A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the Bergman distance on model domains in $\mathbb C^n$

Volume 116 / 2016

Gregor Herbort Annales Polonici Mathematici 116 (2016), 1-36 MSC: Primary 32F45; Secondary 32T25, 32U35. DOI: 10.4064/ap3752-12-2015 Published online: 2 December 2015

Abstract

Let $P$ be a real-valued and weighted homogeneous plurisubharmonic polynomial in $\mathbb C^{n-1}$ and let $D$ denote the ‶model domain″ $\{z \in \mathbb C^n\mid r(z):= \mathop{\rm Re} z_1 + P(z') <0\}$. We prove a lower estimate on the Bergman distance of $D$ if $P$ is assumed to be strongly plurisubharmonic away from the coordinate axes.

Authors

  • Gregor HerbortFachbereich Mathematik und Naturwissenschaften
    Bergische Universität Wuppertal
    D-42097 Wuppertal, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image