • Vahagn HovhannisyanFaculty of Mathematics and Mechanics
    Yerevan State University
    Yerevan, Armenia
    e-mail
  • Maryna ManskovaInstitute of Analysis and Number Theory
    Graz University of Technology
    8010 Graz, Austria
    e-mail
  • Yiqing WangDepartment of Mathematics
    University of Wisconsin-Madison
    Madison, WI 53706, USA
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image