PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Interpolation characteristics of maximal polynomial approximants to rational functions

Volume 123 / 2019

H.-P. Blatt, R. Grothmann Annales Polonici Mathematici 123 (2019), 155-169 MSC: 30E10, 41A05, 41A10. DOI: 10.4064/ap180803-4-4 Published online: 13 August 2019

Abstract

Let $E$ be a compact set in $\mathbb C $ with connected regular complement and let $p_n$, $n \in \mathbb N $, be a sequence of polynomials which converge maximally to a fixed rational function $f$ on $E$. Then $p_n$ has $n + o(n)$ interpolation points to $f$ in $\mathbb C $ and the normalized counting measure $\nu _n$ of these interpolation points (resp. its balayage measure $\widehat {\nu }_n$ onto the boundary of $E$) converges to the equilibrium measure of $E$ as $n \rightarrow \infty $. Furthermore, we prove a complete characterization of maximal convergence by interpolation.

Authors

  • H.-P. BlattMathematisch-Geographische Fakultät
    Katholische Universität Eichstätt-Ingolstadt
    85071 Eichstätt, Germany
    e-mail
  • R. GrothmannMathematisch-Geographische Fakultät
    Katholische Universität Eichstätt-Ingolstadt
    85071 Eichstätt, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image