A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Annales Polonici Mathematici / All issues

## Annales Polonici Mathematici

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

## On the global Łojasiewicz inequality for polynomial functions

### Volume 122 / 2019

Annales Polonici Mathematici 122 (2019), 21-47 MSC: 14P05, 14P15, 14H50. DOI: 10.4064/ap171126-21-9 Published online: 15 February 2019

#### Abstract

Let $f\colon \mathbb{R}^n\rightarrow \mathbb{R}$ be a polynomial in $n$ variables. We study the following global Łojasiewicz inequality for $f$: $|f(x)|\geq c\min \{{\rm dist}(x,f^{-1}(0))^\alpha, {\rm dist}(x,f^{-1}(0))^\beta\}$ for all $x\in\mathbb{R}^n,$ where $c, \alpha, \beta$ are positive constants. Let $f$ be written in the form $$f(x_1,\ldots,x_n)=a_0x_n^{d}+a_1(x’)x_n^{d-1}+ \cdots +a_d(x’),$$ where $d$ is the degree of $f$ and $x’=(x_1,\ldots, x_{n-1}).$ We prove that the global Łojasiewicz inequality for $f$ holds for all $x\in\mathbb{R}^n$ if and only if it holds for all $x\in V_1:= \{x\in\mathbb{R}^n : \partial f/\partial x_n=0 \}.$ For $n=2$, this gives a simple method for checking the existence of the global Łojasiewicz inequality. We will consider the following problems for $n=2$: (a) computation of global Łojasiewicz exponents; (b) studying the global Łojasiewicz inequality for polynomials which are non-degenerate at infinity; (c) computation of the exponent involved in the Hörmander version of the global Łojasiewicz inequality.

#### Authors

• Huy Vui HaThang Long Institute of Mathematics
and Applied Sciences
Nghiem Xuan Yem Road, Hoang Mai District
Ha Noi, Vietnam
e-mail
• Van Doat DangThang Long High School for the Gifted 